
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

In this article the authors present a new computational method to analyse HiC retrieving an 

hierarchy of TADs and inter-TAD domains. Their two-component model also gives the ideal 

background estimation to detect over-represented chromatin interactions.  

 

The work is exciting and timely due to the high demand in the field for new methods bridging HiC 

data (typically low res., 10s Kb) with the finer scale needed to specify promoter-enhancer 

interactions. The approach is sound and well explained but the details given are unbalanced and 

important controls and results are missing. I recommend major revision of the article.  

 

Major points:  

1. While it is important to explain the method proposed, many of the details given are ill-suited for 

a results section (e.g. how log-normal distribution is written and many standard bayesian eqs. 

presented should change to methods or appendix). On the other hand an important output of the 

proposed method is TAD boundaries and the inter-TAD structure captured but these are not really 

shown or discussed. A comparison with DI, contrast index or insulation square would be good to 

see. In line 152 the authors state they obtain a "forest like TAD structure" but this cannot be seen 

which makes the model abstract to the reader.  

 

2. The chromatin enrichments in Fig.3 used to test their predictions are interesting but given that 

a third are negative I wonder what is the value of the analysis shown. Also it needs to be 

supplemented with a mock chip/ input. Why was chromHMM used and not directly heterochromatin 

marks ? Depletion of features is also interesting to see here.  

 

3. A hallmark of enhancer marks is their increased tissue specificity and here a big opportunity is 

being missed. I wonder if the authors' method could find tissue-specific enhancers from the 

multiple HiC data analysed or if invariable contacts like the SHH-ZRS shown are predominant. Shh 

has multiple enhancers controlling its expression in different tissues and developmental times - do 

the virtual 4C plots change in other data considered?  

 

4. The analysis is centred on a 2Mb region around promoters. Why not unbiasedly genome-wide to 

find potential enhancers even further away? The sentence on putative enhancers and their 

potential target genes should be made clearer (lines 218-220). How do the authors know the 

target promoter and what are the assumptions (proximity and single promoter?) ?  

 

 

Minor points:  

1. Inter-TAD merging was restricted to 5Mb but no justification given. Additionally it is a bit 

confusing that the paper considers inter-TAD interactions but BG is used in equations. Are these 

background or meaningful interactions?  

 

2. Using average DNA-DNA interaction as summary statistic for each domain can also lead to 

biases - not clear why the authors consider this better.  

 

3.The two-component model is interesting but the justification given for using it should be better 

supported and explored. I think the reader would benefit from seeing these data plotted. Often 

there were Fig. S1 references where the plots did not correspond to expectations.  

 

 

Reviewer #2 (Remarks to the Author):  

 

Promoter-Enhancer Interactions Identified from Hi-C Data using  Probabilistic Models and 



Hierarchical Topological Domains, by Ron et al.  

 

This manuscript describes a computational approach, ‘PSYCHIC’, to analyse Hi-C data and identify 

topological domains and putative enhancer-promoter interactions within them. The method takes 

an input set of topological domains, refines them based on a probabilistic model to predict whether 

the interaction between a pair of bins is most likely to be within or between TADs, and then 

iteratively merges pairs of adjacent domains to produce a hierarchical TAD structure. The authors 

use this hierarchical TAD model to inform modeling of the expected number of interactions for any 

distance, within or between TADs, and to identify enriched interactions of promoters with other 

bins. Using this method, the authors are able to identify interactions with known enhancers for 

Foxg1 and Shh. They further identify putative enhancer-promoter interactions using multiple Hi-C 

datasets from human and mouse, and show that putative enhancer bins are enriched for eQTLs 

and other features previously associated with enhancer activity.  

 

Taking into account local background, such as whether an interaction occurs within or between 

topological domains, is crucial when determining significance of interactions. The authors have 

provided a useful tool for determining significant interactions while identifying and taking into 

account topological domain structures. Some additional comparisons with existing datasets would 

be useful to further characterize the performance and robustness of the method. In addition, there 

are some improvements that could be made to the software provided that would increase its 

usability.  

 

Major points  

 

• How much does the performance of the algorithm depend on the initial set of TADs, i.e. how 

robust is the method? The authors could address this point by showing how the final TAD calls are 

affected by using random TAD positions or a different initial TAD-calling algorithm.  

• The manuscript doesn’t state what binning resolution is used for any of the Hi-C datasets. This 

should be included.  

• The methods should also include details of the Hi-C processing and format of input data.  

• Figure 3: 4Mb windows around putative enhancers are far too large to assess enrichment of 

chromatin marks at the enhancers – this is more reflective of the enhancer bins being in active vs 

inactive compartments. This figure should be replaced with a higher resolution analysis to support 

the statement that the enhancer regions are enriched in active chromatin marks.  

• It would be informative to know how well these enhancer-promoter interactions overlap with 

interactions determined using other types of data, such as ChIA-PET (e.g. PMID 26686651) or 

promoter capture Hi-C (e.g. PMID 25752748).  

• The authors report that detected enhancer-promoter interactions co-occur in a higher number of 

GAM slices than random interactions. What is the statistical significance of this increased co-

occurrence?  

• There is not much discussion of the features of the hierarchical TAD structure. Some examples of 

this structure at specific genomic loci would help readers understand the impact of the hierarchical 

merging. It would also be useful to include a comparison of this hierarchical approach with existing 

tools such as Armatus (PMID: 24868242).  

• Software: I was unable to fully test the software, since I don’t currently have access to a system 

with Matlab installed. However, I downloaded and ran the software on a system without Matlab 

installed, where it unexpectedly ran without producing any errors other than empty files with the 

results of the calculations. The usability of the software tool would be greatly increased by adding 

a few extra features:  

o Checks for required software at the start of the run, with error messages/installation directions if 

necessary  

o Usage/help information available using “--help” or “-h” or similar  

o A description of the expected output files and their format  

o A description of the required format for input files  

o List required versions of all prerequisite software  



 

Minor points  

 

• The authors refer to the bins detected as having enriched interactions with promoters as 

“enhancer regions” – a more neutral term that acknowledges the limited resolution of the Hi-C 

data would be more appropriate, such as “interacting bins” or “putative enhancer bins”.  

• There are a few missing words / typos in the manuscript, e.g. line 12 “Proximity ligation methods 

such as Hi-C”, line 255 “are possibly skewed by boundary elements  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

Ron et al present a new method to analyze a Hi-C (chromatin interaction) data set to reveal DNA-

DNA interactions and then, by examining high confidence interactions with a promoter, they 

predict putative enhancers likely to regulate a gene. They provide circumstantial evidence in favor 

of the quality of the predicted enhancer collection, by showing enrichments of various enhancer-

related properties. They also show that various enrichments are better than those seen when 

using state of the art methods for analyzing the same data to the same end (predicting 

enhancers). The paper is very well written.  

 

 

 

Specific comments:  

 

The finding shown in the last subsection (Figure 7) is exciting and intriguing. To me the statement 

“the hypothesis that a non-trivial fraction of the putative enhancer regions we have identified are 

“silent” and inaccessible. A closer examination identified several known enhancers even within 

those” was the most interesting aspect of the entire paper, and I was wishing that the authors had 

made the point more forcefully (e.g., by at least providing some basic numbers and listing more 

examples like ZRS-Shh in the supplement or even in main text), to make readers think of the 

possibilities here, even if there is the usual risk of false positives.  

 

 

To what extent is the difference in predicted enhancers between the new method and previous 

methods due to difference in segmentation versus difference in how intra and inter-TAD interaction 

intensities are normalized to predict significant interactions? I am guess that the segmentation 

may not be very different and that the main differences seen in Figs 5 and 6 arise from the 

normalization procedure.  

 

The idea of subtracting the expectation can be a double edged sword in this application. In 

comparing the residuals of different windows (when constructing the Normal distribution), the 

assumption is that enhancers may be present at all distances with equal prior probability. If in 

reality there is a much greater crowding of enhancers closer to (say within 100 Kb of) the gene, 

then the Hi-C data will persistently show strong intensities and the background model might 

discount that stronger signal. I am not sure what it does to the signal/noise ratio, but it clearly 

hurts the sensitivity of the method, in a way biased against closer enhancers.  

 

The score S(t) is somewhat intriguing since it is a heuristic as far as I can tell. If the “outside of 

TAD t” pairs always involve going a fixed distance (h) outside of the TAD, then the number of such 

“outside” pairs scales linearly with the TAD length and the number of inside pairs scales 

quadratically with TAD length. What effect does this have on S(t) and are these values comparable 

across different domains ?  

 

The score ‘Score(C)’ (equation 8), in adding S(t) over multiple (non-overlapping) TADs appears to 



include the negative part of equation(7) RHS potentially multiple times. Am I missing something?  

 

The motivation and practical utility of the hierarchical structure formation is not entirely clear. 

While it is clear that visualization of the HiC maps suggests the presence of such structures, how 

exactly do the authors propose the user of this tool will utilize the hierarchical structure?  

 

Suppl Figure 2 needs error bars, possibly based on bootstrap sampling, for each bar. (No need for 

p-values, standard errors for each estimate will be just fine.)  

 

I am not entirely clear why the fourth from left bar in Supplementary Figure 2 is called 

‘Hierarchical TADs’. I saw that the description of the model talks about hierarchical agglomeration 

of neighboring domains, followed by local parameter estimation. What is not clear is why the 

agglomeration had to be done to assign TAD (and inter-TAD) specific parameters for modeling 

local intensity. Couldn’t the same exact result be obtained just from the knowledge of all TADs 

(the primary segmentation) followed by local parameter assignments? Or is there some sort of 

threshold applied to the hierarchical organization that determines which inter-TADs will be 

considered and which not. In short, I am not clear on why the hierarchical structure was needed in 

this step.  

 

How different would the putative enhancer set be if using the simple power law rule for computing 

residuals in each promoter’s 4 Mb context, followed by the same z-score / p-value calculation, but 

without utilizing the hierarchical structure, and even the TAD segmentation? I would expect that 

the difference is likely not major for within-TAD interactions, and any significant differences are 

probably in inter-TAD regions, which hosts a small minority (~10%) of putative enhancers 

anyways.  

 

 

Figure 5 provides evidence that the predicted putative enhancers might be more reliable than 

those predicted by other methods on the same Hi-C data. However, the height of each bar (in each 

panel) is the ‘average signal’ of a certain type in the corresponding collection of predicted 

enhancers, and leaves open the possibility that there is a precision-recall tradeoff in play here, and 

that the average signal comparisons might look different at alternative values of cutoffs used for 

the other methods. I noticed that the authors have tried to keep this in mind in the evaluations of 

Figure 6A, where they show higher precision even with greater numbers of predictions made by 

their method.  

 

While the authors have chosen to validate their predictions using various other sources of 

enhancer-related information, and while these are helpful in making their point, these do not quite 

reach the level of ‘validation’. I would have been much more convinced if the authors had pointed 

out, for instance, that one or both of the ‘true’ Foxg1 enhancers would not have been picked by a 

serious scientist who did not have access to the method proposed here. A more systematic 

evaluation might be based on enhancer databases such as VISTA enhancer browser.  

 

The finding shown in the last subsection (Figure 7) is exciting and intriguing. To me the statement 

“the hypothesis that a non-trivial fraction of the putative enhancer regions we have identified are 

“silent” and inaccessible. A closer examination identified several known enhancers even within 

those” was the most interesting aspect of the entire paper, and I was left wishing that the authors 

had made the point more forcefully (e.g., by at least providing some basic numbers and listing 

more examples like ZRS-Shh in the supplement or even in main text), to make readers think of 

the possibilities here, even if there is the usual risk of false positives.  

 

 

Minor comments/ typos:  

Line124: “all inter-TAD outside of TAD t, defined by pairs <i,j> ” This needs some 

rewording/correction. You mean “all inter-TAD pairs outside of TAD t, defined by pairs <k,l>” ?  



 

Line 141: “Specifically, we wish to iteratively agglomerative neighboring” Change ‘agglomerative’ 

to ‘agglomerate’ ?  

 

Line 169: “significance over-represented interactions” Missing “of” ?  

 

 

Line 155: “Once we have segmented the Hi-C map into hierarchical domains, we wish to model the 

expected intensity of the Hi-C map”. At this point, the authors should provide a brief motivation of 

where they want to go with this. Very related point: I was for some time confused by the intent of 

Supplementary Figure 2, because it seemed to show that more parameterized models give better 

fits to data, which is completely expected. The authors put my doubts to rest with their last 

sentence in the subsection, that the goal is to build a more accurate background model to assess 

deviations from. This is of course a perfectly reasonable strategy and the authors should note it up 

front.  



 

Reviewer   #1   (Remarks   to   the   Author): 

The work is exciting and timely due to the high demand in the �ield for new methods bridging                                   
HiC data (typically low res., 10s Kb) with the �iner scale needed to specify promoter‐enhancer                             
interactions. The approach is sound and well explained but the details given are unbalanced                           
and   important   controls   and   results   are   missing.   I   recommend   major   revision   of   the   article. 

First,   we   would   like   to   thank   Reviewer   1   for   the   thorough   and   constructive   review. 

Major   points: 

1. While it is important to explain the method proposed, many of the details given are                               
ill‐suited for a results section (e.g. how log‐normal distribution is written and many standard                           
bayesian   eqs.   presented   should   change   to   methods   or   appendix). 

The   technical   details   have   been   transferred   to   the   Methods   section. 

On the other hand an important output of the proposed method is TAD boundaries and the                               
inter‐TAD structure captured but these are not really shown or discussed. A comparison with                           
DI,   contrast   index   or   insulation   square   would   be   good   to   see. 

As we have showed in Supplementary Figure 2 (now updated to cover all mouse                           
chromosomes) PSYCHIC’s TAD calling allows for a more accurate log‐Normal modeling of                       
the Hi‐C data, compared to Dixon et al TAD calling (DI method). We have also �ixed a minor                                   
bug   in   the   Y‐axis   scaling.  

In addition we have analyzed our predicted TAD boundaries (currently Supplementary Fig                       
5),   which   showed   enrichment   of   CTCF,   PolII   and   accessibility. 

Yet, the main scope of the PSYCHIC algorithm is to identify promoter‐enhancer interactions.                         
A better segmentation into TAD, together with the inter‐TAD hierarchical structure are                       
mostly a means for a better �it of the Hi‐C data, thus allowing for a better identi�ication of                                   
promoter‐enhancer interactions. As we have showed in Figure S2 (now updated to cover all                           
mouse chromosomes) PSYCHIC’s TAD calling allows for a more accurate log‐Normal                     
modeling   of   the   Hi‐C   data,   compared   to   Dixon   et   al   TAD   calling   (DI   method). 

Following the reviewer request, we have now initialized the two‐component models with                       
additional methods to the Directionality Index (Dixon et al, used by PSYCHIC initially).                         
These include Insulation Score (using a running square, Crane et al, Nature 2015) as well as                               
random initialization of TADs. These changes had a limited effect on the predicted enhancer                           
regions (using a p‐value threshold of 1e‐4) on adult cortex Hi‐C data from mouse chr10                             
(Dixon   et   al).   These   results   are   now   shown   as   Supplementary   Figure   6: 

     



 

In line 152 the authors state they obtain a "forest like TAD structure" but this cannot be seen                                   
which   makes   the   model   abstract   to   the   reader. 

We apologize for the unclear phrasing. By “forest‐like TAD structure” we meant that TADs                           
are only merged up to certain size (5 Mb), so the overall model is composed of multiple                                 
tree‐like   structures,   as   shown   in   Figure   1   .   We   have   now   clari�ied   this   sentence. 

2. The chromatin enrichments in Fig.3 used to test their predictions are interesting but given                             
that a third are negative I wonder what is the value of the analysis shown. Also it needs to be                                       
supplemented with a mock chip/ input. Why was chromHMM used and not directly                         
heterochromatin   marks   ?   Depletion   of   features   is   also   interesting   to   see   here. 

We have initially included ChIP‐seq data collected by Dixon et al, from adult mouse cortex.                             
Indeed, some of the putative enhancer regions show no enrichment compared to their 4Mb                           
surrounding regions. While this could be due to false positive calls, it has been shown that                               
inactive enhancers could be colocalized by their target genes (e.g. for Shh‐ZRS interactions,                         
Williamson   et   al,   2016). 

We have now included in Figure 3, following the reviewer’s request, additional plots of                           
H3K27me3 (from embryonic mouse brain, Ren lab, ENCODE) and Control (Ren Lab /                         
ENCODE, adult cortex). Both showing only a marginal enrichment at putative enhancer                       
regions (possibly explained by the high accessibility of these regions). We have also                         
included a statistical analysis of these plots (by comparing the center point with                         
distribution   of   average   ChIP‐seq   values   at   distances   >500Kb). 

ChromHMM signal was used as a proxy, summarizing the chromatin state (for various                         
active and repressive marks), which is present in multiple cell types (see Supplementary                         
Figure 8). We have now also included matching heatmaps for the random regions                         
(randomly chosen up to 2Mb away from each TSS, see Supplementary Figure 4). None of                             
these plots were found to be statistically signi�icant, except for CTCF (p‐value<0.01),                       
re�lecting   some   enrichment   of   CTCF   near   gene   promoters. 

3. A hallmark of enhancer marks is their increased tissue speci�icity and here a big                             
opportunity is being missed. I wonder if the authors' method could �ind tissue‐speci�ic                         
enhancers from the multiple HiC data analysed or if invariable contacts like the SHH‐ZRS                           
shown are predominant. Shh has multiple enhancers controlling its expression in different                       
tissues   and   developmental   times   ‐   do   the   virtual   4C   plots   change   in   other   data   considered? 

We have now prepared virtual 4C plots for Shh in additional conditions in human                           
(promoter ± 1.2Mb) and mouse (promoter ± 1Mb). As can be seen (Supplementary Figure                           
10A, and also shown below). Putative interactions are identi�ied for most mouse Hi‐C                         
experiments   (top   row,   850Kb),   but   not   for   most   human   SHH‐ZRS   (980Kb). 



 

 

 

More generally, we have also analyzed the co‐occurrence of putative enhancer regions                       
found in GM12878 cells with other cell types (using a p‐value threshold of 1e‐10) and                             
computed the number of additional Hi‐C experiments in which they are identi�ied. These                         
are shown in Supplementary Figure 10B (also below, blue bars). Putative DNA‐DNA                       
interactions tend to appear in multiple Hi‐C conditions (compared to random, green,                       
chi‐square   p‐value   ≤   1e‐300). 

 

4. The analysis is centred on a 2Mb region around promoters. Why not unbiasedly                           
genome‐wide to �ind potential enhancers even further away? The sentence on putative                       
enhancers and their potential target genes should be made clearer (lines 218‐220). How do                           
the authors know the target promoter and what are the assumptions (proximity and single                           
promoter?)   ? 

We focused our attention of regions interacting with gene promoters (e.g. enhancers) up to                           
a certain distance, and 1Mb was chosen as an arbitrary number being the maximal distance                             
of (currently well‐studied) validated enhancers. Surely over‐represented interactions could                 



 

be found at a larger distance, but with the risk of additional false positive calls. Currently,                               
due to the relatively low resolution of Hi‐C data, we resorted to assigning the putative                             
enhancer region to every gene whose promoter falls within the enriched Hi‐C cell.                         
Additional analysis could be done to further pin‐point the target genes and the accurate                           
location of the putative enhancer, e.g. by intersecting these predicted enhancer regions with                         
external   data   such   as   ChIP‐seq   of   gene   expression. 

Minor   points: 

1. Inter‐TAD merging was restricted to 5Mb but no justi�ication given. Additionally it is a bit                               
confusing that the paper considers inter‐TAD interactions but BG is used in equations. Are                           
these   background   or   meaningful   interactions? 

As we show in Figure 4C, most (~88%) of the predicted DNA‐DNA interactions occur with                             
the same TAD, with additional 4% occurring within 1 st ‐order TAD merges. The 5Mb                         
threshold was therefore mainly used for ef�iciency reasons, with relatively few such                       
interactions   occurring   inside   inter‐TAD   regions   likely   to   merged.  

We have now rephrased the terms TAD and BG (in the context of the two‐component                             
model) to be more consistent with the rest of the paper (namely, by replacing them with                               
“intra‐TAD”   and   “inter‐TAD”),   and   thank   the   reviewer   for   the   clari�ication.  

2. Using average DNA‐DNA interaction as summary statistic for each domain can also lead                           
to   biases   ‐   not   clear   why   the   authors   consider   this   better. 

Our summary statistics of I intra and I inter are calculated for each distance  d separately: I intra (d)                             
and I inter (d). These are quite robust, as they are estimated from at least 10 Hi‐C cells for each                                   
distance (otherwise set as NaN and ignored). In addition, this approach avoids the                         
size‐related   biases   favoring   the   merges   of   small   TADs,   compared   to   larger   ones. 

3. The two‐component model is interesting but the justi�ication given for using it should be                             
better supported and explored. I think the reader would bene�it from seeing these data                           
plotted. Often there were Fig. S1 references where the plots did not correspond to                           
expectations. 

We have now elaborated on this matter. First, we have rephrased the legend for                           
Supplementary Fig 1, to emphasize the it directly compares the empirical distribution of                         
Hi‐C DNA‐DNA interactions (bold lines) vs. their log‐Normal �itted model (dotted lines), for                         
a   variety   of   distances   for   both   inter‐   and   intra‐TAD   regions.  

To further justify the log‐Normal model, we have also compared the average likelihood (in                           
log 10 ) of the Hi‐C data for both intra‐TAD and inter‐TAD interactions using other                         
probabilistic families, including log‐Poisson and Negative Binomial. These results are now                     
shown as Supplemental Figure 1C‐D, with a signi�icantly better �it by a log‐Normal model,                           
thus   supporting   our   model   for   the   data   representation. 



 

Additional data are given in Supplementary Figure 1E supporting the robustness of our                         
parameter estimation for the two‐component model, as calculated on different                   
chromosomes. 

 

 

Reviewer   #2   (Remarks   to   the   Author): 

The authors have provided a useful tool for determining signi�icant interactions while                       
identifying and taking into account topological domain structures. Some additional                   
comparisons with existing datasets would be useful to further characterize the                     
performance and robustness of the method. In addition, there are some improvements that                         
could   be   made   to   the   software   provided   that   would   increase   its   usability. 



 

1. How much does the performance of the algorithm depend on the initial set of TADs, i.e.                                 
how robust is the method? The authors could address this point by showing how the �inal                               
TAD calls are affected by using random TAD positions or a different initial TAD‐calling                           
algorithm. 

We thank the reviewer for this comment, and have now compared the predictions of our                             
PSYCHIC algorithm following three different initialization methods. In addition to the                     
Directionality Index method (by Dixon et al), we have also implemented the Insulation                         
Score method (Crane et al, Nature 2015), as well as random initialization of TADs. These                             
changes had a limited effect on the predicted enhancer regions (using a p‐value threshold                           
of 1e‐4) on adult cortex Hi‐C data from mouse chr10 (Dixon et al). These results are now                                 
shown   as   Supplementary   Figure   6.  

     

2. The manuscript doesn’t state what binning resolution is used for any of the Hi‐C datasets.                               
This   should   be   included.  

We have now edited the text to include this information. We have used the original binning                               
of each Hi‐C experiments, except for Hi‐C data from Rao et al, that were down‐sampled to                               
25Kb   resolution. 

3.   The   methods   should   also   include   details   of   the   Hi‐C   processing   and   format   of   input   data.  

We have now edited the methods section to include these details. Brie�ly, all Hi‐C data we                               
analyzed   were   already   preprocessed   and   normalized   by   Hi‐C   normalization   algorithms. 

4. Figure 3: 4Mb windows around putative enhancers are far too large to assess enrichment                             
of chromatin marks at the enhancers – this is more re�lective of the enhancer bins being in                                 
active vs inactive compartments. This �igure should be replaced with a higher resolution                         
analysis to support the statement that the enhancer regions are enriched in active                         
chromatin   marks. 

Supplemental Figure S4B now shows the data from Figure 3 in 1Mb windows. It should be                               
noted that the analysis (for both Figure 3 and S4B) was done in the maximal resolution of                                 
the Hi‐C data. Following the Reviewer’s request, we have also included a statistical analysis                           
of these data, by comparing the predicted enhancer location (center point) with                       
distribution of average ChIP‐seq values at distances >500Kb, to statistically quantify the                       
sharpness   of   these   plots.   We   thank   the   reviewer   for   the   useful   comment. 

In addition, we have further emphasized the comparison with ChIP‐seq signal at a random                           
set of loci at a <1Mb distance from gene promoters. As these comparisons show (Top of Fig                                 



 

3, with heatmaps of random set now shown as Supplementary Figure 4A) the enrichment                           
of the ChIP‐seq signal (and others) are not due to active and inactive compartments                           
(insigni�icant   p‐values   for   “random”   control   data).   

5. It would be informative to know how well these enhancer‐promoter interactions overlap                         
with interactions determined using other types of data, such as ChIA‐PET (e.g. PMID                         
26686651)   or   promoter   capture   Hi‐C   (e.g.   PMID   25752748).  

We thank the reviewer for raising this point, and have now analyzed the Capture Hi‐C                             
(CHi‐C) data from Schoenfelder et al (Genome Res., 2015) as well as the ChIA‐PET data                             
from Tang et al (Cell, 2015). The Capture Hi‐C data (in mESC) show high support for the                                 
predicted interactions by PSYCHIC, with coverage ranging from 69% of PSYCHIC                     
interactions (FDR threshold of 1e‐2) to 74% (predictions at FDR<1e‐4), compared to                       
52%‐66% for Fit‐Hi‐C predictions for mES Hi‐C data (using thresholds of 1e‐10 and 1e‐20).                           
These   results   are   now   shown   as   Supplementary   Figure   9A. 

In addition, we have analyzed GM12878 ChIA‐PET data from the Ruan lab. The ChIA‐PET                           
interactions (PolII antibodies), show high support for our predictions, ranging from 37%                       
(PSYCHIC GM12878 predictions with threshold of p<1e‐2) to 55% (p<1e‐10). HiCCUPS                     
predictions for GM12878 yielded lower coverage by PolII ChIP‐PET peaks. Intriguingly, a                       
much higher portion of HiCCUPS calls (73%) were supported by CTCF ChIA‐PET pairs,                         
compared to only ~34% for PSYCHIC. This interesting result is in line with Figure 5,                             
showing high ChIP‐seq enrichments for CTCF (as well as Insulator marks) at putative                         
enhancers called by HiCCUPS (and also Fit‐Hi‐C). These results are shown below and as                           
Supplementary   Figure   9B. 

 

 

6. The authors report that detected enhancer‐promoter interactions co‐occur in a higher                       
number of GAM slices than random interactions. What is the statistical signi�icance of this                           
increased   co‐occurrence? 

Following the reviewer’s request, we have calculated the average GAM co‐occurrence for                       
1,000 random shuf�les of our enhancer‐promoter set. The average number of slices for the                           



 

original set of predictions outperformed all 1000 shuf�les, with a Normal distribution                       
p‐value of 5e‐92 (20.31 standard deviations above the average number of GAM slices in the                             
shuf�led   set).   We   now   report   this   statistical   value   in   the   text. 

7. There is not much discussion of the features of the hierarchical TAD structure. Some                             
examples of this structure at speci�ic genomic loci would help readers understand the                         
impact of the hierarchical merging. It would also be useful to include a comparison of this                               
hierarchical   approach   with   existing   tools   such   as   Armatus   (PMID:   24868242). 

We have now edited the text to consider the algorithms of Armatus (Filippova et al, 2014)                               
and Fraser et al (2015). It should be noted that Armatus does not directly �ind a hierarchical                                 
structure, but instead identi�ies domains at different sizes (by altering the algorithm input                         
parameters),   thus   generating   multiple   sets   of   TAD   segmentations. 

8. Software: I was unable to fully test the software, since I don’t currently have access to a                                   
system with Matlab installed. However, I downloaded and ran the software on a system                           
without Matlab installed, where it unexpectedly ran without producing any errors other                       
than empty �iles with the results of the calculations. The usability of the software tool                             
would   be   greatly   increased   by   adding   a   few   extra   features: 
‐ Checks for required software at the start of the run, with error messages/installation                           
directions   if   necessary 
‐   Usage/help   information   available   using   “‐‐help”   or   “‐h”   or   similar 
‐   A   description   of   the   expected   output   �iles   and   their   format 
‐   A   description   of   the   required   format   for   input   �iles 
‐   List   required   versions   of   all   prerequisite   software 
 
We apologize for the inconvenience. Our method requires MATLAB (which is also required                         
for the initialization of the two‐component model, using the Directionality Index method by                         
Dixon et al). The README �ile and the github software description have been improved, and                             
now include a list of required software, as well as clear descriptions of the input �ile                               
formats.  

9. The authors refer to the bins detected as having enriched interactions with promoters as                             
“enhancer regions” – a more neutral term that acknowledges the limited resolution of the                           
Hi‐C data would be more appropriate, such as “interacting bins” or “putative enhancer                         
bins”. 

Fixed.  

10. There are a few missing words / typos in the manuscript, e.g. line 12 “Proximity ligation                                 
methods   such   as   Hi‐C”,   line   255   “are   possibly   skewed   by   boundary   elements 

We   thank   the   reviewer   for   the   comments.   These   typos   were   �ixed. 

 

 



 

Reviewer   #3   (Remarks   to   the   Author): 

Ron et al present a new method to analyze a Hi‐C (chromatin interaction) data set to reveal                                 
DNA‐DNA interactions and then, by examining high con�idence interactions with a                     
promoter, they predict putative enhancers likely to regulate a gene. They provide                       
circumstantial evidence in favor of the quality of the predicted enhancer collection, by                         
showing enrichments of various enhancer‐related properties. They also show that various                     
enrichments are better than those seen when using state of the art methods for analyzing                             
the   same   data   to   the   same   end   (predicting   enhancers).   The   paper   is   very   well   written.  

We   thank   Reviewer   3   for   their   useful   comments. 

1. The �inding shown in the last subsection (Figure 7) is exciting and intriguing. To me the                                 
statement “the hypothesis that a non‐trivial fraction of the putative enhancer regions we                         
have identi�ied are “silent” and inaccessible. A closer examination identi�ied several known                       
enhancers even within those” was the most interesting aspect of the entire paper, and I was                               
wishing that the authors had made the point more forcefully (e.g., by at least providing                             
some basic numbers and listing more examples like ZRS‐Shh in the supplement or even in                             
main text), to make readers think of the possibilities here, even if there is the usual risk of                                   
false   positives. 

We have now prepared virtual 4C plots for Shh in additional conditions in human and                             
mouse. As can be seen (Supplementary Figure 10A, and also below), putative interactions                         
are identi�ied for most mouse Hi‐C experiments (top row, ZRS located 850Kb from Shh), but                             
not   for   most   human   SHH‐ZRS   (980Kb   apart   from   SHH). 

 

A   full   scale   analysis   of   the   conservation   of   promoter‐enhancer   interactions   (in   inactive 
conditions)   is   rather   premature,   due   to   the   limited   availability   of   validated 
promoter‐enhancers   interactions.  



 

2. To what extent is the difference in predicted enhancers between the new method and                             
previous methods due to difference in segmentation versus difference in how intra and                         
inter‐TAD interaction intensities are normalized to predict signi�icant interactions? I am                     
guess that the segmentation may not be very different and that the main differences seen in                               
Figs   5   and   6   arise   from   the   normalization   procedure.  

Indeed, we believe that the strength of PSYCHIC lies mostly in the TAD‐speci�ic background                           
model, which allows for a better identi�ication of interactions regardless of the general                         
tendency   for   interactions   in   each   TAD. 

To further support this hypothesis, we have repeated the comparison with different TAD                         
calling methods for all chromosomes, as shown in Supplementary Figure 2 (please note                         
that we also �ixed a minor bug in the Y‐axis scaling). Here, we compare no TAD                               
segmentation at all (that is, a single background model for each chromosome) as shown as                             
the 1 st bar of Supplementary Figure 2. Indeed, this results with a much poorer �it (bars                               
show the average RMSE, with error‐bars corresponding to 25 th and 75 th percentiles).                       
Segmentation into random TADs (random shuf�les of called TAD), as well as TAD called                           
using DI (Dixon et al), allow for less accurate �it compared compared to the PSYCHIC TADs,                               
with   or   without   hierarchical   and   bilinear   modes   (Supplementary   Figure   2). 

 

In addition, we have compared the effect of initialization by different TAD calling methods,                           
now compare the Directionality Index method (Dixon et al) to the Insulation Square (Crane                           
et al, Nature 2015), as well as initialization by random TADs. These changes had a limited                               
effect on the predicted enhancer regions (using a p‐value threshold of 1e‐4) on adult cortex                             
Hi‐C data from mouse chr10 (Dixon et al). These results are now shown as Supplementary                             
Figure   6.  



 

 

3. The idea of subtracting the expectation can be a double edged sword in this application.                               
In comparing the residuals of different windows (when constructing the Normal                     
distribution), the assumption is that enhancers may be present at all distances with equal                           
prior probability. If in reality there is a much greater crowding of enhancers closer to (say                               
within 100 Kb of) the gene, then the Hi‐C data will persistently show strong intensities and                               
the background model might discount that stronger signal. I am not sure what it does to the                                 
signal/noise ratio, but it clearly hurts the sensitivity of the method, in a way biased against                               
closer   enhancers. 

We completely agree with the Reviewer but are hesitant at this stage to add a bias (which                                 
we cannot strongly support) towards promoter‐enhancer interactions at given distances.                   
Many known enhancers were identi�ied thanks to their proximity after “searching under                       
the streetlight”. As �igure 4A shows, the decay in putative enhancer‐promoter interactions is                         
rather slow, suggesting the presence of distal enhancers within (or possible even outside                         
of)   the   same   TAD   as   their   target   genes. 

     

4. The score S(t) is somewhat intriguing since it is a heuristic as far as I can tell. If the                                       
“outside of TAD t” pairs always involve going a �ixed distance (h) outside of the TAD, then                                 
the number of such “outside” pairs scales linearly with the TAD length and the number of                               
inside pairs scales quadratically with TAD length. What effect does this have on S(t) and are                               
these   values   comparable   across   different   domains   ? 

We thank the Reviewer for their interest, would like to expand on this point which we have                                 
carefully designed. The score of each TAD serves as the basic unit in the Dynamic                             
Programming algorithm, allowing for a computationally‐ef�icient segmentation of one                 
region into two (Equation 5). Formally, score S(t) is the sum of log‐posterior ratios for the                               
entire rectangle above the TAD t, composed of the triangle intra‐TAD cells at the base, as                               
well as the inter‐TAD interactions above it (see Figure 1C), with the important distinction                           



 

that intra‐TAD cells are counted with a positive sign (posterior of intra‐TAD being in the                             
numerator   of   the   log),   while   inter‐TAD   are   negative   (denominator).  

In the Dynamic Programming algorithm, when comparing the Score of one vs two                         
segments, the overall region considered (by both alternatives) is equal, and only the                         
“merged” cells (striped region in Figure 1C) have different signs ‐ according to the one and                               
two‐TAD models, considered intra‐TAD by the former, and inter‐TAD by the latter. Usefully,                         
this only changes the sign of their log‐posterior ratio score. So when considering this                           
possible segmentation, the score of other cells cancel out, and those Merge cells (= tilted                             
rectangle in between) get to “vote” if they are more likely to have been generated from a                                 
single TAD (=their added scores are greater than zero) or from two distinct TADs                           
(=negative sum). This is also why we capped the maximal allowed distance for DNA‐DNA                           
interactions   at   5Mb   so   that   the   tilted   rectangle   will   not   be   capped   at   the   top   corner.  

5. The score ‘Score(C)’ (equation 8), in adding S(t) over multiple (non‐overlapping) TADs                         
appears to include the negative part of equation(7) RHS potentially multiple times. Am I                           
missing   something? 

We hope the previous answer and the elaborated description in the text have now cleared                             
this issue. Generally, all S(t)s are rectangles with the same height h, and overlap is not                               
possible. 

6. The motivation and practical utility of the hierarchical structure formation is not entirely                           
clear. While it is clear that visualization of the HiC maps suggests the presence of such                               
structures, how exactly do the authors propose the user of this tool will utilize the                             
hierarchical   structure? 

The main scope of the PSYCHIC algorithm is to identify promoter‐enhancer interactions. A                         
better segmentation into TAD, together with the inter‐TAD hierarchical structure serve as a                         
means for a better �it of the Hi‐C data, thus allowing for a better identi�ication of                               
promoter‐enhancer interactions. As we have showed in Supplementary Figure 2                   
TAD‐speci�ic background models allow for a more accurate modeling of the Hi‐C data. This                           
is   further   improved   with   hierarchical   and   moreover   by   the   bilinear   �it   models. 

7. Suppl Figure 2 needs error bars, possibly based on bootstrap sampling, for each bar. (No                               
need   for   p‐values,   standard   errors   for   each   estimate   will   be   just   �ine.) 

We thank the reviewer for this idea and have repeated this analysis for all chromosome                             
(with error‐bars corresponding to the 25 th and 75 th percentile values in each group). We                           
have   also   �ixed   a   minor   bug   in   the   Y‐axis   scaling.  



 

 

8. I am not entirely clear why the fourth from left bar in Supplementary Figure 2 is called                                   
‘Hierarchical TADs’. I saw that the description of the model talks about hierarchical                         
agglomeration of neighboring domains, followed by local parameter estimation. What is not                       
clear is why the agglomeration had to be done to assign TAD (and inter‐TAD) speci�ic                             
parameters for modeling local intensity. Couldn’t the same exact result be obtained just                         
from the knowledge of all TADs (the primary segmentation) followed by local parameter                         
assignments? Or is there some sort of threshold applied to the hierarchical organization                         
that determines which inter‐TADs will be considered and which not. In short, I am not clear                               
on   why   the   hierarchical   structure   was   needed   in   this   step. 

We apologize for the confusion and have edited the new Supplementary Figure 2. Brie�ly, it                             
now compares the RMSE of all Hi‐C cells (up to 5Mb), averaged over all chromosomes of                               
(from left to right): (1) no TAD segmentation (as in Fit‐Hi‐C); (2) TAD‐speci�ic �it for                             
random (shuf�led) domains; (3) TAD‐speci�ic �it for Dixon et al domains; (4) TAD‐speci�ic �it                           
for PSYCHIC‐called domains; (5) �it for PSYCHIC domains and inter‐TAD merges (as in                         
Figure 1, where TADs A and B are merged, while TAD C is not); (6) �it for PSYCHIC TADs (4 th                                       
column), now with TAD‐speci�ic bi‐linear �it model; (7) �it for hierarchical TADs (5 th                         
column) now with bi‐linear �it model; and (8) �it for synthetic data (with similar Hi‐C                             
magnitude to real‐life data) using the same TADs (and merges) that had generated it, to                             
re�lect   the   internal   (sampling)   noise   in   the   data. 

9. How different would the putative enhancer set be if using the simple power law rule for                                 
computing residuals in each promoter’s 4 Mb context, followed by the same z‐score /                           
p‐value calculation, but without utilizing the hierarchical structure, and even the TAD                       
segmentation? I would expect that the difference is likely not major for within‐TAD                         
interactions, and any signi�icant differences are probably in inter‐TAD regions, which hosts                       
a   small   minority   (~10%)   of   putative   enhancers   anyways.  

We have now updated Supplementary Figure 2 (shown above) to also show the �it obtain                             
with no TADs at all (namely, a single power‐law model for each chromosome). As can be                               
seen the effect is quite dramatic, and is due to both inter‐TAD interaction but also due to                                 



 

intra‐TAD interactions which bene�it by different background models for different TADs                     
(e.g.   in   “dark”   and   “pale”   TADs). 

10. Figure 5 provides evidence that the predicted putative enhancers might be more                         
reliable than those predicted by other methods on the same Hi‐C data. However, the height                             
of each bar (in each panel) is the ‘average signal’ of a certain type in the corresponding                                 
collection of predicted enhancers, and leaves open the possibility that there is a                         
precision‐recall tradeoff in play here, and that the average signal comparisons might look                         
different at alternative values of cutoffs used for the other methods. I noticed that the                             
authors have tried to keep this in mind in the evaluations of Figure 6A, where they show                                 
higher   precision   even   with   greater   numbers   of   predictions   made   by   their   method.  

Indeed, when possible we have tried to provide several thresholds, such that the methods                           
could   be   compared   fairly.   HiCCUPS   did   not   rank   their   predictions. 

11. While the authors have chosen to validate their predictions using various other sources                           
of enhancer‐related information, and while these are helpful in making their point, these do                           
not quite reach the level of ‘validation’. I would have been much more convinced if the                               
authors had pointed out, for instance, that one or both of the ‘true’ Foxg1 enhancers would                               
not have been picked by a serious scientist who did not have access to the method                               
proposed here. A more systematic evaluation might be based on enhancer databases such                         
as   VISTA   enhancer   browser. 

The VISTA dataset is somewhat limited in the scope of positive enhancers, as all validations                             
are in embryonic mice around E10.5. For example, 342 out of 610 positive mouse                           
enhancers (56%) overlap a putative PSYCHIC enhancer, but they only make ~2% of the                           
17,788   predicted   regions   by   PSYCHIC   at   a   threshold   of   1e‐2). 

Instead, we have now compared our predictions to Capture Hi‐C (mESC, Schoenfelder et al.                           
Genome Res., 2015) and ChIA‐PET (GM12878, Tang et al. Cell, 2015). As we show in                             
Supplementary Figure 9 (also below), PSYCHIC predictions are strongly supported by these                       
external   enhancer‐promoter   datasets. 

Intriguingly, HiCCUPS predictions are noticeably enriched by CTCF ChIA‐PET interactions, a                     
result consistent with Figure 5, where we showed high ChIP‐seq enrichments for CTCF (as                           
well as the “Insulator” mark) at putative enhancers called by HiCCUPS, possibly by their                           
bias   towards   boundary‐related   interactions. 



 

 

12. The �inding shown in the last subsection (Figure 7) is exciting and intriguing. To me the                                 
statement “the hypothesis that a non‐trivial fraction of the putative enhancer regions we                         
have identi�ied are “silent” and inaccessible. A closer examination identi�ied several known                       
enhancers even within those” was the most interesting aspect of the entire paper, and I was                               
left wishing that the authors had made the point more forcefully (e.g., by at least providing                               
some basic numbers and listing more examples like ZRS‐Shh in the supplement or even in                             
main text), to make readers think of the possibilities here, even if there is the usual risk of                                   
false   positives. 

Already   addressed   above   (point   #1) 

13. Line 124: “all inter‐TAD outside of TAD t, de�ined by pairs ” This needs some                               
rewording/correction. You mean “all inter‐TAD pairs outside of TAD t, de�ined by pairs                         
<k,l>”   ? 

We thank Reviewer 3. Indeed our intention was “all inter‐TAD pairs outside of TAD t. We                               
have   now   reworded   this   entire   section. 

14. Line 141: “Speci�ically, we wish to iteratively agglomerative neighboring” Change                     
‘agglomerative’   to   ‘agglomerate’   ? 

Fixed 

15.   Line   169:   “signi�icance   over‐represented   interactions”   Missing   “of”   ?  

Fixed 

16. Line 155: “Once we have segmented the Hi‐C map into hierarchical domains, we wish to                               
model the expected intensity of the Hi‐C map”. At this point, the authors should provide a                               
brief motivation of where they want to go with this. Very related point: I was for some time                                   
confused by the intent of Supplementary Figure 2, because it seemed to show that more                             
parameterized models give better �its to data, which is completely expected. The authors                         
put my doubts to rest with their last sentence in the subsection, that the goal is to build a                                     
more accurate background model to assess deviations from. This is of course a perfectly                           
reasonable   strategy   and   the   authors   should   note   it   up   front. 

We   have   now   rephrased   this   section   and   thank   the   Reviewer. 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have successfully address most of the points raised, except that they have still not 

done a good job at describing their hierarchies. This issue was also raised by another reviewer.  

 

They state: "maximal merge size of 5Mb, to create a set (forest) of tree-like TAD merges, visually 

corresponding to triangles (TADs) and rectangles (inter-TAD merge regions)."  

 

But Fig1 only shows two TADs A and B being merged. Are all their merges level 1? Or in the 5Mb 

cutoff they also found instances of multiple (>2), small TADs being hierarchically merged? It 

seems that this is the case, since they call this set tree-like merges but we are not told/given this 

information.  

 

The authors should provide this last clarification, add an histogram with this info and one sentence 

to explain this better.  

 

 

Reviewer #2 (Remarks to the Author):  

 

Most of our points have been successfully addressed by the authors. In particular, it is good to see 

that the method seems to be robust to different initial sets of TADs, and that the predicted 

interactions are well supported by physical interaction data. The additional methods clarification is 

also sufficient. However, there are a couple of remaining issues.  

 

1. The authors have included a new higher resolution analysis of the characteristics of the 

identified putative enhancer regions, but are limited by the resolution of the Hi-C data. Given the 

increasing resolution of published Hi-C datasets (e.g. the Rao et al. data is available at 5kb but 

analysed at 25kb), I think it’s highly likely that readers would be interested in the application of 

this method to higher resolution datasets. It would be helpful if the authors could include some 

discussion of the limitations of using this method with higher resolution data, e.g. scalability.  

 

2. Not all of the suggestions relating to the software have been implemented, which is a shame as 

I think these would make the software more user-friendly and therefore more likely to be widely 

used. Help / usage information has been added, which is good. The list of required software is 

adequate but I’m still surprised that the software does not test for these dependencies at the start 

of the analysis. While providing an example file for reference is great, “should be in either CSV file 

or Bing Ren & Dixon format” is not a sufficient description for the input file – there are many ways 

to represent Hi-C data in a CSV file… There is also still no list of expected output files and their 

contents. This would be very helpful for the user to verify that the software has completed 

successfully and to know which files to use for downstream analysis.  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have done a sincere job at addressing the concerns and questions raised in my 

review. In most cases they have presented additional insights to clarify points of confusion. In the 

cases where they were unable to directly address a request, I am not going to insist further since I 

understand their point of view in those cases, and feel it is up to their discretion.  

 



 

Point‐by‐point response for Ron et al, “Promoter‐Enhancer Interactions Identi�ied from                   
Hi‐C Data using Probabilistic Models and Hierarchical Topological Domains”,                 
NCOMMS‐17‐11126A. 

Reviewer   #1   (Remarks   to   the   Author): 

The authors have successfully address most of the points raised, except that they have still not                               
done a good job at describing their hierarchies. This issue was also raised by another reviewer.                               
They state: "maximal merge size of 5Mb, to create a set (forest) of tree‐like TAD merges,                               
visually   corresponding   to   triangles   (TADs)   and   rectangles   (inter‐TAD   merge   regions)."  
But Fig1 only shows two TADs A and B being merged. Are all their merges level 1? Or in the                                       
5Mb cutoff they also found instances of multiple (>2), small TADs being hierarchically                         
merged? It seems that this is the case, since they call this set tree‐like merges but we are not                                     
told/given   this   information. 
The authors should provide this last clari�ication, add an histogram with this info and one                             
sentence   to   explain   this   better. 

Figure 1d was edited to highlight the possibility of further hierarchies (dotted lines;                         
clari�ication sentence). We have also added Supplementary Figure 1g per Reviewer 1’s                       
request, specifying the number of topological domains from each level (basic TADs through                         
4 th    order   merges). 

Reviewer   #2   (Remarks   to   the   Author): 

Most of our points have been successfully addressed by the authors. In particular, it is good to                                 
see that the method seems to be robust to different initial sets of TADs, and that the predicted                                   
interactions are well supported by physical interaction data. The additional methods                     
clari�ication   is   also   suf�icient.   However,   there   are   a   couple   of   remaining   issues. 

1. The authors have included a new higher resolution analysis of the characteristics of the                             
identi�ied putative enhancer regions, but are limited by the resolution of the Hi‐C data. Given                             
the increasing resolution of published Hi‐C datasets (e.g. the Rao et al. data is available at 5kb                                 
but analysed at 25kb), I think it’s highly likely that readers would be interested in the                               
application of this method to higher resolution datasets. It would be helpful if the authors                             
could include some discussion of the limitations of using this method with higher resolution                           
data,   e.g.   scalability. 

A   discussion   on   the   computational   limitation   and   scalability   of   the   method   was   added. 

2. Not all of the suggestions relating to the software have been implemented, which is a shame                                 
as I think these would make the software more user‐friendly and therefore more likely to be                               
widely used. Help / usage information has been added, which is good. The list of required                               
software is adequate but I’m still surprised that the software does not test for these                             
dependencies at the start of the analysis. While providing an example �ile for reference is                             
great, “should be in either CSV �ile or Bing Ren & Dixon format” is not a suf�icient description                                   
for the input �ile – there are many ways to represent Hi‐C data in a CSV �ile… There is also still                                         
no list of expected output �iles and their contents. This would be very helpful for the user to                                   

 



 

verify that the software has completed successfully and to know which �iles to use for                             
downstream   analysis.  

We thank the reviewer. We now test for dependencies and installed software. In addition                           
we have supplied in‐house alternatives for the external code we have initially used (e.g.                           
Dixon et al’s Directionality Index). Following Reviewer 2’s comment, we have clari�ied the                         
format’s   description   and   a   description   of   the   output   �iles. 

Reviewer   #3   (Remarks   to   the   Author): 

The authors have done a sincere job at addressing the concerns and questions raised in my                               
review. In most cases they have presented additional insights to clarify points of confusion.                           
In the cases where they were unable to directly address a request, I am not going to insist                                   
further since I understand their point of view in those cases, and feel it is up to their                                   
discretion. 

We   thank   Reviewer   3   for   their   comments   and   support. 


