1	SUPPORTING INFORMATION
2	
3	Interaction of intramembrane metalloprotease SpoIVFB
4	with substrate $Pro-\sigma^{K}$
5	
6	Sabyasachi Halder, Daniel Parrell, Douglas Whitten, Michael Feig, and Lee Kroos ¹
7	
8	Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing,
9	MI 48824
10	
11	¹ To whom correspondence should be addressed. E-mail: <u>kroos@msu.edu</u> .

13 METHODS

Purification of SpoIVFB and SpoIVFB A12. Cells were harvested and resuspended in 40 mL 14 lysis buffer. The His-tagged proteins were purified as described (1) with the following 15 modifications. The membrane pellet was resuspended in 40 mL detergent buffer, rotated 1 h at 16 4°C to allow membrane solubilization, and centrifuged at 150,000 \times g for 75 min at 12°C. The 17 18 supernatant was added to 1 mL Talon superflow metal affinity resin that had been equilibrated with PBS containing 1% sarkosyl and 0.5% DM. The mixture was rotated at room temperature 19 for 1 h. The cobalt resin was sedimented by centrifugation at $708 \times g$ for 2 min at 4°C, then the 20 21 resin was washed with 5 mL each of PBS containing 150 mM NaCl and 10% glycerol plus first 0.3% sarkosyl and 0.3% DM, second 0.3% DM, and third 0.3% DM and 20 mM imidazole. The 22 resin was eluted with 3 mL PBS containing 150 mM NaCl, 10 % glycerol, 0.3% DM, and 400 23 mM imidazole. The eluted material was concentrated to 0.5 mL using an Amicon Ultra 24 centrifugal filter device with a 10-kDa cut-off (Millipore). The sample was loaded onto a 1.0 cm 25 26 \times 30 cm Superdex 200 gel filtration column (GE Healthcare) that had been equilibrated with PBS containing 150 mM NaCl, 5% glycerol, and 0.3% DM. The column was eluted with the 27 same buffer at 0.5 mL/min and 0.5-mL fractions were collected. Samples were subjected to 28 29 SDS/PAGE, the gel was stained with Coomassie blue, and 3-4 fractions containing the most SpoIVFB were combined, concentrated to 0.5 mL as described above, and stored at -80°C. 30

31

Purification of the SpoIVFB·Pro-σ^K Complex. Cells (7.5 g) were resuspended in 40 mL lysis
buffer. The His-tagged complex was purified as described (2) with the following modifications.
The membrane pellet was resuspended in 40 mL PBS containing 1 mM Pefabloc SC, 5 mM 2mercaptoethanol, 10% glycerol, and 1% *n*-dodecyl-β-D-maltoside (DDM) (Anatrace), rotated 1

36	h at 4°C to allow membrane solubilization, and centrifuged at 150,000 \times g for 75 min at 12°C.
37	The supernatant was added to 1 mL Talon superflow metal affinity resin that had been
38	equilibrated with PBS containing 0.1% DDM, 5 mM 2-mercaptoethanol, and 10% glycerol. The
39	mixture was rotated for 1 h at room temperature. The cobalt resin was sedimented by
40	centrifugation at 708 \times g for 2 min at 4°C, then the resin was washed twice with 5 mL
41	equilibration buffer and once with 5 mL PBS containing 150 mM NaCl, 10% glycerol, 0.1%
42	DDM, and 40 mM imidazole. The resin was eluted with 3 mL of PBS containing 150 mM NaCl,
43	10% glycerol, 0.1% DDM, and 400 mM imidazole. The eluted material was concentrated to 0.5
44	mL and loaded onto a gel filtration column as described above except 0.02% DDM was
45	substituted for 0.3% DM in the column buffer. The column was eluted at 0.5 mL/min and 0.5-
46	mL fractions were collected. Samples were subjected to SDS/PAGE, the gel was stained with
47	Coomassie blue, and 3-4 fractions containing the most SpoIVFB and Pro- σ^{K} were combined,
48	concentrated to 0.5 mL as described above, and stored at -80°C.

49

50 In-gel Protease Digestion and Peptide Purification. Cross-linked products were digested ingel as described (3) with the following modifications. Gel bands were dehydrated using 100% 51 52 acetonitrile and incubated with 10 mM DTT in 100 mM ammonium bicarbonate, pH~8, at 56°C 53 for 45 min, dehydrated again and incubated in the dark with 50 mM iodoacetamide in 100 mM ammonium bicarbonate for 20 min. Gel bands were then washed with ammonium bicarbonate 54 and dehydrated again. Sequencing-grade modified typsin or chymotrypsin was prepared at 0.01 55 ug/uL in 50 mM ammonium bicarbonate and ~50 uL of this was added to each gel band so that 56 57 the gel was completely submerged. Bands were then incubated at 37°C overnight. Peptides were extracted from the gel by water bath sonication in a solution of 60% ACN/1% TCA and 58

vacuum dried to ~2 uL. Peptides were then resuspended in 2% acetonitrile/0.1% TFA to 25 uL. From this, 5 uL was automatically injected by a Thermo EASYnLC 1000 onto a Thermo Acclaim PepMap RSLC 0.075 mm x 150 mm C18 column and eluted over 60 min with a gradient of 2% buffer B to 30% buffer B in 49 min, ramping to 100% buffer B at 50 min and held at 100% buffer B for the duration of the run (buffer A = 99.9% water/0.1% formic acid and buffer B = 99.9% acetonitrile/0.1% formic acid).

65

Mass Spectrometry and Data Analysis. Eluted peptides were sprayed into the mass 66 67 spectrometer using a FlexSpray ion source. Survey scans were obtained in the Orbi trap (70,000 resolution, determined at m/z 200) and the top ten ions in each survey scan were then subjected 68 to automatic higher-energy collisional dissociation (HCD) with fragment spectra acquired at 69 17,500 resolution. The resulting MS/MS spectra were converted to peak lists using Mascot 70 Distiller v2.5.1.0 (www.matrixscience.com) and searched using the Mascot searching algorithm 71 72 v2.4, against a protein database containing the target protein sequences with E. coli protein sequences (both downloaded from NCBI, www.ncbi.nlm.nih.gov) for background and appended 73 with common laboratory contaminants. The Mascot output was then analyzed using Scaffold 74 75 v4.3.4 (www.proteomesoftware.com) to probabilistically validate protein identifications. Assignments validated using the Scaffold 1% false discovery rate confidence filter were 76 considered true. For cross-link assignments, remaining unmatched spectra from the initial 77 78 Mascot analyses were exported from Scaffold as processed peak lists and searched against the target protein sequences and common laboratory contaminants using StavroX (4). 79

80

Modeling of the SpoIVFB·Pro- σ^{K} complex. The N-terminal membrane domain of SpoIVFB 81 (residues 1-209) was modeled by homology using the mjS2P structure (PDB code: 3B4R) as a 82 template (22% sequence identity and E-value of $5.6*10^{-29}$) (5). MODELLER (6) was used in 83 conjunction with the MMTSB Tool Set (7). The crystal structure contains two chains that differ 84 85 in their conformations (5). The A chain is more open towards the active site and has a more ordered C-terminal helix. The B chain is more closed and exhibits more disorder towards the 86 87 end of the C-terminal helix. Models for SpoIVFB were built based on both chains. The tetramer 88 that was ultimately built consisted of two subunits based on the A structure (called chains A and C in the model), presumed to be able to bind to $Pro-\sigma^{K}$, and two subunits based on the B 89 structure (called chains B and D), presumed to be substrate-free, in order to be consistent with 90 experimental evidence that a catalytically-inactive SpoIVFB tetramer complexes with only two 91 bound Pro- σ^{K} substrates (called chains X and Y in the model) (2). 92 The mjS2P crystallographic dimer places the C-termini of each subunit opposite of each 93 other (5). However, this antiparallel arrangement is not compatible with experimental data for 94 the membrane topology of SpoIVFB (8) and would not allow tetramerization of the C-terminal 95 96 CBS domains since only two subunits each would be on either side of the membrane. Therefore, 97 one of the SpoIVFB N-terminal domains was rotated to a parallel orientation followed by rotation around the *z*-axis to build a dimer with approximate shape complementarity. A tetramer 98 99 was subsequently built by rotating the initial dimer around the z-axis, the membrane normal, by 180° followed by translation along the x- and y-axes until overlap of the two dimers was avoided. 100 Care was taken to have all four active sites face outwards since otherwise $Pro-\sigma^{K}$ binding and 101 product release would be impossible or seriously hindered. The goal of this initial step was to 102 place the SpoIVFB N-terminal domains at reasonable initial positions but with extra distance to 103

obtain an initial conformation that could be refined further. The initial model was reduced to Ca 104 105 positions and subjected to molecular dynamics simulations. The Ca-based model consisted of harmonic bonds between subsequent residues to maintain a distance of 3.8 Å in addition to a 106 Lennard-Jones potential (radius 3.5 Å) to avoid overlap of Ca particles. Harmonic restraints 107 were applied to keep each of the subunits rigid, minimize the distance between the centers of 108 mass of each subunit, and maintain each subunit to be aligned with the membrane normal and 109 centered around z=0. The restrained simulations were repeated many times with different initial 110 111 velocity distributions. The resulting structures were clustered based on overall RMSD. Eight clusters were identified with populations of 268, 250, 131, 112, 76, 70, 62, and 21 elements. The 112 representative structure from the most populated cluster was selected as a likely tetrameric 113 114 model. We note that the representative structure of the second-largest cluster was only 3 Å from the selected model while the largest deviation was found for the representative structure of the 115 smallest cluster with about 5 Å. Therefore, the subsequent modeling is not expected to be 116 especially sensitive to the selected cluster. 117 The C-terminal domain of SpoIVFB (residues 214-279) is homologous to a single CBS 118

domain (9). Available structures feature CBS domains either as dimers or as disc-like tetramers.
There are two major tetramer configurations, only one of which is fully compatible with an Nterminal tetramer consisting of four membrane-bound subunits on one side of the disc-like
structure. An example of this configuration is given by the CBS-domain protein TM0935 from *Thermotoga maritima* (PDB code: 1050) (10), which was used as the structure template for
building a tetramer for the C-terminal part of SpoIVFB (13% sequence identity and E-value of
5.6*10⁻⁵).

The SpoIVFB model was completed by first positioning the C-terminal tetrameric CBS disc
beneath the N-terminal membrane-localized tetramer. Flexible linkers for residues 210-213 were
then added to connect both sections of SpoIVFB.

To model Pro- σ^{K} , the structure of the RNA-polymerase sigma subunit domain 2 from 129 Thermus aquaticus (PDB code: 3UGO) (11) was used as the template to build a structure for 130 residues 34-106 of Pro- σ^{K} (40% sequence identity and E-value of 1.2*10⁻¹⁰). The missing N-131 terminal residues 1-33 were added as an extended chain since structural information is not 132 available for the Pro sequence. The exact positioning of Pro- σ^{K} with respect to SpoIVFB is 133 unclear and in an initial model two copies of Pro- σ^{K} were placed near the A and C chains of 134 SpoIVFB outside the membrane plane and with the N-terminus oriented towards the protease 135 136 active site. 137 The modeling described above only resulted in a very approximate initial model since the 138 tetramerization interface of the SpoIVFB membrane domains, the interaction of the SpoIVFB membrane domains and CBS domains, and the interaction of SpoIVFB with Pro- σ^{K} were 139 unclear. Constraints from cross-linking experiments were used to further refine the initial model 140 via molecular dynamics simulations of a coarse-grained representation (only $C\alpha$ positions) in the 141 presence of various restraint potentials that are detailed in the following: 142

144 and C were harmonically restrained to their initial position (using a force constant of 2.0 145 kcal/mol/Å²). This restraint anchors the membrane domains in space.

143

1. The membrane domains (residues 1-200) of the two $Pro-\sigma^{K}$ -binding SpoIVFB chains A

The membrane domains of SpoIVFB chains B and D were restrained with respect to their
 overall structure (using a force constant of 4.0 kcal/mol/ Å²) but not fixed in space, to
 allow for some flexibility in adjusting the initial tetramer model to the presence of the

149		CBS domains and Pro- σ^{K} . Additional restraints between the active sites of different
150		chains and between residues at the 'top' of the tetramer (opposite the CBS domain) kept
151		chains B and D close to the initial tetramer model since there are no other forces in the
152		modeling protocol that would keep SpoIVFB subunits together or in the membrane
153		otherwise.
154	3.	The tetrameric CBS domains of SpoIVFB (residues 220-272) were restrained together to
155		maintain their internal tetrameric structure (using a force constant of 2.0 kcal/mol/Å ²)
156		while allowing only rigid body motions of the entire tetramer.
157	4.	The interdomain linkers of SpoIVFB (residues 201-219) were fully flexible.
158	5.	The two $Pro-\sigma^{K}$ chains X and Y were restrained to maintain their internal structure for
159		parts of the template-based model (residues 38-122 and residues 29-37 using a force
160		constant of 5.0 kcal/mol/Å ²) allowing for free sampling of the helix from 29-37 relative
161		to the rest of the model and a fully flexible N-terminus.
162	6.	Cross-linking data was incorporated in the form of flat-bottom potentials typically used
163		for NOE restraints. Table S3 gives the restraints that were implemented and their
164		distance ranges.
165	7.	Residues H43, H47, and D137 of SpoIVFB were restrained to bind a zinc ion at the
166		active site and residue E44 was restrained to be able to activate a water molecule to
167		cleave the peptide bond between residues S21 and Y22 of $Pro-\sigma^{K}$ (12-14).
168	8.	SpoIVFB chains A and C interact with $Pro-\sigma^{K}$ chains X and Y, respectively. No
169		restraints were applied between SpoIVFB chains B and D, and Pro- σ^{K} . Also, no
170		restraints were applied between SpoIVFB chains except the weak restraints mentioned
171		above to maintain the overall tetramer. The restraints on the SpoIVFB interdomain linker

172 (residues 200-220) from cross-linking data were not applied uniformly to all chains because the CBS domain tetramer orientation requires a more extended linker for the B 173 and D chains in order to satisfy the restraints for the A and C chains (Table S2). 174 Using these restraints models were initially minimized for 1,000 steps using an adopted-basis 175 Newton-Raphson scheme. Subsequently, 50,000 steps of molecular dynamics were carried out 176 at 1,000 K in an NVT ensemble followed by another round of minimization over 100,000 steps. 177 The temperature was maintained by periodically reassigning velocities and an integration time 178 step of 2 fs was used. In the C α -based model, bonds between adjacent beads were harmonically 179 restrained to 3.8 Å using a force constant of 100 kcal/mol/Å². Hydrophobic (Ile, Leu, Phe, Trp, 180 Gly, Pro, Val, Met, Cys, Ala) and polar (Lys, Arg, Asp, Glu, Ser, Thr, His, Tyr, Gln, Asn) beads 181 were distinguished by different Lennard-Jones parameters with ε =0.05 for polar residues and 182 ϵ =0.2 for hydrophobic residues. R_{min} was set to 3.7 Å for both types of beads. A charge of -0.1 183 was applied to acidic residues and a charge of 0.1 to basic residues. All beads had a mass of 50 184 amu. Non-bonded interactions were switched to zero between 16 and 18 Å and a non-bonded 185 list cutoff of 20 Å was applied. While zinc was not present in the initial modeling, it was 186 included in the restraint-based optimization of the complete $C\alpha$ -based model to facilitate later 187 188 conversion to an atomistic model. To hold the zinc atom in place, it was tethered to residues 43, 47, and 137 in each of the four subunits at distances of 6.4, 6.4, and 4.8 A using harmonic 189 restraints with a force constant of 1.0 kcal/mol based on the position of the Zn ion in the mjS2P 190 template structure relative to the Ca atoms. The minimization-MD-minimization protocol was 191 repeated 100 times but because of the restraints the structure varied little (within 2-4 Å RMSD 192 193 over the entire complex) with most of the variation involving the (unrestrained) N-terminus of 194 Pro- σ^{K} and the linker between the membrane and CBS domains of SpoIVFB (see Fig. S12). The

- 195 variation in the models was well within the expected overall accuracy of the model (about 5 Å)
- and a representative structure was selected as the final model for further analysis.
- 197 The final model was then reconstructed to atomistic detail using the MMTSB Tool Set (7).
- 198

199 **REFERENCES**

- Zhou R, Cusumano C, Sui D, Garavito RM, & Kroos L (2009) Intramembrane proteolytic
 cleavage of a membrane-tethered transcription factor by a metalloprotease depends on ATP.
 Proc. Natl. Acad. Sci. USA 106:16174-16179.
- Zhang Y, *et al.* (2016) Complex formed between intramembrane metalloprotease SpoIVFB
 and its substrate, Pro-σ^K. *J. Biol. Chem.* 291:10347-10362.
- Shevchenko A, Wilm M, Vorm O, & Mann M (1996) Mass spectrometric sequencing of
 proteins silver-stained polyacrylamide gels. *Anal. Chem.* 68(5):850-858.
- 4. Götze M, *et al.* (2012) StavroX a software for analyzing crosslinked products in protein
 interaction studies. *J. Am. Soc. Mass Spectrom.* 23:76-87.
- 5. Feng L, *et al.* (2007) Structure of a site-2 protease family intramembrane metalloprotease.
- 210 *Science* 318(5856):1608-1612.
- Sali A & Blundell TL (1993) Comparative protein modelling by satisfaction of spatial
 restraints. *J. Mol. Biol.* 234(3):779-815.
- Feig M, Karanicolas J, & Brooks CL, 3rd (2004) MMTSB Tool Set: enhanced sampling and
 multiscale modeling methods for applications in structural biology. *J. Mol. Graph Model*
- 215 22(5):377-395.
- 216 8. Green D & Cutting S (2000) Membrane topology of the *Bacillus subtilis* Pro- σ^{K} processing
- 217 complex. J. Bacteriol. 182:278-285.

218	9.	Kinch LN, Ginalski K, & Grishin NV (2006) Site-2 protease regulated intramembrane
219		proteolysis: sequence homologs suggest an ancient signaling cascade. Protein Sci. 15(1):84-
220		93.
221	10.	Miller MD, <i>et al.</i> (2004) Crystal structure of a tandem cystathionine- β -synthase (CBS)
222		domain protein (TM0935) from Thermotoga maritima at 1.87 Angstrom resolution. Proteins
223		57(1):213-217.
224	11.	Feklistov A & Darst SA (2011) Structural basis for promoter-10 element recognition by the
225		bacterial RNA polymerase sigma subunit. Cell 147(6):1257-1269.
226	12.	Kroos L, Kunkel B, & Losick R (1989) Switch protein alters specificity of RNA polymerase
227		containing a compartment-specific sigma factor. Science 243:526-529.
228	13.	Rudner D, Fawcett P, & Losick R (1999) A family of membrane-embedded
229		metalloproteases involved in regulated proteolysis of membrane-associated transcription
230		factors. Proc. Natl. Acad. Sci. USA 96:14765-14770.
231	14.	Yu Y-TN & Kroos L (2000) Evidence that SpoIVFB is a novel type of membrane
232		metalloprotease governing intercompartmental communication during Bacillus subtilis
233		sporulation. J. Bacteriol. 182:3305-3309.
234	15.	Zhou R & Kroos L (2004) BofA protein inhibits intramembrane proteolysis of pro- σ^{K} in an
235		intercompartmental signaling pathway during Bacillus subtilis sporulation. Proc. Natl.
236		Acad. Sci. USA 101(17):6385-6390.
237	16.	Kunkel B, Sandman K, Panzer S, Youngman P, & Losick R (1988) The promoter for a
238		sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal
239		and spatial control of gene expression. J. Bacteriol. 170:3513-3522.

- 240 17. Kunkel B, Kroos L, Poth H, Youngman P, & Losick R (1989) Temporal and spatial control
- of the mother-cell regulatory gene *spoIIID* of *Bacillus subtilis*. *Genes Dev.* 3:1735-1744.

Cross-links between SpoIVFB and Pro- σ^{κ} Cross-linker^a SpoIVFB Peptide^b Pro- σ^{K} Peptide SpolVFB Pro-σ^κ Score Deviation Charge^e Mass Times Residue (ppm)^d Observed Residue DSS **K**FENTGEDAEDLISIGTIGLIK K59 K69 322 -0.51 3 2917 3 IKR BS3 K59 K69 3 2 IKR **K**FENTGEDAEDLISIGTIGLIK 295 -0.8 2917 2 AMAS CR LVAHIV**KK** C201^g K68 or K69 66 0.16 3 1322 DSS YYG**K**NR 252 3 2470 1 YLELMAKGDEHAR K217 K46 -4.88 DSS K39 2 **YYGKNR K**YLELMAK K217 116 -3.03 1933 1 DSS YYG**K**NR **K**YLELMAKGDEHAR K217 K39 83 -3.34 3 2598 1 4 Sulfo-SMCC GCK NNAFPQPLSSSEE**KK**YLELMAK C246 K38 or K39 71 -1.44 3050 1 Sulfo-SMCC C246 -2.46 3 3 G**C**K K69 395 2888 **K**FENTGEDAEDLISIGTIGLIK к99 3 Sulfo-SMCC GCK **GIESYSAGKGTK** C246 86 -1.311723 1 Sulfo-SMCC G**C**K **GTKLATYAAR** C246 K102 75 -1.59 2 1577 1 C246 3 BM(PEG)₂ GCK **CIENEILMHLR** C110 85 -0.81 2001 4 **Cross-links within SpoIVFB** Cross-linker Peptide 1 Peptide 2 Residue 1 Residue 2 Score Deviation Charge Mass Times Observed (ppm) K10^h 2235 DTSSP MNKWLDLIL**K** NRELE**K** K223 81 -4.47 3 2 Sulfo-SMCC **QLPFQKAHR** G**C**K K154 C246 81 -1.02 4 1650 2 C201^g 3 AMAS QLPFQ**K**AHR **C**RHYIHVR K154 21 -3.29 2344 1 DSS -3.88 3 1 YYG**K** NRELE**K** K217 K223 1456 173 DSS YYG**K**NR ELE**K** K217 K223 72 -3.88 3 1456 1 Sulfo-SMCC YYG**K**NR GCK K217 C246 86 -1.05 2 1326 3 BS3 1.23 3 3516 YYG**K** LLPLTVKAEDKVYHVMAEFKRGB**K** K217 K247 66 1 DSS **ELEKLLPLTVK** K223 K243 86 -0.83 4 3143 2 AEDKVYHVMAEF**K**R DSS ELE**K**LLPLTVK VYHVMAEF<u>K</u>R K223 K243 75 -4.7 4 2716 1 Sulfo-SMCC **ELEKLLPLTVK** GCK K223 C246 733 -1.7 2 1808 10 Sulfo-SMCC G**C**K K223 C246 -1.35 4 2078 1 NRELE**K**LLPLTVK 97 DSS ELE**K**LLPLTVK SGQ**K**LSQLDENEVLHAYFADKR K223 K258 331 -4.33 4 3968 3 BS3 1383 LLPLTV**K** AED**K** K230 K234 66 -0.25 2 1 3 Sulfo-SMCC LLPLTV**K**AEDK GCK K230 C246 139 -1.98 1752 3

Table S1 Chemically Cross-linked Peptides of the SpoIVFB·Pro- σ^{κ} Complex

Sulfo-SMCC	AED <u>K</u> VYHVMAEFK	G <u>с</u>к	K234	C246	129	-1.56	4	2248	3
Sulfo-SMCC	AED <u>K</u> VYHVMAEFKR	G <u>с</u> К	K234	C246	64	0.98	4	2264	1
Sulfo-SMCC	G <u>с</u> К	HPIIIE <u>K</u> SGQ <u>K</u>	C246	K254 or K258	277	-2.77	2	1775	9
Sulfo-SMCC	G <u>с</u> К	SGQ K LSQLDENEVLHAYFADKR	C246	K258	220	-2.46	4	3074	2
Sulfo-SMCC	G <u>C</u> KHPIIIEK	SGQ <u>K</u>	C246	K258	62	-3.21	2	1775	2
Sulfo-SMCC	RG <u>C</u> K	LSQLDENEVLHAYFAD <u>K</u>	C246	K275	91	-4.26	3	2673	2
Sulfo-SMCC	G <u>с</u> К	LSQLDENEVLHAYFAD <u>K</u> R	C246	K275	85	-4.26	3	2673	2
BS3	HPIIIE <u>K</u>	SGQ <u>K</u>	K254	K258	66	-0.41	2	1406	3
Cross-links w	ithin Pro-σ ^κ								
Cross-linker	Peptide 1	Peptide 2	Residue 1	Residue 2	Score	Deviation	Charge	Mass	Times
						(ppm)			Observed
DSS	NNAFPQPLSSSEE <u>K</u>	KYLELMA <u>K</u> GDEHAR	K38	K46	258	-1.82	4	3362	1
DSS	NNAFPQPLSSSEE <u>K</u>	KYLELMA <u>K</u>	K38	K46	66	-2.13	2	2680	1
DSS	NNAFPQPLSSSEE <u>KK</u>	YLELMA <u>K</u> GDEHAR	K38 or K39	K46	257	-1.82	4	3362	1
BS3	NNAFPQPLSSSEE <u>KK</u>	YLELMA <u>K</u> GDEHAR	K38 or K39	K46	89	-0.28	4	3346	2
DSS	NNAFPQPLSSSEE <u>KK</u>	YLELMA <u>K</u>	K38 or K39	K46	66	-2.13	2	2680	1
DTSSP	NNAFPQPLSSSEE <u>KK</u>	<u>K</u> FENTGEDAEDLISIGTIGLIK	K38 or K39	K69	146	-4.87	4	4212	1
DSS	NNAFPQPLSSSEE <u>KK</u>	GIESYSAG <u>K</u> GTK	K38 or K39	K99	458	-3.43	3	3010	1
BS3	NNAFPQPLSSSEE <u>KK</u>	GT <u>K</u> LATYAAR	K38 or K39	K102	534	-0.34	3	2864	9
DSS	NNAFPQPLSSSEE <u>KK</u>	GT <u>K</u> LATYAAR	K38 or K39	K102	126	-2.06	4	2864	1
Sulfo-SMCC	NNAFPQPLSSSEE <u>KK</u>	<u>C</u> IENEILMHLR	K38 or K39	C110	342	-2.17	3	3281	1
DSS	<u>K</u> FENTGEDAEDLISIGTIGLIK	GT <u>K</u> LATYAAR	K69	K102	306	-0.8	4	3552	3
BS3	<u>K</u> FENTGEDAEDLISIGTIGLIK	GT <u>K</u> LATYAAR	K69	K102	109	0.76	4	3552	1
Sulfo-SMCC	GIESYSAG <u>K</u> GTK	C IENEILMHLR	К99	C110	152	-1.31	4	2802	18
Sulfo-SMCC	GT <u>K</u> LATYAAR	<u>C</u> IENEILMHLR	K102	C110	140	-1.53	3	2656	8

 $^{\circ}$ Cross-linker abbreviations: disuccinimidyl suberate, DSS; bis(sulfosuccinimidyl)suberate, BS3; N-(α -maleimidoacetoxy)succinimide ester, AMAS;

sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate, SMCC; 1,8-bismaleimidodiethyleneglycol, BM(PEG)₂; 3,3'-

dithiobis(sulfosuccinimidylpropionate), DTSSP

^bCross-linked residues are bold underlined. In some cases, the mass spectrometry data did not allow a distinction to be made between adjacent or nearby residues participating in the cross-link.

^cMaximum score observed for the cross-link. Scores are calculated by comparing the MS/MS-spectrum with theoretical fragment ions using StavroX software. ^dDeviation of theoretical and measured mass. ^eCharge of the precursor.

^fSingly charged, monoisotopic mass of the precursor.

^gThis cross-link was observed using SpoIVFB with a Q201C substitution.

^hThis cross-link implied a constraint used to build initial models, but the models violated this constraint by large values, so this constraint was not used to build the reported model. We speculate that this cross-link occurred in unfolded SpoIVFB.

Table S2 Summary of Chemical Cross-link

Chemical cross-links between SpolVFB and Pro- σ^{κ}								
SpolVFB	Pro-σ ^κ	Highest	Times	Average				
Residue	Residue	Score ^a	Observed	Violation (Å) ^b				
K59	K69	322	5	0.1				
C201	K68 or K69	66	2	0				
K217	K46	252	1	0.1				
K217	K39	116	2	0				
C246	K38	71	1	0				
C246	K69	395	3	0.5				
C246	К99	86	1	0				
C246	K102	75	1	1.1				
C246	C110	85	4	0				

Cross-links within SpoIVFB

		Highest	Times	Average
Residue 1	Residue 2	Score	Observed	Violation (Å)
K154	C246	81	2	2.0 ^c
K154	C201	21	1	1.2 ^d
K217	K223	173	2	0 ^c
K217	C246	86	3	0 ^c
K217	K247	66	1	0.2 ^c
K223	K243	86	3	1.6
K223	C246	733	11	0.2
K223	K258	331	3	0.2
K230	K234	66	1	0
K230	C246	139	3	0.6
K234	C246	129	4	0.8
C246	K254	277	9	0.6
C246	K258	220	4	1.3
C246	K275	91	4	0.4
K254	K258	66	3	0

Cross-links within Pro-σ ^κ								
Residue 1	Residue 2	Highest	Times	Average				
		Score	Observed	Violation (Å)				
K38	K46	258	2	0				
K38 or K39	K46	257	4	0				
K38	K69	146	1	0				
K38 or K39	K99	458	1	0.4				
K39	K102	534	10	0				
K38	C110	342	1	0				
K69	K102	306	4	0.1				
K99	C110	152	18	0				
K102	C110	140	8	0.3				

^aMaximum score observed for the cross-link. Scores are calculated by comparing the MS/MS-spectrum with theoretical fragment ions using StavroX software.

^bThe distance between C α atoms of cross-linked residues in the model (average of A, B, C, and D chains for SpoIVFB and average of X and Y chains for Pro- σ^{K} , unless noted otherwise) minus the theoretical maximum distance for the cross-linker, with negative values reported as 0.

^cSince this restraint was applied only to the A and C chains, the average violation is reported only for those chains.

^dSince this restraint was applied only to the B and D chains, the average violation is reported only for those chains.

Table S3	Cross-linking Restraints Used	in Modeling and	Violations of the		Complex Model
Table 33	cross-iniking restraints oset	in wouching and	violations of the	Spoile 10-0	complex model

Cross-links between SpoIVFB and Pro-σ ^K								
		Observed	Minimum distance	Maximum		Distance in		
Residues ^a	Cross-linker ^b	cross-link	restraint (Å)	restraint (Å)	K (kcal/mol/Å ²)	model (Å)	Violation (Å) ^c	
PROA 44 - PROX 18	disulfide	weak	3	9	5	8.4	0	
PROA 44 - PROX 19	disulfide		3	7	5	10.8	3.8	
PROA 44 - PROX 20	disulfide		3	7	5	8.7	1.7	
PROA 44 - PROX 22	disulfide		3	7	5	8.3	1.3	
PROA 44 - PROX 23	disulfide		3	, 7	5	9.5	2.5	
PROA 44 - PROX 24	disulfide		3	7	5	5.2	0	
PROA 44 - PROX 25	disulfide		3	7	5	83	13	
PROA 11 - PROX 27	disulfide	no	7	, 100	2	12 /	0	
PROA 135 - PROX 20	disulfide	no	3	7	5	19	0	
PROA 135 - PROX 20	disulfide		3	7	5	7.4	0.4	
PROA 135 - PROX 21	disulfide		3	7	5	8.6	1.6	
PROA 135 - PROX 22	disulfide		3	7	5	0.0 0.7	1.0	
	disulfide	no	7	100	2	10.1	2.7	
	disulfide	no	7	100	2	5	0	
PROA 135 - PROX 19	disulfide	no	7	100	2	147	0	
	disulfide	no	7	100	2	14.7		
	disulfide		с С	7	5	7.5	0.5	
	disulfide		3	7	5	10.1	3.1	
	disulfide		3	7	5	10.3	3.3	
	disulfide		3	7	5	6.8 F.C	0	
	disulfide		3	/	5	5.6	0	
	disulfide		3	/	5	9	2	
	disulfide		3	/	5	6	0	
PROA 70 - PROX 25	disulfide		3	/	5	4.6	0	
	disulfide		3	/	5	8.3	1.3	
PROA 70 - PROX 29	disulfide	very weak	5	20	5	9.7	0	
PROC 44 - PROY 18	disulfide	weak	3	9	5	9.4	0.4	
PROC 44 - PROY 19	disulfide		3	/	5	9.1	2.1	
PROC 44 - PROY 20	disulfide		3	/	5	8.8	1.8	
PROC 44 - PROY 22	disulfide		3	/	5	4.8	0	
PROC 44 - PROY 23	disulfide		3	/	5	8.8	1.8	
PROC 44 - PROY 24	disulfide		3	/	5	9.6	2.6	
PROC 44 - PROY 25	disulfide		3	/	5	7.5	0.5	
PROC 44 - PROY 27	disulfide	no	7	100	2	10.8	0	
PROC 135 - PROY 20	disulfide		3	/	5	4.9	0	
PROC 135 - PROY 21	disulfide		3	/	5	9	2	
PROC 135 - PROY 22	disulfide		3	7	5	8.4	1.4	
PROC 135 - PROY 24	disulfide		3	7	5	11.7	4.7	
PROC 135 - PROY 18	disulfide	no	7	100	2	9.7	0	
PROC 135 - PROY 19	disulfide	no	7	100	2	6.7	0	
PROC 135 - PROY 25	disulfide	no	7	100	2	14.2	0	
PROC 70 - PROY 18	disulfide		3	7	5	10.4	3.4	
PROC 70 - PROY 19	disulfide		3	7	5	8.7	1.7	
PROC 70 - PROY 20	disulfide		3	7	5	11.5	4.5	
PROC 70 - PROY 21	disulfide		3	7	5	9.1	2.1	
PROC 70 - PROY 22	disulfide		3	7	5	4.7	0	
PROC 70 - PROY 23	disulfide		3	7	5	8.3	1.3	
PROC 70 - PROY 24	disulfide		3	7	5	7.7	0.7	
PROC 70 - PROY 25	disulfide		3	7	5	5	0	
PROC 70 - PROY 27	disulfide		3	7	5	7.6	0.6	
PROC 70 - PROY 29	disulfide	very weak	5	20	5	12.1	0	
PROA 59 - PROX 69	DSS/BS3		5	15	20	15.1	0.1	
PROC 59 - PROY 69	DSS/BS3		5	15	20	14.7	0	
PROA 201 - PROX 69	DSS/BS3		3	10	20	5.4	0	

PROC 201 - PROY 69	DSS/BS3	3	10	20	10.1	0.1
PROA 201 - PROX 68	AMAS	3	10	20	9.6	0
PROC 201 - PROY 68	AMAS	3	10	20	5.4	0
PROA 217 - PROX 46	DSS	5	15	20	14.1	0
PROC 217 - PROY 46	DSS	5	15	20	15.1	0.1
PROA 217 - PROX 39	DSS	5	15	20	8.1	0
PROC 217 - PROY 39	DSS	5	15	20	5	0
PROA 246 - PROX 38 ^d	SMCC	4	12	20	10.6	0
PROC 246 - PROY 38 ^d	SMCC	4	12	20	7.6	0
PROA 246 - PROX 69	SMCC	4	12	20	12.9	0.9
PROC 246 - PROY 69	SMCC	4	12	20	11.7	0
PROA 246 - PROX 99	SMCC	4	12	20	7.4	0
PROC 246 - PROY 99	SMCC	4	12	20	9.7	0
PROA 246 - PROX 102	SMCC	4	12	20	14.2	2.2
PROC 246 - PROY 102	SMCC	4	12	20	11.8	0
PROA 246 - PROX 110	BM(PEG)2	7	20	20	11.9	0
PROC 246 - PROY 110	BM(PEG)2	7	20	20	16.2	0

Cross-links within SpoIVFB							
			Minimum	Maximum			
		Observed	distance	distance		Distance in	
Residues	Cross-linker	cross-link	restraint (Å)	restraint (Å)	K (kcal/mol/Å ²)	model (Å)	Violation (Å)
PROA 154 - PROA 246	SMCC		4	12	20	14.4	2.4
PROC 154 - PROC 246	SMCC		4	12	20	13.5	1.5
PROB 201 - PROB 154	AMAS		3	10	20	11.8	1.8
PROD 201 - PROD 154	AMAS		3	10	20	10.5	0.5
PROA 217 - PROA 223	DSS		5	15	20	6.3	0
PROC 217 - PROC 223	DSS		5	15	20	6.8	0
PROA 217 - PROA 246	SMCC		4	12	20	5.8	0
PROC 217 - PROC 246	SMCC		4	12	20	9.1	0
PROA 217 - PROA 247	BS3		5	15	20	12	0
PROC 217 - PROC 247	BS3		5	15	20	15.3	0.3
PROA 223 - PROA 243	DSS		5	15	20	15.1	0.1
PROB 223 - PROB 243	DSS		5	15	20	16.8	1.8
PROC 223 - PROC 243	DSS		5	15	20	15.5	0.5
PROD 223 - PROD 243	DSS		5	15	20	19	4
PROA 223 - PROA 246	SMCC		4	12	20	9.1	0
PROB 223 - PROB 246	SMCC		4	12	20	12.2	0.2
PROC 223 - PROC 246	SMCC		4	12	20	7.7	0
PROD 223 - PROD 246	SMCC		4	12	20	12.6	0.6
PROA 223 - PROA 258	DSS		5	15	20	15.4	0.4
PROB 223 - PROB 258	DSS		5	15	20	11.4	0
PROC 223 - PROC 258	DSS		5	15	20	15.4	0.4
PROD 223 - PROD 258	DSS		5	15	20	8	0
PROA 230 - PROA 234	BS3		5	15	20	11.9	0
PROB 230 - PROB 234	BS3		5	15	20	6.9	0
PROC 230 - PROC 234	BS3		5	15	20	12.5	0
PROD 230 - PROD 234	BS3		5	15	20	6.1	0
PROA 230 - PROA 246	SMCC		4	12	20	13.4	1.4
PROB 230 - PROB 246	SMCC		4	12	20	9.9	0
PROC 230 - PROC 246	SMCC		4	12	20	13	1
PROD 230 - PROD 246	SMCC		4	12	20	12.1	0.1
PROA 234 - PROA 246	SMCC		4	12	20	11.7	0
PROB 234 - PROB 246	SMCC		4	12	20	12.2	0.2
PROC 234 - PROC 246	SMCC		4	12	20	13.4	1.4
PROD 234 - PROD 246	SMCC		4	12	20	13.5	1.5
PROA 246 - PROA 254 ^e	SMCC		4	12	20	7.8	0
PROB 246 - PROB 254 ^e	SMCC		4	12	20	13.2	1.2

PROC 246 - PROC 254 ^e	SMCC	4	12	20	8.5	0
PROD 246 - PROD 254 ^e	SMCC	4	12	20	13	1
PROA 246 - PROA 258	SMCC	4	12	20	13.8	1.8
PROB 246 - PROB 258	SMCC	4	12	20	12.9	0.9
PROC 246 - PROC 258	SMCC	4	12	20	14.2	2.2
PROD 246 - PROD 258	SMCC	4	12	20	12.2	0.2
PROA 246 - PROA 275	SMCC	4	12	20	12.8	0.8
PROB 246 - PROB 275	SMCC	4	12	20	9.9	0
PROC 246 - PROC 275	SMCC	4	12	20	12.9	0.9
PROD 246 - PROD 275	SMCC	4	12	20	10.5	0
PROA 254 - PROA 258	BS3	5	15	20	6.8	0
PROB 254 - PROB 258	BS3	5	15	20	12.2	0
PROC 254 - PROC 258	BS3	5	15	20	6.8	0
PROD 254 - PROD 258	BS3	5	15	20	11.2	0

Cross-links within Pro-σ ^κ							
			Minimum	Maximum			
		Observed	distance	distance		Distance in	
Residues	Cross-linker	cross-link	restraint (Å)	restraint (Å)	K (kcal/mol/Å ²)	model (Å)	Violation (Å)
PROX 38 - PROX 46	DSS/BS3		5	15	20	5.8	0
PROY 38 - PROY 46	DSS/BS3		5	15	20	14	0
PROX 39 - PROX 46	DSS/BS3		5	15	20	9.9	0
PROY 39 - PROY 46	DSS/BS3		5	15	20	10.8	0
PROX 38 - PROX 69 ^f	DTSSP		5	16	20	15.2	0
PROY 38 - PROY 69 ^f	DTSSP		5	16	20	10.9	0
PROX 38 - PROX 99	DSS		5	15	20	12.9	0
PROY 38 - PROY 99	DSS		5	15	20	6.7	0
PROX 39 - PROX 99	DSS		5	15	20	16.5	1.5
PROY 39 - PROY 99	DSS		5	15	20	15.1	0.1
PROX 38 - PROX 110 ^f	SMCC		4	12	20	9.8	0
PROY 38 - PROY 110 ^f	SMCC		4	12	20	8.7	0
PROX 39 - PROX 102 ^g	DSS/BS3		5	15	20	11.5	0
PROY 39 - PROY 102 ^g	DSS/BS3		5	15	20	14	0
PROX 69 - PROX 102	DSS/BS3		5	15	20	8.3	0
PROY 69 - PROY 102	DSS/BS3		5	15	20	4.8	0.2
PROX 99 - PROX 110	SMCC		4	12	20	8.1	0
PROY 99 - PROY 110	SMCC		4	12	20	10.5	0
PROX 102 - PROX 110	SMCC		4	12	20	12	0
PROY 102 - PROY 110	SMCC		4	12	20	12.5	0.5

^aThe chain and residue of protein (PRO) SpoIVFB is listed first, followed by the chain and residue of Pro- σ^{K} .

^bAbbreviations of chemical cross-linkers are listed in Table S1 footnote ^a.

^cThe distance between $C\alpha$ atoms of cross-linked residues in the model minus the theoretical maximum distance for the cross-linker, with negative values reported as 0.

^dThe cross-linking did not distinguish between residues 38 and 39 of Pro- σ^{K} (Table S1), so both were used in the initial round of modeling, but residue 39 was omitted in the final round of modeling because it resulted in slightly higher violations.

^eThe cross-linking did not distinguish between residues 254 and 258 of SpoIVFB (Table S1), so both were used in the initial round of modeling, but residue 258 was omitted in the final round of modeling because it resulted in slightly higher violations.

^fThe cross-linking did not distinguish between residues 38 and 39 of Pro- σ^{K} (Table S1), so both were used in the initial round of modeling, but residue 39 was omitted in the final round of modeling because it resulted in slightly higher violations.

^gThe cross-linking did not distinguish between residues 38 and 39 of Pro- σ^{K} (Table S1), so both were used in the initial round of modeling, but residue 38 was omitted in the final round of modeling because it resulted in slightly higher violations.

Table S4.	Plasmids	used in	this	study
-----------	----------	---------	------	-------

Plasmid	Description ^{a, b}	Construction	Reference
nDD40	Sp ^R ; <i>amyE</i> :: <i>spoIVF</i> with	pDR18a was subjected to site-directed	This study
pDF40	SpolVFB H206A	mutagenesis using primers SH29 and SH30	This study
nDP41	Sp ^R ; <i>amyE::spoIVF</i> with	pDR18a was subjected to site-directed	This study
	SpolVFB F209A	mutagenesis using primers SH35 and SH36	This study
pDP42	Sp ^R ; <i>amyE::spoIVF</i> with	pDR18a was subjected to site-directed	This study
pD1 12	SpolVFB R213A	mutagenesis using primers SH37 and SH38	The study
pDP43	Sp ^R ; <i>amyE::spoIVF</i> with	pDR18a was subjected to site-directed	This study
P=:	SpolVFB H206A F209A R213A	mutagenesis using primers SH61 and SH62	
pDP61	Sp ^R ; <i>amyE::spoIVF</i> with	pDR18a was subjected to site-directed	This study
•	SpolVFB H206F	mutagenesis using primers DP127 and DP128	,
pDP62	Spr; amyE::sporvF with	pDR18a was subjected to site-directed	This study
-	SporvFB R200Q SpB: cmvF:: opo///E with	DR1% was subjected to site directed	
pDP63	Spall/ER E200D	pDR toa was subjected to site-directed	This study
-	SpB: amyE: spo/VE with	nDP182 was subjected to site directed	
pDP64	Spol/EB 210	mutagenesis using primers DP137 and DP138	This study
	Sport B L2 rol Sp ^R : amy E: spo///E with	nDR18a was subjected to site-directed	
pDP65	SpolVFB R213K	mutagenesis using primers DP131 and DP132	This study
	Ap ^R · TM-Spol//FB-F2-H2	pZR209 was subjected to site-directed	
pDP74	R208A	mutagenesis using primers SH33 and SH34	This study
	Ap ^R : TM-SpolVFB-F2-H2	pZR209 was subjected to site-directed	
pDP75	F209A	mutagenesis using primers SH35 and SH36	This study
		The intact <i>spoIVF</i> operon was cloned into	(10)
pDR18a	Sp ^R ; amyE::spoIVF	pLD30	(13)
		SpolVFB(1-197) was amplified by PCR using	
	Ap ^R ; TM-SpolVFB(1-197)-F2	pZR209 as template and primers LK1385 and	
pSH01		SH92, the fragment was digested with BamHI	This study
		and HindIII, and ligated to BamHI-HindIII-	
		digested pYZ68	
		SpoIVFB(1-222) was amplified by PCR using	
		pZR209 as template and primers LK1385 and	
pSH02	Ap ^R ; TM-SpoIVFB(1-222)-F2	SH91, the fragment was digested with BamHI	This study
		and HindIII, and ligated to BamHI-HindIII-	
		SpolvFB(212-288) was amplified by PCR	
~SU03	AnB: TM Spall/ED(212 299) E2	and SH84, the fragment was digested with	This study
ponos	Apr, 110-30017FB(212-200)-F2	Bamul and Hindll, and ligated to Bamul	This study
		HindIII-digested nY768	
		Spol//EB(222-288) was amplified by PCR	
		using pZR209 as template and primers SH88	
pSH04	Ap ^R ·TM-SpolVFB(222-288)-F2	and SH84 the fragment was digested with	This study
perior	, , , , , , , , , , , , , , , , , , ,	BamHI and HindIII, and ligated to BamHI-	The etday
		HindIII-digested pYZ68	
		SpolVFB(197-288) was amplified by PCR	
pSH05		using pZR209 as template and primers SH83	
	Ap ^R ; TM-SpoIVFB(197-288)-F2	and SH84, the fragment was digested with	This study
		BamHI and HindIII, and ligated to BamHI-	_
		HindIII-digested pYZ68	
		SpolVFB(197-222) was amplified by PCR	
pSH06	Ар ^к ; TM-SpoIVFB(197-222)-F2	using pZR209 as template and primers SH83	This study
		and SH91, the fragment was digested with	

		BamHI and HindIII, and ligated to BamHI-	
		HindIII-digested pYZ68	
		SpolVFB(1-212) was amplified by PCR using	
		pZR209 as template and primers LK1385 and	
pSH07	Ap ^R : TM-SpoIVFB(1-212)-F2	SH90, the fragment was digested with BamHI	This study
P	· · · · · · · · · · · · · · · · · · ·	and HindIII, and ligated to BamHI-HindIII-	
		digested pYZ68	
	Ap ^R ·TM-SpolVFB(FYR198-	pZR209 was subjected to site-directed	
pSH08	200AAA)-F2-H2	mutagenesis using primers SH01 and SH02	This study
	Ap ^R TM-SpolVEB(ORH201-	pZR209 was subjected to site-directed	
pSH09	203AAA)-F2-H2	mutagenesis using primers SH03 and SH04	This study
	Ap ^R · TM-SpolVFB(YIH204-	pZR209 was subjected to site-directed	
pSH10	206AAA)-F2-H2	mutagenesis using primers SH05 and SH06	This study
	Ap ^R · TM-SpolVFB(VRF207-	pZR209 was subjected to site-directed	
pSH11	209AAA)-F2-H2	mutagenesis using primers SH07 and SH08	This study
	Ap ^R · TM-Spol//FB(LLE210-	p7R209 was subjected to site-directed	
pSH12	212AAA)-F2-H2	mutagenesis using primers SH09 and SH10	This study
	Ap ^R ·TM-SpolVFB(RYY213-	p7R209 was subjected to site-directed	
pSH13	215AAA)-F2-H2	mutagenesis using primers SH11 and SH12	This study
	Ap ^R · TM-SpolVFB(GKN216-	p7R209 was subjected to site-directed	
pSH14	218444)-F2-H2	mutagenesis using primers SH13 and SH14	This study
	4n ^R ·TM-Spol//FB(REL 219-	n7R209 was subjected to site-directed	
pSH15	221 Δ Δ Δ)-F2-H2	mutagenesis using primers SH15 and SH16	This study
	Δn^{R} : TM-Spol//FR/FKI 222-	nZR209 was subjected to site-directed	
pSH16	$224\Delta\Delta\Delta$. = 224	mutagenesis using primers SH17 and SH18	This study
	Δn^{R} : TM-Spol//FR-F2-H2 with		
nSH26	residues 201-212 changed to	pZR209 was subjected to site-directed	This study
p01120	alanine	mutagenesis using primers SH55 and SH56	This study
	An ^R : TM-Spol\/FB-F2 with		
nSH27	residues 201-212 changed to	pYZ68 was subjected to site-directed	This study
p01127	alanine	mutagenesis using primers SH55 and SH56	This study
	An ^R · TM-Spol\/FB-F2-H2	p7R209 was subjected to site-directed	
pSH28	F198A	mutagenesis using primers SH19 and SH20	This study
	An ^R ·TM-Spol\/FB-F2-H2	n7R209 was subjected to site-directed	
pSH30		mutagenesis using primers SH21 and SH22	This study
	An ^R : TM-Spol\/FB-F2-H2	n7R209 was subjected to site-directed	
pSH31	R200A	mutagenesis using primers SH23 and SH24	This study
	Ap ^R · TM-Spol//FB-F2-H2	p7R209 was subjected to site-directed	
pSH36	Y204A	mutagenesis using primers SH25 and SH26	This study
		n7R209 was subjected to site-directed	
pSH38	Ap ^R ; TM-SpoIVFB-F2-H2 I205A	mutagenesis using primers SH27 and SH28	This study
	An ^R ·TM-Spol//FB-F2-H2	pZR209 was subjected to site-directed	
pSH39		mutagenesis using primers SH29 and SH30	This study
	An ^R ·TM-Spol\/FB-F2-H2	n7R209 was subjected to site-directed	
pSH41		mutagenesis using primers SH31 and SH32	This study
	An ^R : TM-Spol\/FB-F2-H2	nZR209 was subjected to site-directed	
pSH43	R213A	mutagenesis using primers SH37 and SH38	This study
	An ^R : TM-Spol\/FB-F2-H2	nZR209 was subjected to site-directed	
pSH45	V214A	mutagenesis using primers SH39 and SH40	This study
	Δn^{R} : TM-Spol//FB-F2-H2	nZR209 was subjected to site-directed	
pSH48	Υ215Δ	mutagenesis using primers SH41 and SH42	This study
	Δn^{R} TM-Snol//FR-F2-H2	n7R200 was subjected to site-directed	
pSH49	G216A	mutagenesis using primers SH43 and SH44	This study
	Ap ^R · TM-Spol\/FR-F2-H2	p7R209 was subjected to site-directed	
pSH52	K217A	mutagenesis using primers SH45 and SH46	This study
1			1

pSH54	Ap ^R ; TM-SpoIVFB-F2-H2 N218A	pZR209 was subjected to site-directed mutagenesis using primers SH47 and SH48	This study
pSH55	Ap ^R ; TM-SpoIVFB-F2 E44Q H206A	pYZ68 was subjected to site-directed mutagenesis using primers SH29 and SH30	This study
pSH56	Ap ^R ; TM-SpoIVFB-F2 E44Q F209A	pYZ68 was subjected to site-directed mutagenesis using primers SH35 and SH36	This study
pSH57	Ap ^R ; TM-SpoIVFB-F2 E44Q R213A	pYZ68 was subjected to site-directed mutagenesis using primers SH37 and SH38	This study
pSH58	Ap ^R ; TM-SpoIVFB-F2 E44Q H206A F209A R213A	pYZ68 was subjected to site-directed mutagenesis using primers SH61 and SH62	This study
pSH59	Кm ^R ; Pro-σ ^к (1-127)-H6/ SpoIVFB-TEV-F2 E44Q Q201C	pYZ42 was subjected to site-directed mutagenesis using primers SH65 and SH66	This study
pYZ42	Km ^R ; Pro-σ ^κ (1-126)-H6/ SpoIVFB-TEV-F2 E44Q		(2)
pYZ68	Ap ^R ; TM-SpoIVFB-F2 E44Q		(2)
pZR12	Km ^R ; Pro-σ ^κ (1-127)-H6		(15)
pZR209	Ap ^R ; TM-SpoIVFB-F2-H6		(1)

^aAbbreviations: Sp^R, spectinomycin-resistant; Ap^R, ampicillin-resistant; TM, transmembrane segment from rabbit Cytochrome P450 2B4; F2, two FLAG epitopes; H6, 6 His residues; Km^R, kanamycin-resistant; TEV, Tobacco Etch Virus protease cleavage site.

^bEach protein listed is preceded by a T7 RNA polymerase promoter and a translation initiation sequence to permit expression in *E. coli*.

Table S5. Primers used in this study

Primer	Sequence
DP127	CGGCAAAGGCACTATATCTTTGTGAGATTTCTCCTCGAA
DP128	TTCGAGGAGAAATCTCACAAAGATATAGTGCCTTTGCCG
DP129	CACTATATCCATGTGAGAGATCTCCTCGAAAGGTATTAC
DP130	GTAATACCTTTCGAGGAGATCTCTCACATGGATATAGTG
DP131	GTGAGATTTCTCCTCGAAAAGTATTACGGAAAAAACAGG
DP132	CCTGTTTTTCCGTAATACTTTTCGAGGAGAAATCTCAC
DP135	AGGCACTATATCCATGTGCAATTTCTCCTCGAAAGGTAT
DP136	ATACCTTTCGAGGAGAAATTGCACATGGATATAGTGCCT
DP137	TATATCCATGTGAGATTTATCCTCGAAAGGTATTACGGA
DP138	TCCGTAATACCTTTCGAGGATAAATCTCACATGGATATA
LK1385	CGGGATCCATGAATAAATGGCTCGACCTTATC
SH01	GTTTCCTTGTTTGAGGCAGCGGCACAAAGGCACTATATC
SH02	GATATAGTGCTCTTGTGCCGCTGCCTCAAACAAGGAAAC
SH03	GTTTGAGGAATATCGGGCAGCGGCATATATCATGTGAG
SH04	CTCACATGGATATATGCCGCTGCCCGATATTCCTCAAAC
SH05	GAATATCGGCAAAGGCACGCAGCGGCAGTGAGATTTCTCCTC
SH06	GAGGAGAAATCTCACTGCCGCTGCGTGCCTTTGCCGATATTC
SH07	GGCACTATATCCATGCAGCGGCACTCCTCGAAAGGKTATTAC
SH08	GTAATACCTTTCGAGGAGTGCCGCTGCATGGATATAGTGCC
SH09	CTATATCCATGTGAGATTTGCAGCGGCAAGGTATTACGGAAAAAAC
SH10	GTTTTTTCCGTAATACCTTGCCGCTGCAAATCTCACATGGATATAG
SH11	GAGATTTCTCCTCGAAGCAGCGGCAGGAAAAAACAGGGAG
SH12	CTCCCTGTTTTTCCTGCCGCTGCTTCGAGGAGAAATCTC
SH13	CTCGAAAGGTATTACGCAGCGGCAAGGGAGCTTGAGCTTGAGAAACTTC
SH14	GAAGTTTCTCAAGCTCCCTTGCCGCTGCGTAATACCTTTCG AG
SH15	GTATTACGGAAAAAACAGGGCAGCGGCAAAACTTCTGCTGCCGCTGAC
SH16	GTCAGCGGCAGAAGTTTTGCCGCTGCCCTGTTTTTTCCGTAATAC
SH17	GAAAAAACAGGGAGCTTGAGGCAGCGGCACCGCCGCTGACAGTAAAG
SH18	CTTTACTGTCAGCGTGCCGCTGCCTCAAGCTCCCTGTTTTTTC
SH19	
SH20	
SH21	
SH22	
SH23	
SH24	
SH25	
SH26	
SH27	
SH28	
SH29	
SH30	
SH31	
SH32	
SH33	
SH34	
5H35	
01130 01127	
SU30	
0000 0000	
01108	

SH40	CTCCCTGTTTTTCCGTATGCCCTTTCGAGGAGAAATC
SH41	GATTTCTCCTCGAAAGGTATGCGGGAAAAAACAGGGAGCTTG
SH42	CAAGCTCCCTGTTTTTCCCCGCATACCTTTCGAGGAGAAATC
SH43	CTCGAAAGGTATTACGCAAAAAACAGGGAGCTTG
SH44	CAAGCTCCCTGTTTTTGCGTAATACCTTTCGAG
SH45	CGAAAGGTATTACGGAGCAAACAGGGAGCTTGAG
SH46	CTCAAGCTCCCTGTTTGCTCCGTAATACCTTTCG
SH47	GAAAGGTATTACGGAAAAGCGAGGGAGCTTGAGAAACTTC
SH48	GAAGTTTCTCAAGCTCCCTCGCTTTTCCGTAATACCTTTC
SH55	GTTTCCTTGTTTGAGGAATATCGGGCAGCGGCAGCGGCAGCGGCAGCGGCAGCGGCA
	GCGAGGTATTACGGAAAAAAC
SH56	GTTTTTTCCGTAATACCTCGCTGCCGCTGCCGCTGCCGCTGCCGCTGCCGCTGC
	CCGATATTCCTCAAACAAGGAAAC
SH61	GGCAAAGGCACTATATCGCGGTGAGAGCACTCCTCGAAGCGTATTACGGAAAAAACAG
SH62	CTGTTTTTTCCGTAATACGCTTCGAGGAGTGCTCTCACCGCGATATAGTGCCTTTGCC
SH65	GTTTCCTTGTTTGAGGAATATCGGTGTAGGCACTATATCCATGTGAG
SH66	CTCACATGGATATAGTGCCTACACCGATATTCCTCAAACAAGGAAAC
SH83	CGGGATCCGAATATCGGCAAAGGCAC
SH84	GCCAAGCTTGTAGGGCAGAAGCAGTTCC
SH88	CGGGATCCTTCGAGGAGAAATCTCACAT
SH89	CGGGATCCGAAAGGTATTACGGAAAAAACAGG
SH90	GCCAAGCTTTTCGAGGAGAAATCTCACAT
SH91	GCCAAGCTTCTCAAGCTCCCTGTTTTTTC
SH92	GCCAAGCTTCTCAAACAAGGAAACAGCCAG

Figure S1. Control pull-down assays of SpoIVFB derivatives in the absence of $\text{Pro} \cdot \sigma^{\text{K}}$. The indicated deletion derivative was expressed without $\text{Pro} \cdot \sigma^{\text{K}}$ in *E. coli* for 2 h and samples were subjected to pull-down assays. Input (I), unbound (U), and bound (B) fractions were subjected to immunoblot analysis with anti-FLAG antibodies. More of the 197-288 derivative was bound in the absence of $\text{Pro} \cdot \sigma^{\text{K}}$ than for the other derivatives. Neverthless, more of the 197-288 was bound in the presence of $\text{Pro} \cdot \sigma^{\text{K}}$ (Fig. 1C) than in its absence.

Figure S2. Purification of SpoIVFB. (A) Size exclusion chromatography during purification of SpoIVFB 1-288 (top) and 1-288 A12 (bottom). Proteins expressed in *E. coli* were subjected to cobalt-affinity purification, the bound fraction was concentrated and applied to a size exclusion column, and the absorbance at 280 nm was monitored during elution to generate the profiles shown. The absorbance peak at 12.3 ml contains primarily SpoIVFB as judged by SDS-PAGE followed by Coomassie Blue staining. (B) Circular dichroism (CD) spectra of purified 1-288 (dark gray diamonds) and 1-288 A12 (light gray squares). CD at the indicated wavelengths was measured for protein samples that eluted from the size exclusion column in the fraction containing the absorbance peak at 12.3 ml in panel A.

Figure S3. Effects of *sigK* mutations on SpoIVFB during *B. subtilis* sporulation. *B. subtilis* strain PY79 with a wild-type *sigK* gene or a mutation in the 3' (*spoIIIC94*) or 5' (*spoIVCB23*) half of *sigK* [strains BK410 (16) and BK556 (17), respectively], were induced to sporulate, and samples collected at the indicated times post-induction were subjected to immunoblot analysis with antibodies against SpoIVFB (top) or Pro- σ^{K} (bottom).

		206 209 213
	Bacillus subtilis PY79	EEYRQRHYI <mark>H</mark> V <mark>RFL</mark> LE R YYGK-NRELE-
	Bacillus mojavensis	EEYRORHYIHVRFLLERYYGK-NRELE-
	Bacillus licheniformis	QEYRNRHYA <mark>HIRFL</mark> LERYYGN-EREVR-
	Bacillus atrophaeus	DEHRQRHYT <mark>HVRFL</mark> LERYYGK-KRDVE-
	Bacillus acidiproducens	KEWKQLYFV <mark>F</mark> MRFLLERYYGK-GDPLR-
	Bacillus anthracis Ames	QEWKQRRYA <mark>F</mark> MRFLLERYYGN-KRGIE-
	Bacillus thuringiensis	QEWKQRRYA <mark>F</mark> M <mark>RFL</mark> LE <mark>R</mark> YYGN-KRGIE-
	Bacillus cereus	QEWKQRRYA <mark>F</mark> M <mark>RFL</mark> LE <mark>R</mark> YYGN-KRGIE-
	Geobacillus caldoxylosilyticus	QEWKHHRYIVM <mark>RFL</mark> LE <mark>R</mark> YYGK-RSDYT-
C	Geobacillus thermodenitrificans	QEKKQHPYIVMRFLLERYYGK-KGDYA-
g	Bacillus clausii	LEFKQRNYR <mark>F</mark> M <mark>RFL</mark> MA <mark>K</mark> QTD-RAM-
В	Amphibacillus jilinensis	LEWKRRFYV <mark>F</mark> Q <mark>RFL</mark> LS <mark>R</mark> MSKM-KQSR-
	Gracilibacillus halophilus	LEWKRRYYKWWRFLWSRHCQH-HVPS-
	Oceanobacillus iheyensis	REWKQRFYV <mark>FIRFL</mark> LH <mark>R</mark> YEGK-HIVR-
	Ornithinibacillus scapharcae	SEWKKRHYV <mark>FIRFL</mark> LG <mark>R</mark> FTGK-HRNK-
	Virgibacillus halodenitrificans	NEWKQRYYV <mark>FIRFL</mark> MSRYYNG-PSKI-
	Brevibacillus brevis	QAFLRFPYQ <mark>F</mark> F <mark>RFL</mark> VE <mark>K</mark> YDRQLDGA-
	Brevibacillus panacihumi	QAYLRFPYQ <mark>F</mark> F <mark>RFL</mark> ME <mark>K</mark> YVRQPVEY-
	Thermobacillus composti	RMMRDIPYLFMRFLVRREADSARDRAKGT-
	Paenibacillus larvae	MGYRHVPYQFVRFLMKRGERTELLMNKGV-
(Desulfotomaculum gibsoniae	RERSAAPYLLMQLLMRKQQELFREGVL-
	Desulfotomaculum ruminis	KEKGLVPYLFVQHLAQKKEELSRNGVL-
	Moorella thermoacetica	QEGEMAPYM <mark>FWQD</mark> FWRQRGIKKVNPSRAG-
	Desulfitobacterium dehalogenans	KEISSARITELROITHKKEELLHKGMM-
	Desulfitobacterium metallireducens	KEIASARITELRHLTRKKEELLRKGLM-
5	Carboxydothermus hydrogenoformans	RERVKNSFYELONLTYKEKILNEQKIL-
lia	Acetohalobium arabaticum	KENRNNIYILMRYLNQKKQRLKERKIL-
<u>ic</u>	Halobacteroides halobius	KEGKYTPYVLMQYIAKKKGQVLNRQVV-
tr	Thermoanaerobacter brockii	KEKKASAFLQMRDLFRKKAEFYK-KGLM
S	Thermoanaerobacter ethanolicus	KEKKASAFLQMRDLFRKKAEFYK-KGLM
10	Thermoanaerobacter siderophilus	KEKKASAFLQMRDLFRKKAEFYK-KGLM
\mathbf{O}	Thermoanaerobacter italicus	KEKKASVFLQMRDLFMKKAEFYK-KGLM
	Thermoanaerobacter mathranii	KEKKASVFLQM <mark>RDL</mark> FMKKAEFYK-KGLM
	Clostridium cellulovorans	SEYKTIAYVVMGDLMKKRVKFLK-KGFL
	Clostridium tunisiense	REKRRIAYIIMGYIIKKKEKLTK-RGYI
	Clostridium acetobutylicum	KEKGRMVYIVMGDIIRKKIIFLR-KGYI
	Clostridium tyrobutyricum	KENERIAYIIMGDIFKKKYKFIK-RGYI
	Clostridium Kluyveri	KENERTSYIIMGDIIKKKYKFIK-RGYI
	Clostriaium autoetnanogenum	KENERISYIIMGDIIRKRYKFIK-RGYI
	Clostridium Ijungdaniii	KENERISYIIMGDIIRKRYKFIK-RGYI

Figure S4. Alignment of SpoIVFB interdomain linker sequences. Representative sequences of *Bacilli* and *Clostridia* are shown from among 136 SpoIVFB orthologs. The *B. subtilis* sequence is boxed at the top with key residues numbered. Colors indicate conservation among sequences of 76 *Bacilli* (orange ≥90%, green ≥80%, teal ≤50%) or alternate conserved residues that guided substitutions made in *B. subtilis* SpoIVFB (red).

Figure S5. Effect of substitutions in the SpoIVFB interdomain linker during *B. subtilis* sporulation. The experiment was performed as described in the Figure 3 legend.

Figure S6. Purification of a SpoIVFB·Pro- σ^{K} complex. (A) Size exclusion chromatography UV absorbance profile. Pro- $\sigma^{K}(1-127)$ -His₆ and SpoIVFB-TEV-FLAG₂ E44Q were coexpressed in *E. coli*, subjected to cobalt-affinity purification, the bound fraction was concentrated and applied to a size exclusion column, and the absorbance at 280 nm was monitored during elution, resulting in a broad peak with a maximum at 12.5 mL. (B) SDS/PAGE of fractions from the size exclusion column. Fractions eluting at the indicated volumes were subjected to SDS/PAGE followed by Coomassie Blue staining. Peak fractions contained predominantly SpoIVFB and Pro- σ^{K} as judged by migration versus protein markers (M, molecular weight in kDa at left) and immunoblot (e.g., Fig. 4B, lanes NC).

Figure S7. Model of the SpoIVFB CBS domain bound to Pro- σ^{K} . The upper left panel shows the C chain of SpoIVFB bound to the Y chain of Pro- σ^{K} , as in the left panel of Figure 5B, except with most of the SpoIVFB membrane domain cropped. The C246 residue of SpoIVFB is labeled. The α helices of Pro- σ^{K} are numbered as in the right panel of Figure 5B. The upper right panel shows a different side view to illustrate the positions of three residues of Pro- σ^{K} involved in chemical cross-links (dashed lines) with C246 of SpoIVFB. The bottom right panel shows a top view to illustrate the positions of two other residues of Pro- σ^{K} that formed chemical cross-links with C246. In both right panels, only the C-terminal part of each protein is shown, beginning with residue 34 of Pro- σ^{K} and residue 221 of SpoIVFB. 34

246

102

90°-

38

221

99

270°

Figure S8. Model of the interaction between the SpoIVFB interdomain linker and residues 43-51 of Pro- σ^{K} . The left panel shows the Y chain of Pro- σ^{K} residues 34-122 in a similar orientation as in the right panel of Figure 5B, except rotated forward slightly. Only residues 201-224 of the C chain of the SpoIVFB linker are shown. Dashed lines indicate points of closest proximity (7 Å in each case) between the chains (distance between C α atoms of indicated residues). The right panel shows the back view.

Figure S9. Model of the interaction between SpoIVFB and residues 28-36 of $\text{Pro} \cdot \sigma^{\text{K}}$. The left panel shows the C chain of SpoIVFB residues 1-226 in a similar orientation as in the left panel of Figure 5B. Only residues 27-38 of the Y chain of $\text{Pro} \cdot \sigma^{\text{K}}$ are shown. Dashed lines indicate points of closest proximity (5-7 Å in each case) between the chains (distance between C α atoms of indicated residues). The right panel shows a different side view, with residues 1-78 and 147-197 of SpoIVFB removed to better show the points of closest proximity.

Figure S10. Model of the interaction between the SpoIVFB interdomain linker and residues 28-69 of Pro- σ^{K} . The upper left panel shows the C chain of SpoIVFB residues 198-226 as in the right panel of Figure S9. Residues 27-69 of the Y chain of Pro- σ^{K} are shown, with α -helix 1 labeled. Dashed lines indicate points of proximity (5-7 Å in each case) between the chains (distance between C α atoms of indicated residues). The upper right panel shows additional points of proximity (6-8 Å in each case). The lower right panel shows the same view with side chains added and space-filling atoms to illustrate packing. The lower left panel further illustrates packing.

Figure S11 Model of the interaction between the SpoIVFB CBS domain and residues 96-99 of $\text{Pro-}\sigma^{\text{K}}$. The upper left panel shows the C chain of SpoIVFB and the Y chain of $\text{Pro-}\sigma^{\text{K}}$ as in the upper right panel of Figure S7. Dashed lines indicate points of proximity (5-7 Å in each case) between the chains (distance between C α atoms of indicated residues). The upper right panel shows a similar view rotated slightly, with residues 221-226 and 248 to the C-terminal end of SpoIVFB removed to better show the points of proximity. The lower right panel shows the same view with side chains added and space-filling atoms to illustrate packing. The lower left panel further illustrates packing.

Figure S12 Variation of C α -based models after restrained-based modeling (gray lines), and the model selected for further discussion (tubes colored by chains). In front is a chain of SpoIVFB (blue) interacting with a chain of Pro- σ^{K} (yellow).