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Appendix Fig. S1: MXE candidate annotation. Comparison of GenBank and Ensembl
annotations. Because the generation of the MXE candidate list depends on the underlying set
of exon annotations, we used the GenBank exon annotation as reference and looked how
these MXE candidates are annotated in the latest Ensembl (release 37.75) annotation. Overall,
there is low concordance in the annotation of exons as mutually exclusive. For example, only
18% of the ‘annotated MXEs’ in GenBank are also annotated as MXE in Ensembl, while 95%
of these exons are present in the annotation. 20 exons annotated as constitutive in GenBank
are annotated as MXEs in Ensembl. 70 of the 1637 exons not present in GenBank, which we
identified in our search for MXE candidates in intronic regions (‘novel exons’), are present in
the Ensembl annotation, though not annotated as MXEs, and six of these 1637 exons are even
annotated as MXEs.
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Appendix Fig. S2: Schematic representation of the MXE candidate categories and
examples from the human genome annotation. A) Because of the preliminary character of
the genome annotation (19201 protein coding genes) we discriminated six types of exons for
the analysis. 82 genes contained 87 annotated clusters of MXEs of which 85 MXEs had
similar length and sequence (Type II) while the other annotated MXEs did not show any
similarity (Type I). 1545 genes contained constitutive and differentially included exons (3745
and 689 exons, respectively) with characteristics of MXEs (Type III and Type IV,
respectively). In 1014 genes we predict 1637 new MXE candidates in intronic regions (Type
VI). 247 new MXE candidates were predicted in 115 genes within regions showing complex
splice patterns (Type V). The pie charts show the number of MXE candidates (represented by
the size of the pie) divided into 1) the number of exons validated as the respective type (in the
colour of the type), ii) the number of exons validated as MXEs (in red) or constitutive (in
green), and iii) the number of MXE candidates, for which splice junction reads were missing
thus not allowing their annotation (in white). B) Examples for the various types of annotations
using the same colour scheme for the MXE candidates as in the schematic representation. C)
There are mainly three types of alternatively spliced exons that we did not include in the
MXE candidate list, exons that are mutually exclusive to exonic region otherwise part of
another exon, exons including in-frame stop codons, and exons mutually exclusive to terminal
exons. Alternative terminal exons were ignored because they are mutually included not
through alternative splicing but alternative promoter usage, and alternative cleavage and
polyadenylation (Appendix Fig. S4).
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Appendix Fig. S3: RNA-seq coverage of the MXE candidates. A) The barplot shows the
percentage of MXE candidates for which mapping RNA-seq reads have been found (dark
blue) and of which both exon borders could be validated by SJ reads (light blue). For
comparison, the percentage of validated MXEs is shown with (light green) and without (dark
green) presence of MXE-joining reads, which would, however, lead to a frame-shift and
nonsense mediated decay of the mRNA. B) Dependency of the number of validated MXEs,
sorted by MXE candidate type, on increasing number of SJ read support. SJ read support
means, that all respective splice junctions must be supported by the respective numbers of SJ
reads. C) In this plot we wanted to analyse the “missing SJ read data”. If we require more SJ
read data to support the decision how many exons can still unambiguously be classified as
non-MXE or MXE? Thus, this plot shows the percentage of exons that could be validated as
non-MXE or MXE depending on >1, >3 or >10 reads supporting splice junctions and
combined inclusion (in case of non-MXEs). D) Number of MXEs with exon-joining reads,
that would, however, lead to a frame-shift and potential premature termination in case of
combined inclusion in the transcript. This criterion applies to many of the annotated MXEs
and other annotated exons, but only to a few of the MXEs newly predicted in introns. E) The
barplot contrasts validated MXEs with MXE candidates validated as being constitutively or
differentially included spliced. In addition, the numbers of MXE candidates are given, for
which data are not available.
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Appendix Fig. S4: Types of terminal mutually exclusive exon candidates. A) Terminal
mutually exclusive exon candidates might become MXE:s if further upstream or downstream
exons (non-coding or coding) will be identified. The same types were distinguished as for the
internal MXE candidates. B) 48% (1193 of 2507) of the mutually exclusive terminal exons
(annotated and predicted) have similar lengths and sequences making them the most likely
candidates for real MXEs. C) 200 of these could be validated to be spliced in a mutually
exclusive manner, with splice-junction reads mapping up- (in case of the 5' terminal cluster)
or downstream (in case of the 3' terminal cluster) of the cluster of MXE candidates.
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Appendix Fig. S5: MXE candidates validated by increasingly stringent criteria. The
minimum requirement for defining a pair of MXEs is three constraints. There cannot exist any
read mapping from one to another MXE, except for those leading to a frame shift (crossed
purple splice-junction read). Without this constraint, MXEs cannot be distinguished from
neighbouring differentially included exons. There must be splice-junction reads for each
MXE bridging the respective other MXE and matching genomic region up- or downstream of
the respective other MXE (dark blue restraints, type “a”). Under more stringent conditions,

also splice-junction reads for the other exon border are required resulting in five criteria (light
blue restraints). The criterion, that MXE bridging reads must only map to somewhere up- or
downstream, respectively, of the cluster (indicated by arrows), takes into account that the
annotated exons neighbouring the clusters of MXEs might not themselves be constitutive but
alternative exons like in the NCX/ gene (Appendix Fig. S6). In most cases, the exons
neighbouring the clusters of MXEs are constitutive, which is shown by the number of
validated MXE:s if splice-junction reads must map to annotated neighbouring exons (compare
dark and light green bars to dark and light blue bars, respectively). R = restraint.
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Appendix Fig. S6: Example for MXEs in direct neighbourhood to other splice variants.
In the NCX1 gene, the cluster of MXE:s is adjacent to four differentially included exons. Both
MXEs are annotated, and zoomed views of the respective genomic region are shown to
highlight the various annotations. All transcripts are represented 5' to 3'. Constitutive exons
are shown as dark grey bars, mutually exclusive exons are coloured in orange, and
differentially included exons in green, blue, purple and magenta. Same alternatively spliced
exons are shown in same colour across the transcript isoforms.
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Appendix Fig. S7: Number of criteria defining clusters of three and five MXEs,
respectively. The validation of larger clusters of MXEs requires an exponentially increasing
number of constraints. As example, the minimum criteria for defining sets of three and five
MXEs, respectively, are shown. Crossed purple splice-junction reads symbolize reads
mapping from one to another MXE that cannot exist except for those leading to a frame shift.
Dark blue reads illustrate splice-junction reads for each MXE bridging all other MXEs of the
cluster and matching genomic region up- or downstream of the respective other MXEs. R =
restraint.
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Appendix Fig. S8: RNA-Seq mapping of the mutually exclusive exome. Although the
overall transcript and splice-junction support for all 1399 MXEs is relatively high, there are
strong differences between the mappings of the annotated “known” exons of the MXEs
compared to the MXEs predicted in intronic regions. The diagram displays number of already
annotated exons (upper plot) and exons newly predicted within introns (lower plot) found in
at least the number of given datasets (excluding the 16 paired-end read datasets from the
[llumina Body Map project for this analysis). The 54 predicted exons overlapping with exons
in other transcript isoforms were omitted in this analysis due to read mapping ambiguities.
Support for 94 % of the already annotated exons is found in at least 40 datasets, whereas
RNA-Seq data mapping to 74 % of the newly predicted exons are found in at least 5 datasets
and 24 % in at least 40 datasets.
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Appendix Fig. S9: Coverage of the mutually exclusive exome in different RNA-seq
projects. The plots show the number of annotated exons (upper plot) versus the number of
novel exons (lower plot) for each of 499 analysed RNA-seq samples (excluding the 16 paired-
end read datasets from the Illumina Body Map project in this analysis). The comparison
shows that the novel exons are in general lower expressed than the annotated exons, but also
suggests that the novel exons are expressed more tissue and developmental stage specific.
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Appendix Fig. S10: RNA-Seq mapping of the mutually exclusive exome. While 65% of
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Appendix Fig. S11: Validation of MXEs by using increasing amounts of RNA-seq data.
A) The figure shows the increase of the validated MXEs (green) and the saturation of the false
positives MXEs (red) in dependence of different percentages of the total RNA-seq data used.
The rejection of MXE candidates almost saturates at 20% of the RNA-seq data. MXEs were
verified in each experiment using the same criteria as for the analysis using all RNA-seq data
(Appendix Fig. S5), namely the presence of SJ reads bridging the respective other MXE
candidates of the cluster and the absence of reads that would join MXE candidates of the
cluster. B) To estimate the potential increase in MXEs given more sequencing data, we fit the
sub-sampling data to the number of expected MXEs f(x) using Matlab. The green lines show
the optimal fit for the expected number of validated MXEs in relation to the percentage of
total RNA-seq reads used for validation (dark green 3 SJs 1 read; light green 3 SJs 3 reads).
The actual measured data points are highlighted as yellow asterisks. The orange lines show
the optimal fit for the expected number of initially ‘validated MXEs’ that will be rejected with
increasing amounts of reads (dark orange 3 SJs 1 read; light orange 3 SJs 3 reads). The actual
measured data points are highlighted as dark asterisks. Grey dashed lines indicate the
predicted number of MXEs using 50, 100, 150, or 200% of the data (numbers are highlighted
in the corresponding colors). Given a two-fold increase in the number of reads (100% —
200%), the expected number of validated MXEs (1SJ) is 1769 +/- 47 (95% confidence
interval), validated MXEs (3SJ) is 1081 +/- 12, rejected MXEs (1SJ) is 227 +/- 9, and the
number of rejected MXEs (3SJ) is 95 +/- 5. While the number of validated MXE:s is far from
saturation (a 100% increase in data results in 27% increase in the number of validations) the
number of rejected MXEs seems to be saturated (a 100% increase in data results in 2%
increase in the number of rejections).
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Appendix Fig. S12: GTEX validation of MXEs with two annotated exons. To exclude the
possibility that some MXEs are a result of mapping artifacts that are specific to the aligner
and the setting that were used, we compared MXE clusters that contained two ‘annotated
other splicing’ exons to GTEx portal results (https://www.gtexportal.org/home/). Panels A
and B highlight two representative examples of MXEs that are annotated as ‘other splicing’.
A) GTEXx splice junction reads for the ACSL6 MXE across several human tissues. B) GTEx
splice junction reads for the MEF2C MXE across several human tissues. Of note, we could
validate all MXEs with annotated exons using data that was mapped with a different read
aligner (bowtie 2 versus STAR) and very different parameters.
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Appendix Fig. S13: qPCR validation of MXEs. To experimentally validate mutually
exclusive splicing we selected 6 brain-expressed MXE clusters and validated their expression
using qPCR on human brain-derived total RNA. Upper panel: The panel shows the
normalized RPKM (maximum RPKM per gene equals 1) values for the MXEs of ACSL6,
MEF2C, STX3, Rab35, HADHB, and ZBTB. Only HADHB and ZBTB show expression of
only MXE1 while MXE2 is hardly spliced into brain transcripts. Lower panel: qPCR
quantitation [1/2”Ct] using splice-junction bridging primers for 6 brain-expressed genes.
While primer sets that bridge splice junctions to MXE up- (UP) or downstream (DOWN)
exons show amplification, primer sets that bridge the two MXEs (MXE1-MXE2) show no
amplification. The qPCR results almost perfectly reflect the RNA-seq-derived results,
providing very strong evidence that the MXE candidates and novel exons are actually spliced
mutually exclusively into transcripts. Of note, we were not able to design a functional qPCR
primer for UP-MXE]1 of Rab35.
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Appendix Fig. S14: MXE and cassette exon GO enrichment. Heatmap representation of
significantly enriched GO terms for genes containing MXEs (3SJ1 and 3SJ3) or cassette
exons. Whereas MXEs are strongly enriched for genes related to muscle and heart function
and development, cassette exons show enrichment for organelle localization and microtubule-
related terms.
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Appendix Fig. S15: Human genes with clusters of multiple MXEs. A) The scatter plots
show the number of MXEs within clusters of certain size. The source of the MXEs within the
clusters is given separately for the various annotated exon types (see Appendix Fig. S2). B)
This scatter plot shows the number of clusters with a certain number of MXEs.
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Appendix Fig. S16: Annotated CUXI isoforms with those exons highlighted that were
validated as MXEs. All transcripts are represented 5' to 3'. Constitutive exons are shown as
dark grey bars, and mutually exclusive exons are coloured with same colour for all MXEs of a
cluster.
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Appendix Fig. S17: MXE splicing of CUXI. Potential splice variants of the CUXI gene
obtained by alternative splicing of MXE cluster 1 (dark blue exons) and MXE cluster 2 (dark
green exons). MXE cluster 1 itself is differentially included. Amino acid sequences for the
annotated and predicted exons are shown demonstrating their sequence similarity (coloured
by chemical properties).
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Appendix Fig. S18: U2/U12 incompatibility. In MAPKS, MAPK9, and MAPKI0 the U12
splice site is at the 3' end of the MXEs and in the other genes at the 5' site. While in MAPKS,
MAPK9, and MAPK (0 the same exon has been duplicated (exon-6) indicating an origin of the
cluster of MXEs before gene duplication happened, the corresponding following exon has
been duplicated in MAPK14 implying an independent exon duplication process. The MAPK
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genes contain Ul2-type GT---AG introns, and CEP170 and CRTCI contain AT---AC introns.
The Ul2-type introns are found in all mammals but MXEs are not found for MAPKI0 in
Metatheria, and not in other species for CEP170 and CRTCI1. MAPKY is not included in the
list of MXE candidates because one of the candidate exons overlaps with a terminal exon in
one of the MAPKY transcripts (see Appendix Fig. S2C). MAPKY is, therefore, included in the
list of terminal MXE candidates (Appendix Fig. 4), of which many might not be terminal but
internal exons. We suppose that the MAPKY transcript with the premature terminal exon is a
mis-annotation, but computationally this case is treated as many other cases where the
terminal exon might represent a bona-fide transcript termination.
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Appendix Fig. S19: Length distribution of the introns between MXEs. MXEs were sorted
by increasing intron lengths. Introns are coloured if the mutually exclusive splicing of the
respective MXEs is controlled by U2/U12-incompatibility (red), a close vicinity of the splice
donor site and the branch point (yellow), and NMD (blue). Branch point predictions were
limited to introns smaller than 500 bps. MAPKO is not included in the list of MXE candidates
because one of the candidate exons overlaps with a terminal exon in one of the MAPKY9
transcripts (see Appendix Figs. S2C and S18).
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Reading frame (GFF/GTF file format definition)

57 intron exon intron 37
0 ...AG AGG TGA CAC CGC AAG CCT TAT ATT AGC GT... 0
1 ..AGA AGG TGA CAC CGC AAG CCT TAT ATT AGC AAGT. 1
2 .AGAA AGG TGA CAC CGC AAG CCT TAT ATT AGC AGT.. 2
frame 5’
0 1 2

0 114 89 49
3 1 77 112 45

Appendix Fig. S20: Analysis of MXE reading frame. Combined inclusion or exclusion of
the exons of MXE clusters will not result in functional mRNAs if the exon lengths are not a
multiple of three. This has been demonstrated for several cases, for example the CACNAIC
gene coding for the L-type Cay1.2 calcium channel, where the inclusion or exclusion of both
MXEs into the transcript did not result in functional protein (Tang et al. 2011). Curiously,
MXE-joining reads were found for 91 (75%) of the annotated MXEs but only 25 (4%) of the
predicted MXEs (Appendix Figs. S3A and S3D). More than ten exon-joining reads were
found for 77% of these annotated MXEs indicating that NMD targeting is the major mode of
excluding the translation of transcripts with multiple MXEs in these cases. While skipped
exons are highly biased towards being symmetric thus preserving reading frame (Magen and
Ast 2005) we only found a moderate reading frame bias for MXEs supporting the different
roles of skipped and mutually exclusive exons in changing and modulating protein
functionality, respectively.
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Appendix Fig. S21: Example highlighting several aspects of generating the MXE
candidate list, MXE validation, and splicing mechanism. The human CD355 gene contains
three regions with annotated and predicted exons matching the criteria of MXEs (sequence
similarity, reading frame conservation, genomic vicinity). These exons are all in the MXE
candidate list. RNA-seq read mapping showed that the two exons at the 5’-end of CD55
(exons 2 and 3) are constitutively spliced exons, and that there are not enough reads yet to
validate the splicing of exons 7b and 10e. These still have to be regarded as MXE candidates
(=> missing data subtype). Although the human genome annotation available at UCSC shows
some exons in the region of the exonl0 MXE cluster, these exons do not match or even
overlap with the novel exons predicted by our approach (upper panel). The predicted MXEs
of the exon10 MXE cluster show considerable sequence homology, and this MXE cluster has
also been identified in the chimpanzee (Pan troglodytes) genome assembly indicating that it
likely evolved before separation of humans and chimpanzees. The splicing of the exonl0
cluster might be regulated by competing RNA secondary structure elements. Here, the
docking site was found in the intron between MXE candidate 10e and the following
constitutive exon 11. The selector sequences were found downstream of each exon 10 variant.
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Appendix Fig. S22: Protein structure analysis of the MXE-encoded regions. A) To
identify the best structural models for the sequences encoded by the MXEs we mapped the
protein sequences of the respective genes against available protein structure data. Based on
the database references in the PDB entries, the full-length proteins were downloaded from
UniProt or GenBank and the corresponding gene structures of the eukaryotic proteins
reconstructed with WebScipio. BLAST+ was used to search for the most similar
UniProt/GenBank protein sequence compared to the human proteins containing MXEs. The
hit with the lowest E-value was taken and the associated PDB chains were aligned to the
human protein using m-coffee. The MXE part of the alignment was extracted for further
analysis. As "intron distances" we determined the distances between the CA-atoms of the first
and the last residues of the MXE-structures. B) Structural model of macroH2A1 (H2AFY
gene) with the region encoded by the MXE coloured in red (PDB-ID 1ZR3). The parameters
to distinguish potential encoding of protein regions by MXEs or cassette exons are shown on
top of the structure. It is highly unlikely that a region ending in conserved secondary
structural elements could be encoded by a cassette exon because the absence of this region
would lead to a highly disturbed if not unfolded structure. Similarly, if the ends of the
alternative exon encoded regions are far apart, it is unlikely that a structure missing this
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region (in case the region would be encoded by a cassette exon) could fold correctly. C)
Organismal distribution of PDB structures with mapped MXEs. The source organisms of the
matched structures were compiled and plotted.
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Appendix Fig. S23: Annotated and novel MXE cluster expression. A) Heatmap showing
the delta PSI (percent-spliced-in, see Material and Methods) values of all differentially
expressed MXE clusters with at least 3 RPKM over different human tissues and
developmental stages. Each pair of MXEs consists of one annotated and one novel exon.
Delta PSI values were computed by subtracting the PSI value of the known MXE from the
PSI value of the novel MXE. These values were scaled between -1 (high PSI for known
MXE) and 1 (high PSI for novel MXE). B) The bar graph shows the sum of MXEs per tissue
or state where the novel MXE is 1.5 fold higher expressed than the known MXE. C) Bar plot
showing the percentage of known (blue) and novel MXEs (orange) with more than 1%, 5%,
10%, 25% and 50% of the MXEs having PSI values in at least one RNA-seq sample. We
considered all the MXE pairs where one exon is known/annotated and the other is
novel/intronic (214 MXE pairs). D) Delta PSI values for all 558 MXE pairs (1116 MXEs).
For each MXE pair the delta PSI value was calculated and the percentage of MXE pairs was
plotted (<100% to <50% in at least one sample). E) Gini index distribution for cassette exons
(4364 exons), all MXE pairs in this study (1116), all annotated/known MXEs (624), and all
novel/intronic MXEs (492). The Gini index for the cassette exons was calculated using the
ENCODE dataset and cassette exon annotations were downloaded from the UCSC genome
browser "knownalt" table.
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Appendix Fig. S24: Percentage of differentially expressed MXEs per cluster. A)
Bargraph showing the percentage of differentially expressed MXEs per dataset sorted by
MXE cluster size. The percentage refers to the total number of validated MXEs in the
particular cluster. The dashed lines represent the sum of observed differentially expressed
MXEs per sequencing project. B) Similar to A), but this time showing the percentage of MXE
clusters, for which differentially expressed MXEs have been observed.
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Appendix Fig. S25: MXE expression-specificity. Plots showing expression-specificity for
MXE:s clusters for the Human Protein Atlas (A), embryonic development (B), and ENCODE
(C) datasets as measured by the Gini index. The Gini index is a measure for inequality in the
data, a high Gini Index signifies high inequality or high specificity (few outstanding high
values and the rest is low, Gini >0.5) and a low Gini Index low inequality or low specificity
(all values are within the same range, Gini <0.5). The Gini index was calculated based on the
mean PSI value per group for each MXE. Only MXE clusters in which at least two MXEs
have a mean RPKM > 10 in at least one group were selected. Finally, the two MXEs per
cluster with the highest Gini value (blue squares) and the lowest Gini value (green diamonds)
were selected for presentation.
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Appendix Fig. S26A: The Solute Carrier Family 8 Member Al gene (SLC8AI) is an
example of an MXE cluster with a large differences between the Gini-values of the
MXEs. Notably, exon-4b is not expressed, or expressed at extremely low levels, in most of
tissues. Top) Sashimi plot showing the expression and splice-junction reads on the 5° exons of
SLC8A1. Bottom) Box and whisker plots showing expression of exon-4a with low Gini-value
(red; meaning ubiquitous expression) and exon-4b with high Gini-value (blue, meaning highly
selective expression) across human tissues.
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Appendix Fig. S26B: The Synaptosome Associated Protein 25 (SNAP25) is an example of
an MXE cluster with a small differences between the Gini-values of both MXEs. Top)
Sashimi plot showing the expression and splice-junction reads on all exons of SNAP2S.
Bottom) Box and whisker plots showing expression of exon-2a (red) and exon-2b (blue)
across human tissues. In general, exons 2a and 2b are expressed in equal amounts in most
tissues, and are highly enriched in brain.
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Appendix Fig. S27: Network plot of diseases, genes, and protein classes. The genes
containing pathogenic SNPs in MXEs form a highly connected PPI network based on
pathway, genetic, physical and protein domain interactions. Only two genes were not
connected (PNPLA6 and SNRNP200). Two GO terms were significant in the resulting
network: ‘contractile fiber part’ (blue transparent shade) and ‘voltage gated cation channel
activity’ (green transparent shade). The proteins are coloured based on the disease caused by
the SNP (see legend).
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Appendix Fig. S28: Differential expression of and pathogenic mutations in MXEs of
ACTN4. The a-actinin 4 ACTN4 gene is an example of a gene carrying multiple pathogenic
SNPs (Kaplan et al. 2000) in an exon, exon 8a, that we found to be part of a cluster of two
mutually exclusive spliced exons (Lek et al. 2010). The two exons 8a and 8b of the ACTN4
MXE cluster have distinct expression in kidney and brain. The 8a exon carrying the missense
mutations is higher expressed in kidney, while exon 8b is higher expressed in brain.
Strikingly, the reported missense mutations in exon 8a are causative for the kidney disease
FSGS (familial focal segmental glomerulosclerosis).
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Appendix Fig. S29: Comparison of the expression level and tissue distribution of known
exons and their corresponding novel partner MXEs. All calculations in this figure are
based on RPKM expression values and not PSI values. A) and B): Average expression values
for each tissue were calculated for each MXE within an MXE cluster with at least one exon
containing a pathogenic SNP and one exon without SNP. In chart A the maximum of the
average expression per tissue for each SNP-MXE was calculated and compared to the
expression of the partner MXE in the same tissue. The other way round (chart B), the
maximum of the average expression per tissue for the novel MXEs was calculated and
compared to the expression of the partner SNP-MXE in the same tissue. Accordingly, the
novel exons are strongly expressed in selected sets of tissues, although their SNP-containing
partner MXEs are still, on average, higher expressed. C) and D): Comparison of the tissue
distribution of the annotated and novel exons. The number of tissues with observed
expression was counted for each annotated exon (left plots) and each novel exon (right plots).
Only tissues in which the MXEs have high average expression (RPKM > 3) were considered.
In general, the annotated exons are expressed in multiple tissues while, in contrast, the novel
exons are expressed in a small number of tissues. The left chart represents all MXEs (C), and
the right chart the sub-selection of those MXEs with reported SNPs and their partner MXEs
(D). E) Heatmap showing the expression difference of MXE clusters containing pathogenic
SNPs scaled between -1 and 1 (blue = high expression non-SNP containing MXE, red = high
expression SNP-containing MXE). Columns represent MXE clusters and rows tissues, cell
types, and developmental stages. The column bar graph summarizes counts where the SNP-
containing MXE is 1.5 fold more expressed than the non-SNP containing MXE, whereas the
row bar graph shows this for each tissue, cell type, and developmental stage. F) Receiver
operating characteristic (ROC) curve showing true and false positive rates for
cardiomyopathy-neuromuscular disease prediction based on spatio-temporal MXE expression.
To obtain at least ten observations per category with an expression > 3 RPKM, diseases were
grouped into cardio-neuromuscular (n=10) and other diseases (n=14) and predicted using
leave-one-out cross-validation with a Random Forest. Cardiac-neuromuscular diseases could
be predicted with an accuracy of 79% (p-value < 0.03), a specificity of 71%, a sensitivity of
90% and an area under the ROC curve (AUC) of 79%. The predictive value of RPKM values
is therefore very similar to that of delta PSI (Figs. 4C and 4D) and PSI values (data not
shown).
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Appendix Fig. S30: TPM1 MXE expression and splicing. The 7PMI gene contains a
pathogenic SNP in the exon 6a (red color in boxplots and exon in gene model) causing
cardiomyopathy (Primary familial hypertrophic cardiomyopathy). This exon is part of an
MXE cluster with another exon (exon 6b-blue boxplots and exon in gene model) not
containing any annotated pathogenic SNP. A) Box and whisker plots showing expression of
MXE without (blue) and with (red) pathogenic mutations across human tissues and
development. In general, exons 6a and 6b are expressed in equal amounts in most tissues,
whereas disease-relevant tissues show very high expression of the SNP-containing exon and
very low expression of the non-pathogenic exon (e.g. heart). It is very important to note that
high expression of the pathogenic exon in additional tissues suggests that the disease might
also affect other organs besides heart (e.g. brain). B) Sashimi plot showing the expression and
splice-junction reads on all exons of TPM1. Reads that span the two exons of the MXE cluster
are shown in grey dashed lines, resulting in translational frameshift and non-functional
protein. MXE with pathogenic SNP shown in red, without in blue. C) Zoom-in on the MXE
cluster.
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Appendix Fig. S31: SLC2543 MXE Expression. The SLC2543 gene contains a cluster of
two MXEs, with exon 3a (red boxes) not containing any annotated pathogenic SNP, and exon
3b (blue boxes) with a pathogenic SNP causing a mitochondrial disease (Mitochondrial
phosphate carrier deficiency). The expression of exon 3b is higher than that of exon 3a in all
tissues, cell lines and embryonic development stages, except in heart, where the exon not
carrying the pathogenic SNP turns out to be the predominant one. Interestingly, although our
disease annotation categorizes the SLC2543 mutation as ‘mitochondrial’ the disease manifests
itself as cardiomyopathy. This has implications for our classification, as SLC2543 is
misclassified as ‘cardiomyopathy’ while being annotated as ‘other’ disease.
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Appendix Fig. S32: FARI MXE expression and splicing. The FAR/ gene contains a
pathogenic SNP in the annotated exon 9a (red) causing Rhizomelic chondrodysplasia
punctata. This exon is part of an MXE cluster with a novel exon (exon 9b — blue) not
containing any annotated pathogenic SNPs. In general, exons 9a and 9b are expressed in most
tissues but exon 9a is on average expressed 8 times higher. Splice junction (SJ) reads for exon
9a are shown with solid lines and SJ reads for exon 9b with dashed lines.

-43 -



-
-
o

Primates

142

Homo sapiens
Pan troglodytes
Mus musculus

]

(o]
w

Euarchontoglires Sciurognathi

# MXE cluster gain 19 Rodentia 36 = Rattus nOn/egiCUS
# MXE cluster loss
56 Octodon degus
Boreoeutheria 160 Ochotona princeps
67( | % Canis lupus familiaris
96 25 Odobenus rosmarus divergens
Cetardliodactyla Bos taurus
4| 45
Laurasiptheria 08 55 Orcinus orca
52 | Chiroptera . .
Eutheria 142 Myotis lucifugus
Insectivora
122 156 Sorex araneus
Perissodactyla . . .
119 Ceratotherium simum simum
Loxodonta africana
Theria Afrotheria | 72 . . .
171 | 51 ‘ 56 Trichechus manatus latirostris
86 Echinops telfairi
Xenarthra i
132 Dasypus novemcinctus
Metatheria [ 29 Sarcophilus harrisii
( 30 Monodelphis domestica
| | | ] | |
200 100 0

MYa

Appendix Fig. S33: Gain and loss of clusters of MXEs. The gain and loss of clusters of
MXEs were plotted onto the evolutionary tree of the analysed 18 mammals. Human clusters
of MXEs can be shared with any mammal and any combination of mammals resulting in
theoretically 262,143 combinations. Of these, we identified only 267 demonstrating that most
clusters are conserved in larger groups (e.g. in all Theria or Euteria), that in most cases
clusters are lost in major branches, and that only a small part is lost species-specific. The
Ochotona princeps genome assembly is far more fragmented than the other genome
assemblies, which might explain the high number of species-specific MXE cluster loss events.
Divergence time estimates were obtained from TimeTree (Hedges et al. 2006).
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Appendix Fig. S34: Orthologous human and Drosophila genes containing MXEs. A)
Orthologous genes in Drosophila melanogaster for all human genes containing MXE
candidates were obtained with the Ensemble BioMart service. This list of orthologous genes
was filtered with the list of D.melanogaster genes containing MXEs to obtain a list of genes
with both types of exons, i) MXEs in human and MXEs in D.melanogaster (green slice), and
i) MXE candidates in human but validated to be spliced differently and MXEs in
D.melanogaster (blue slice). Several of the human MXE candidates could not be validated
because of missing SJ data (grey slice). Most of the validated MXE clusters in human contain
exon-joining reads which would, however, lead to a frame-shift and premature stop codon in
case of combined inclusion. These genes include the SCN/A4, SCN2A, SCN8A, SCN9A4 sodium
channels, the GLRA?2 receptor gene, and the CACNIC and CACNID calcium channel genes.
B) Distribution of the human MXE-candidate containing genes with orthologs in Drosophila
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with respect to the annotation and novel prediction of the MXEs. C) GO enrichment analysis
of the human MXE-containing genes with orthologs in Drosophila.
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A human gene name Drosophila gene name

homologous MXEs  ACTN2, ACTN4 actn
GLRA2 GluClalpha
KCNMA1 slo
PNPLAG6 SwWs

MXE in humanand CACNA1A, CACNA1B cac

homologous exon CEPT1 bbc

in Drosophila KCNN3 SK
SCN1A, SCN2A, SCN8A, SCNY9A para
SNAP25 Snap25
TCF7L2 pan
TPM1, TPM2, TPM3 TM1

no exon similarity CACNA1C, CACNA1D Ca-alpha1D
FAR1 CG30417
LRP8 LpR1
OBSCN trol
PNPLAG sSwWs
SLIT2, SLIT3 sli

B example for homologous MXEs
ACTN2

600 bps (ex.) 17900 bps (in.)

I HnnEIrieesin

1 gi224589800|ref|NC_000001.10] (75943bp)

For clarity introns have been scaled down by a factor of 27.69

novel exon DLVYTAR'DERAIMTYVSCYYHAFAGAQK
annotated exon DIVNT KIDERAIMIYVSCFYHAFAGAEQ

ACTN4
700 bps (ex.) 19300 bps (in.)

1 gi|224589810|ref|[NC_000019.9| (81684bp)

For clarity introns have been scaled down by a factor of 28.43

annotated exon DIVNTAR'DEKAIMTYVSSFYHAFSGAQK

novel exon DIVGTLRFDEKAIMTYVSCFYHAFSGAQK
DmACTN
600 bps (ex.) 1700 bps (in.)
1 X (9525bp)

For clarity introns have been scaled down by a factor of 2.71

annotated MXE DLINT K DERAIMTYVSCYYHAFQGAQQ
annotated MXE DLONTAL DERAVMTYVSSYYHCFSGAQK
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Appendix Fig. S35: Orthologous human and Drosophila genes containing MXEs. A) The
orthologous human and Drosophila genes containing MXEs were manually compared to
determine whether the MXE clusters encode similar regions. The results were sorted by 1)
MXE clusters whose MXEs have identical exon phase, similar length and sequence similarity,
and which code for the same region of the protein, ii) MXE clusters whose MXEs have an
homologous exon in the respective other species with identical exon phase, similar length and
sequence similarity, and which code for the same region of the protein, and iii) MXE clusters
with no corresponding exons in the respective other species. B) The human a-actinin ACTN2
and ACTN+4 genes are paralogs, and their Drosophila ortholog is ACTN. All three genes have
an homologous cluster of two MXEs, the MXEs have identical exon phase, similar length and
sequence similarity, and code for the same region of the protein. This homology could be
explained by two scenarios: 1) the appearance of this MXE cluster predates the divergence of
deuterostomes and protostomes, which would be an example of divergent evolution. 2) The
clusters appeared independent of each other, which would be the result of convergent
evolution.
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1 gi|224589803|ref|NC_000012.11| (637634bp) ; i H
For clarity introns have been scaled down by a factor of 9}7;‘41
{10 20 30
;

r'...|....|.“.|...|....| Ll
annotated MXE MQDP‘&GYEL WVYFVSLVIFGSFMNLVLGVLSG
annotated MXE VNDKVGRDW WIYE’VTLIIIGSEFVLNLVLGVL,SG

CACNA1D
1600 bps (ex.) 74800 bps (in.) ;
II i
. .
1 gi|224589815|ref|NC_000003.11| (316237bp) :

For clarity introns have been scaled down by a ‘éctor of 46.46
i

y
B

10 s 20’ 30

B I IR p....|. .l
annotated m MNDAMGFEL M&-‘VS’LVI'FGSFMNLVLGVLSG
annotated m VNDAIGWEW WYYFVSLI'ILGSF!'VLNLVI‘GVLSG

. S

. . K .

‘ S

. 4
’ o

DmCa-alpha1D J .
1800 bps (ex.) | 2700 bps (in.) ¢ E . ] .

i
-

12L (19037bp)

For clarity introns have been scaled down by a factor of 1.50
10 20 30 40
P [T T L L I e |
annotated MXE VSAR--VTARFRRLSEVSMKKTKKF I PRGSAFFIFSYTNR
annotated MXE VDEEGMITARFPRRMSEVNTATKILFPIPFPGTSFFLFSQTNR
annotated other splicing HVVQCVIVAVKTIGNIVLVTCLLOFMFAVIGVQLFK
annotated other splicing YVVKCVVVAIKTIGNIMLVTYLLOFMFAVIGVQLFK
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Appendix Fig. S36: Examples of orthologous human and Drosophila genes containing
MXEs. A) The human gene paralogs CACNAIA and CACNAIB are orthologs to the
Drosophila cac gene. CACNAIA and CACNA 1B both have a MXE cluster whose appearance
predated their duplication. The Drosophila cac gene contains three clusters of MXEs. These
three clusters have homologous exons in the human CACNAIA and CACNAIB genes
(identical exon phase, similar length and sequence similarity, coding for the same region of
the protein). B) The human gene paralogs CACNAIC and CACNAID are orthologs to the
Drosophila Ca-alphalD gene. CACNA1C and CACNAID contain a paralogous MXE cluster.
The Drosophila Ca-alphalD gene contains a single MXE cluster. In these gene orthologs,
however, the exons encoding the MXEs are not homologous. The region encoding the MXE
cluster in CACNAIC and CACNA 1D is homologous to a region that is part of a larger exon in
the Drosophila Ca-alphalD gene. Similarly, the MXE-encoded part of the Ca-alphalD gene
is part of a larger exon in CACNAIC and CACNA1D. Clusters of MXEs are coloured. Exons,
that resemble MXEs (neighbouring exons, identical exon phase, similar length and sequence)
but were validated to be spliced differently, are indicated with dark green borders.
Interestingly, these exons in CACNAIC and Ca-alphalD encode parts of transmembrane
regions. Thus, their complete absence or their combined inclusion (as indicated by their
annotation as other splicing) would lead to a protein in which all subsequent parts are
switched around the membrane: former outside parts would be inside, and former inside parts
would be outside. From a protein structure view, these exons could only be spliced in a
mutually exclusive manner. These exon annotations might be the result from mis-splicing
events, where exon-joining reads were found which, however, do not lead to a frame-shift
because of splice site incompatibility.
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