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Figure S1: Synchrony of electrical activation. Distribution of egg activation following electro-shock. The scale of the X-
axis is 18 minutes (displayed in seconds). Of the 400 eggs used in each experiment, ~70 were filmed per experiment in 
parallel with the collection of the time course. Images taken every 5 seconds (see Movies S1, S2, S3 and S4 filmed for 
each replicate; 14 frames/sec). The movies show de-jellied Xenopus eggs mostly oriented with the pigmented animal pole 
facing upward. The calcium waves and cortical contractions are visible. Of the ~250 eggs filmed across all replicates, only 
two failed to activate. The distribution of egg activation is shown above, assayed by the calcium wave (surface contraction 
wave) crossing the midpoint of the animal pole. Given the resolution of the movie, we conservatively estimate that all eggs 
which activate do so with a standard deviation of less than 15 seconds. Eggs that are inverted so the vegetal (i.e., white) 
side is facing upward are not quantified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Proteomics of fertilization in the Xenopus egg     Presler et al., 2017 

3 
 

 

 

 

Figure S2: Estimating a false discovery rate for protein loss. Principles and visualization of the FDR calculation. See 
Supplementary Methods for further explanation of the implementation to the full dataset with replicates.  
 
A) Plots to demonstrate the geometric distance measurements used in calculating false discovery rate. Here, an idealized 
10-element degradation vector (gray, mean normalized to match the experimental data) is shown. The Cosine distance of 
the experimental trends (blue, in this case, Cyclin B1) was measured to the idealized vector. The time sequence of the 
experimental trend was then iteratively randomized (red) and Cosine distances re-calculated each time.  
 
B) The cumulative distributions of distances for all proteins (experimental) and pooled randomized trends from the 10,000 
iterations. These distributions are used to calculate the FDR at a given cosine distance to the idealized vector 
(Randomized/(Experimental + Randomized) *100). Since the randomized values are pooled, we apply one cutoff to the 
entire dataset. Multiple hypothesis correction is therefore not required. 
 
C) Distribution of the correlation of the randomized values to the original time sequence. The original time sequence is “0, 
2, 4,..18min”, which is scrambled during the randomizations. We excluded any randomized sequence that was positively 
correlated with the original sequence (e.g., “0, 4*, 2*,...18min”, which is essentially identical to the original order). This was 
done to avoid overestimating the false discovery from randomly recreating the original order of the time series and 
counting this as a “false discovery.”  
 
D) Number of proteins identified as significantly decreasing from the distributions in S2B. The FDR is calculated by 
Protein ID, then combined by gene symbol afterward (i.e., we identify multiple “forms” of Cyclin B1, which may be splice 
isoforms of pseudoalleles, which are later averaged to one gene symbol). We identify 41 protein ID’s which significantly 
decrease (Table S1) which map to 29 unique gene symbols (Table S2). 
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Figure S3: Known APC/CCdh1 substrates are stable post-fertilization. Time series data of known targets of the 
APC/CCdh1 following egg activation. The substrates are stable (i.e., do not pass the FDR threshold of 1% for decreasing, 
see Fig. S2). Repeated gene symbols indicate multiple protein IDs, which are likely alloalles or splice variants. The 
proteins are CDC20, Plk1, Aurora A/B (see citations in main text), ANLN (1), Cdc6 (2), , CDCA3 (TOME1) (3), Ckap2 (4), 
Ect2(5), KIF18A, KIF2C, KIF4A, KIFC1(6), NUSAP1 (7), ORC1 (8), Ase1/PRC1 (9), Shugoshin (10), TPX2 (11), UBE2C 
(12). KIF22 (13) is the only substrate that shows some marginal reduction in abundance, but it does not pass our FDR 
threshold and was previously shown in the literature to not interact with CDC20.  
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Figure S4: Degradation and release of proteins at 1% FDR. Time series data of the 29 genes which significantly 
decrease at 1% FDR following egg activation. CCNB1, CCNB2, GMNN, FBX043 (Emi2), and PPTG1 (Securin) are known 
APC/C substrates. Blue trends decrease abundance in the egg. Red trends increase in the supernatant; if no red trend is 
shown, it was not detected in the egg media. These are further classified in Table S3. For ZP2, 3, and 4, the jagged 
decrease from the egg data is not seen in its appearance into the supernatant. Therefore, the noise in the ZP trends is 
consistent with a technical rather than biological explanation. It is not clear why ZP proteins are more prone to this noise 
than other released proteins. We suspect this is because the ZP proteins are released by proteolysis rather than 
exocytosis. This causes greater inconsistencies in the removal of ZP fragments from the egg surface during harvesting. 
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Figure S5: Sensitivity of label-free and multiplex TMT-MS3 methods.  
A) Histograms comparing the distribution of abundances of proteins detected by label-free (blue) and fractionated TMT-
MS3 (red) methods in the Xenopus laevis egg (all four replicates are pooled for the TMT distributions). The label-free 
method is the most sensitive technique available, but still does not detect the entire proteome. This is evident from by the 
fact that we can detect many more mRNA species via sequencing than protein species via MS (14). Additionally, there are 
proteins that are known to be expressed but are not detected in the label-free dataset (e.g., Axin). The fractionated TMT-
MS3 method used in this study to quantify the proteins captures a subset of the label-free distribution, but with substantial 
overlap.  
 
B) Plot comparing the percentage of proteins identified in the TMT-MS compared to the label-free as a function of 
concentration. The fractionated TMT data is essentially equivalent to 100nM, and at 50nM, ~95% of proteins identified 
with the label-free method are also seen with TMT-MS. All known APC substrates are at least 60nM. At 10nM, we detect  
50% of the proteins with TMT-MS that we do with label-free. Though detection is less reliable at these lower 
concentrations, EMI2 (10nM), for example, is still detected in 2 of the 4 replicates. The 40% overlap seen at 0.1 nM (-1 in 
log10) is due to under-sampling, as the numbers are very small at those concentrations.  
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Figure S6: Egg cortex time series imaging with electron microscopy. Thin sections of the outer membrane of the 
animal pole of Xenopus laevis eggs at 690x magnification (scale bar indicated in bottom right of figure). Examples of 
unfused and fused cortical granules are indicated with arrows in A and B. The vitelline membrane is not present in these 
images (See Supplementary Methods for experimental details).  
 
A) Outer membrane of the egg before activation occurs. No fused cortical granules are seen here.  
 
B) 75 seconds post egg activation.  
 
C) 90 seconds post egg activation.  
 
D) 10 minutes post egg activation. ~50-60% of cortical granules depicted have released their contents through fusion with 
the outer membrane. At this time, fused cortical granules appear either as invaginations of the membrane or as low-
density spheres (when the actual fusion event is not visible in the section).  
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Figure S7: Evidence that dephosphorylation causes specious increasing protein trends. A small number of proteins 
significantly increase after fertilization (Table S4) at 1% FDR. Rather than synthesis, this can occur on stable proteins 
because of the loss of a modification on a particular peptide. The unmodified form rises reciprocally due to mass 
conservation (i.e., the unmodified form is created as the modified is destroyed). Since the protein trends are the sum of all 
unmodified peptides trends, a large change in some peptides can give an apparent increase despite the stability of the 
other peptides (e.g., S7C).  
 
A) Times series of an unmodified peptide (blue) that increases in signal with matching a corresponding phospho-site 
residue (green) that decreases in signal for three of the proteins with apparently increasing proteins. This is direct 
evidence that the increasing signal is due to dephosphorylation rather than protein synthesis.  
 
B) Time series of 6 of the 7 proteins (blue line) which apparently increase that have multiple dephosphorylated sites 
(green) detected on the proteins. The top 3 are the same proteins as S7A, but with additional sites shown. For the bottom 
three we do not detect exact matches of reciprocal modified and unmodified peptides. Nevertheless, the multiple 
phospho-sites that are dephosphorylated for each protein is consistent with the phenomenon discussed in S7A. For the 
7th protein that increases (POLR2A, a RNA polymerase II subunit, see Table S4), we detect only one phospho-site, which 
is stable. However, as there are many other polymerases dephosphorylated in the dataset, it is likely POLR2A is 
dephosphorylated as well.  
 
C) All the peptides for NUP35 identified in the study. This is an example of how the unmodified peptides (one of them 
shown in S7A) are dynamic from the loss of a modification, while the other two reflect the true flat trend of the overall 
protein. In this case and several others, using the median value at each time point, or even the median fold change, would 
still show a specious increase, as multiple peptides are affected by the same phenomenon from the loss of a modification. 
Importantly, the same general principle that produces this artifact can occur with different forms multiply phosphorylation 
peptides (Fig. S14) and is also important to the phospho-stoichiometry calculation (Fig. S8-10, Supplementary Methods).  
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Figure S8: Graphical representation of the relationship of relative ratios to absolute phospho-forms. 
See Supplementary Methods for equations and term definitions.  
 
A) In an example with 2 phospho-forms (unmodified and single phospho) and two conditions, the MS data for the 
unmodified (P0) and phosphorylated (P1) forms is normalized to the reference time point 1 (Eq. 1 from Supplement 
Methods) and plotted as coordinates on the P0 vs P1 plane. The subspace defined by the point (1, 1) and the point 

 �𝑃𝑖
0

𝑃1
0  , 𝑃𝑖

1

𝑃1
1� (shown as a light blue line) is orthogonal to the vector containing the absolute values of P0 and P1 forms at the 

reference time point (Eq. 4, 5; i.e., the dot product is zero). The values of P0 and P1 are not known.  
 

B) The absolute values of the species [𝑃10 ,𝑃11] lay on a line with the slope of 𝑃1
1

𝑃1
0 passing through the origin. This can be 

seen graphically by normalizing the vector [𝑃10 ,𝑃11 ] by it first element, to give the vector �1, 𝑃1
1

𝑃1
0� shown in black. The P1/P0 

ratio is therefore the negative inverse of the slope of the line containing the points defined by the known ratios, and is 
sufficient to calculate stoichiometry (this step explained further Supplementary Methods).  
 
C) Demonstrating the graphical representation of an over determined system when the number of measurements is 
greater than the number of phospho-forms. Each additional condition gives another vector (or linear equation). In this 
case, ten conditions give 9 vectors from the reference condition. The solution to this system can be estimated with 
regression (i.e., fitting a line). See S9 for demonstration.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Proteomics of fertilization in the Xenopus egg     Presler et al., 2017 

10 
 

 
 
 

 
Figure S9: Calculating phospho-stoichiometry for multiplexed measurements. Visualization of how stoichiometry is 
solved for a single site with multiple time points.  
 
A) Example time series data of phospho-site stoichiometry of the residue 504 of the protein ENAH. The occupancy with 
95% confidence intervals (shaded) is shown in light blue.  
 
B) The same data, but plotting the unmodified (P0) and phosphorylated (P1) trends (blue and green, respectively) that are 
used to calculate the stoichiometry.  
 
C) Estimating stoichiometry for the whole time course. Each subplot is comparable how to the visualization in Fig. S8C.To 
obtain the P1/P0 ratio for the whole time course, the reference time point was switched and the analysis is repeated for 
each time point. The reference point (1,1) is plotted in black, while the rest of the data are plotted in grey. The optimal line, 
obtained with Total Least Squares regression, is shown in light blue. The 95% confidence intervals are obtained by 
bootstrapping at each time point and are plotted in gray. Note how the angle of the slope corresponds with the shifting 
stoichiometry over the time course. The negative inverse of these lines (i.e., orthogonal) gives the P1/P0 ratio and its 
confidence intervals (as in Fig. S8B).  
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Figure S10. Bootstrapped confidence intervals compared to Willassen confidence intervals. Comparison of two 
different methods for calculating confidence intervals. Optimal estimate is shown in red, upper confidence intervals are 
shown in violet, and lower confidence intervals in cyan. For confidence interval validation, we minimized in the X and Y 
axis separately. Taking the wider confidence interval of the two gives an over-estimate of the 95% confidence interval of 
regressing in both axis (15, 16) (i.e., the Willassen solution). Bootstrapping confidence intervals are almost always 
narrower than the overestimate from the Willassen solution, as expected. The Willassen solution is only narrower when 
the fit of the line is determined by only one or two dynamic points. A very different slope results in the situation where 
these points are not sampled during bootstrapping, widening the resulting distribution. For the Willassen calculation, the 
confidence intervals are unaffected by one or two points defining the line as there is no subsampling.  
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Figure S11: Panel of kinase and transcription factor phospho-occupancy dynamics. Time series of phospho-site 
occupancy dynamics on kinases (cyan) and transcription factors (red) following egg activation. Shaded areas are 95% 
confidence intervals.  
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Figure S12: Phosphatase treatment enables stoichiometry calculation for stable sites.  
A) Experimental schematic for the phosphatase treatment experiments. The time course was repeated as in Fig. 1B. The 
12 and 16 minute time pointes were skipped so the experiment could be performed with one TMT 10plex. Replicates of 
the 0 and 18 min time points were collected and phosphatase treated in parallel with the protease digestions, multiplexed 
with the samples, and then analyzed with MS (see Methods). Given the multiplexing step, it was important to use a 
temperature-sensitive phosphatase that could be inactivated with heat treatment so untreated samples would remain 
unaffected after mixing without adding a purification step.   
 
B) Visualization of data on the unmodified vs phosphoform plane for a stable site as in Fig. 4B. The bold point is the 
normalized reference time point (see Fig. S8) and the cyan points indicate phosphatase-treated conditions. With low 
dynamics, perfect data would collapse onto a single point, rather than forming a line. Noise will cause scatter (see inset), 
but no clear line (as in Fig. S8/9) will be formed. The phosphatase treated conditions allow for reliable minimization, 
though the fit is defined nearly exclusively by these two points.  
For the confidence of the untreated conditions, the noise dominates when the phosphatase-treated conditions are not 
sampled during the bootstrapping. This can lead to two qualitatively similar stable sites giving very different confidence 
interval widths in the untreated conditions. For example, in perfect data, even very small fluctuations between the P0 and 
P1 forms are expected to be reciprocal to satisfy the conservation constraint. A “noisy” stable trend would have small 
fluctuations in P0 and P1 that change in the same direction. When the phosphatase conditions are not sampled during 
bootstrapping, the fit is extremely sensitive to this type of noise. 
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Figure S13: Intermediate occupancies are preferentially depleted with narrow confidence interval cutoffs.  
A) Cumulative distributions of the occupancies at 0 minutes for phospho-site trends which increase (purple), decrease 
(green), or are stable (black) (Fig. 5D) with no cutoff confidence interval width (left) and a very stringent cutoff of +/- 5% 
(right). This demonstrates that narrow confidence interval cutoffs bias the distributions against intermediate occupancies. 
This is because the confidence intervals are limited to 0 and 100 (values outside this range are meaningless). Sites with 
intermediate occupancies have more potential for wide confidence intervals as they are less restricted by this limit. This is 
a problem for both dynamic and stable sites. However, because the estimate for stable sites is dominated by noise of the 
untreated conditions (see Fig. S12), the stable sites are particularly susceptible to this systematic bias against 
intermediate occupancies when applying cutoffs.  
 
B) To demonstrate this bias, a scatterplot of the initial occupancy of a phospho-site at zero minutes is plotted against the 
width of the confidence interval for all sites where stoichiometry was calculated. The stable sites indeed show many sites 
with intermediate occupancies, but these sites often have more error (i.e., lie in the top half of the plot).  
 
C) The same data as B is plotted as a bar graph showing the fraction of each trend per unit occupancy. Comparing the left 
and right panels, the intermediate occupancies for stable sites (black) are depleted at a higher fraction relative to the other 
trends (purple and green) if the confidence interval thresholds are set too aggressively. We therefore set the threshold for 
this study at +/-25%.  
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Figure S14: Reciprocal trends occur between single and multi-phosphorylated forms of peptides. Time series of 
proteins with multi-site phosphorylation that show reciprocal trends, labeled with the position of the modified residues. The 
single form is shown in green, while the first multi-site species (i.e., a double site) are shown in orange, and then the 
second in blue (e.g., triple sites) if present. These multi-sites (also called “composite sites” in the data) will always contain 
the single site shown. Just as with the reciprocal trends between the unmodified P0 and P1 forms, an otherwise non-
dynamic P1 form can appear to rise in abundance as the doubly phosphorylated P2 form is dephosphorylated (or vice 
versa) due to conservation. If the P0 form is detected, it is possible to calculate the site stoichiometry of each form (Fig. 
4C, Fig. 5B), which is helpful for interpreting the trends. However, when interpreting relative trends, it is important to 
recognize that the true direction may be difficult to interpret for single sites that have multiple other sites on the same 
peptide. We detect this phenomenon for ~10% of the dynamic phospho-sites, which we correct for during clustering by 
discarding the single form and keeping the most-modified form (i.e., if the single form is phosphorylated the multi-site 
should also rise, whereas if the double site is dephosphorylated, the non-dynamic single site will increase due to 
conservation).  
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Figure S15: Phospho-site dynamics on selected cell cycle proteins. Time series of phospho-site relative abundance 
on known cell cycle regulators or targets. Site number indicated in title. A) Greatwall Kinase, B) WEE1 Kinase, C) 
INCENP, D) ENSA (PP2A inhibitor).  
 
 
 
 
 
 



Proteomics of fertilization in the Xenopus egg     Presler et al., 2017 

17 
 

 
 
 
 
 

 
 
Figure S16: Nucleoporins show differential dephosphorylation corresponding to nuclear pore sub-complexes. 
Time series of nucleoporin phospho-site dynamics plotted by their respective sub-complexes. Many of the proteins have 
multiple phospho-sites, indicated by multiple entries in the legend. The phospho-occupancy plots for the subset of these 
sites that are available are shown in Fig. 6E. The slower dephosphorylation (~10 min half time) of the core scaffold (e.g., 
NUP188) and cytoplasmic components is consistent with their later recruitment. The fast dephosphorylation (~2-5 min half 
times) of inner basket/nuclear ring components (e.g., NUP153) is consistent with their early roles in NPC assembly of 
binding chromatin and nuclear envelope association (17). An exception is that trans-membrane nucleoporin recruitment is 
a secondary step, yet nearly all the sites that we detect in this region show fast dephosphorylation. Another exception is 
the scaffold component NUP107, which is recruited early, but shows slow dephosphorylation.  
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Figure S17: K-means clustering of phosphorylation dynamics. Time series of phospho-site cluster dynamics, 
including a 7th cluster of “noisy” trends excluded for display purposes only. These are included in all statistical analyses. 
Artifacts from single site dynamics are removed from clusters (as shown in Fig. S14). See Methods for further explanation 
of collapsing the clustering. Data provided in Table S8. 
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Figure S18: K-means clustering of protein dynamics. Time series of protein cluster dynamics, including a 4th cluster of 
“noisy” trends excluded for display purposes only. These are included to all statistical analyses (e.g., the FDR analysis). 
See Methods for further explanation of clustering. Data provided in Table S7.   
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Supplementary Methods 

 
Principle of stoichiometry calculation 
 Here we demonstrate the calculation of phospho-site stoichiometry from relative trends for an arbitrary 
number of experimental conditions and phospho-forms. The following set of equations show the generalized 
geometric relationship between the measured relative ratios of phospho-form change and their unknown 
absolute values. Let the total number of species of a peptide be M. The species are the forms P, consisting of 
the phosphorylated residues j = 0,1, 2, ... M-1, where j = 0 is the unmodified form. The ratios of change are 
the TMT-MS data from any experimental condition i normalized by the data at the reference condition, set here 
as i = 1 (Eq. 1). Let the ratio of change of the total protein T for a given peptide be 𝒄𝒊,𝟏 (Eq. 2). This is either 
measured directly, or must be assumed as 1. 
 

Measured:                                     
𝑃𝑖0

𝑃10
 ,
𝑃𝑖1

𝑃11
 , … ,

𝑃𝑖
𝑗

𝑃1
𝑗                                                                                        (1) 

 

Measured:                                     𝑐𝑖,1 =  
𝑇𝑖
𝑇1

                                                                                                  (2) 

 
Between any condition and the reference condition, the sum of all phosphorylated forms is either equal or 
related by the change in protein level 𝒄𝒊,𝟏 (Eq. 3).  
 

Conservation constraint:       � �𝑃1
𝑗

𝑀−1

𝑗=0

� 𝑐𝑖,1 =  �𝑃𝑖
𝑗

𝑀−1

𝑗=0

                                                                       (3) 

 
Substituting Eq. (1) and Eq. (2) into Eq. (3) yields Eq. 4.  
 

Eq. (1), (2) in Eq. (3):              0 = �𝑃1
𝑗 � 

𝑃𝑖
𝑗

𝑃1
𝑗 − 𝑐𝑖,1�

𝑀−1

𝑗=0

                                                                          (4) 

 
Eq. (4) can be rearranged and written in vector form as Eq. (5).  
 

Eq. (4) in vector form:            0 =  [𝑃10,𝑃11, …𝑃1𝑀−1] · ��
𝑃𝑖0

𝑃10
,
𝑃𝑖1

𝑃11
, … 

𝑃𝑖𝑀−1

𝑃1𝑀−1
 � − 1�⃑ 𝑐𝑖,1�                      (5) 

 
 Eq. (5) shows that the vector of absolute values [𝑃10,𝑃11, …𝑃1𝑀−1] is orthogonal to the M-1 dimensional 

subspace containing the measured relative values��𝑃𝑖
0

𝑃1
0 , 𝑃𝑖

1

𝑃11
, … 𝑃𝑖

𝑀−1

𝑃1𝑀−1 � − 1�⃑ 𝑐𝑖,1�, as the dot product is zero. When 

M = 2, this subspace is a 1-dimensional line containing the point (1, 1) scaled by 𝑐𝑖,1 (Fig. S8A). Since our aim 
is to solve for stoichiometry, it is sufficient that all possible absolute values lie on a line passing through the 
origin with a slope of 𝑃1

1 
𝑃1
0  (for intuition, see Fig. S8B). Stoichiometry is calculated by rewriting 𝑃11

𝑃1
0+𝑃11

 in terms 

of 𝑃1
1 
𝑃1
0  , which is (𝑃1

1 
𝑃1
0  / (1 + 𝑃11 

𝑃1
0)). For m > 2, this subspace is an M-1 dimensional plane, the orthogonal vector to 

this plane that is used to calculate the stoichiometry.  When the number of conditions is greater number of 
conditions is greater than the number of species (N > M), the system is over-determined (Fig. S8C). In this 
case, the unique M-1 dimensional subspace can be estimated by minimization (details discussed below). 
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Implementation of the regression-based stoichiometry calculation  
 We provide an algorithm in MATLAB to calculate the site stoichiometry of a single phospho-site when 
multiple conditions create an over-determined system (https://github.com/marcpresler/OccupancyMS). For the 
purposes of this study, we assumed that proteins were stable, as the data (Fig. 1C,D) show that protein 
dynamics are overwhelmingly flat during egg activation (i.e., 𝑐𝑖,1 = 1). The main functions are to 1) estimate the 
M-1 dimensional subspace (Eq. 5) through minimization and 2) establish confidence intervals for that estimate. 
For simplicity, we initially discuss the case where M = 2. Input to the algorithm is quantitative mass 
spectrometry data for a P0 and matching P1 peptide for all measured conditions. The data for each species is 
normalized to the initial reference condition (see Eq. 1). The solution is the stoichiometry for that reference 
condition. The data can be visualized as a P0 vs P1 plot that has one point per condition (Fig. 4B). Because of 
the normalization, the reference condition will lie at the point (1, 1) (see Eq. 5, Fig. S8), scaled by 𝑐𝑖,1. When 
the number of conditions N = M, minimization is not necessary as the subspace is uniquely defined (in this 
case, a line). However, with more conditions, there is no longer a single solution (i.e., the system is over-
determined). We can estimate the most likely subspace fitting a linear model to the data by minimizing the total 
least-squares residuals (Fig. 4B). We chose total least-squares (TLS) regression because we expect 
measurement errors in both the P0 and P1 ratios. To satisfy the orthogonal relationship defined in Eq. 5, the  𝑃1

1 
𝑃1
0  

ratio is the negative inverse of the minimized slope of the subspace. Once obtained, we calculate stoichiometry 
(see end of previous section) and express in terms of percent occupancy of the modified residue (or the 
stoichiometry x 100). A steep fit slope will give a low occupancy because the orthogonal P1/ P0 ratio is 
therefore small, while a shallow fit slope gives a high occupancy, as the orthogonal P1/P0 ratio is large. To 
obtain the stoichiometry for the rest of the conditions, the reference condition is switched and the analysis is 
repeated until the all conditions have been solved (see Fig. S9C). 
 For M > 2, the M-1 dimensional subspaces are estimated using Principle Component Analysis (PCA), 
which provides a method to minimize the total least squares residuals in an arbitrary number of dimensions 
through Singular Value Decomposition. The last principle component is the orthogonal vector to the M-1 plane. 
The phospho-form ratios are obtained by projections onto the P0 dimension or by finding the vector contained 
by the span of the orthogonal vector whose elements sum to 1 (satisfying Eq. 3). The TLS and PCA package 
(18) is adapted from File ID: #31109 on MathWorks File Exchange. Note that for M > 2, this approach assumes 
that we can detect all phospho-forms significant to the calculation. For example, a doubly phosphorylated 
species (M=4) will theoretically have two single forms. We typically detect only one of these forms and must 
calculate in M =3. This assumes the other form does not exist, or that it has a very small occupancy.  
 
Calculating confidence intervals for the stoichiometry estimates  
 To aid in interpreting the quality of the estimated stoichiometry calculation, we sought to calculate a 
confidence interval of the minimized slope coefficient. Standard techniques for calculating confidence intervals 
rely on normally distributed error (19), which does not hold for total least squares minimizations. We therefore 
used bootstrapping (20) to estimate the confidence interval of the minimization. Specifically, the confidence 
interval is calculated from the distribution of slopes that is produced by iteratively fitting data subsampled with 
replacement. We used the MATLAB function ‘bootci’ and the bias corrected and accelerated percentile method 
to calculate confidence intervals. We performed 10,000 iterations per condition. For validation, we calculated 
an upper-bound estimate of the confidence interval by regressing against error in the Y-axis and then the X-
axis separately, and taking the wider confidence interval of the two for each axis (15, 16). As expected, the 
bootstrapped confidence intervals were nearly always narrower than the upper-bound estimate (Fig. S10). 
Rarely, the subsampling with replacement will result in only one condition selected. In this case, fitting is not 
possible, so a random value between 0 and 100 is assigned. If a trend has repeated values in either the P0 or 
P1 forms (e.g., multiple zeros), a line with the slope of 0 or undefined can occur if only these points are 
subsampled during the bootstrapping, and fitting will fail. In these cases, the code returns either 0 or 100% 
occupancy automatically, depending whether the slope is undefined or zero, respectively. For the data where 
the initial best-fit slope results in an occupancy estimate that falls outside the 0 to 100% bounds, the 
confidence intervals are automatically set to 0 and 100% to reflect the high amount of error. This bootstrapping 
approach scales to n-dimensional space for multi-phosphorylated species. 

https://github.com/marcpresler/OccupancyMS


Proteomics of fertilization in the Xenopus egg     Presler et al., 2017 

22 
 

 
Additional considerations  
 Corresponding P0 and all Pj forms must have a matching Protein ID (i.e., same gene symbol and 
isoform, if relevant) and an identical sequence to the peptide used to quantify the phospho-site occupancy. A 
given phospho-site may contain several peptides (e.g., missed cleaved species). Any of these peptides are 
used as a match for the P0 species and are summed. The user must make sure that the each condition is 
appropriately normalized before import. Because of reference condition normalizations (Eq. 1), any value of 0 
in the data is replaced with 1E-9 as to not result in undefined ratios. All replicates are averaged into one trend. 
 
 
Pseudo-code for computing occupancy with confidence intervals from multiplexed-MS data 
 
Load data 
  
 Load the .xlxs or other file containing TMT signal for phospho sites and matched unmodified peptides 
 
For each site in the data set:  
  
 Replace any zeros with 1e-9 
  
 For each condition: 
  %% Calculate occupancy value %%  
  Set the current condition as the reference 
  Normalize phospho site and unmodified data to the reference 
  Pass ratios to total least squares regression function and fit slope 

Calculate occupancy from negative inverse of slope  
 
 End 
 
 %% Calculate confidence interval for estimated occupancy value %% 

If, for all conditions, the best-fit occupancy is between 0 and 100 
   For each condition 
  Check for repeated values within phospho site and unmodified peptide data and flag  

   For each bootstrap iteration 
    Randomly choose conditions with replacement for fitting 
    Check that the same condition has not been chosen every time. If it has, choose 
random integer between 0 and 100 and move to next iteration 
    Create new input values using the conditions chosen above 

(If flag is present, check to make sure the new input does not define a line with 
infinite or zero slope and if so set occupancy to 0 or 100, respectively and move to next iteration) 

Pass new input ratios to total least squares regression function and fit slope 
Calculate occupancy from negative inverse of slope  

   End 
Use the ‘bias corrected and accelerated percentile method’ determine the upper 

and lower 95% confidence intervals  
  End 

Else 
  Report upper and lower confidence interval bounds as 0 and 100, respectively, for all conditions  
 

End  
End 
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False discovery rate (FDR) calculation 
 The approach to calculate the FDR is visualized in Fig. S2. In brief, the experimental distances are 
measured to a 10-dimensional, idealized degradation vector and then randomized iteratively. In practice, the 
data were measured in up to four replicates with ten conditions each. To account for this, all protein trends 
were represented as 40-dimensional vectors. The idealized vector was repeated four times to match this. 
Proteins were ranked according to their distance from the repeated idealized vector by Cosine distance. While 
non-linear degradation trends exist in the data, they are much closer to the idealized vector than the flat trends. 
Thus, they are still ranked highly, with a small underestimation in distance. If a protein was missing from a 
given replicate, the mean trend of that replicate (which is essentially flat) was substituted for the missing data 
in the 40-dimensional experimental vector. The data were then randomized 10,000 times with the cosine 
distance measured each iteration. The cumulative distributions of distances for all proteins (experimental) and 
pooled randomized trends were used to calculate the FDR at a given cosine distance as the idealized vector, 
or (Randomized/(Experimental + Randomized)) *100. Since the randomized values are pooled we apply one 
cutoff to the entire dataset, so multiple hypothesis correction is not required. The FDR is calculated for each 
Protein ID (Table S1), and then combined by gene symbol afterward (Table S2). 
 
Phospho-peptide enrichment 
 We chose to multiplex peptides and enrich one on column to improve the data quality by eliminating 
variability that comes from multiple parallel enrichment columns.  There is a tradeoff of decreased yield and 
therefore depth, as it is not economical to label more than a few milligrams of material. We used 2.5-4 mgs of 
TMT-labeled peptides per replicate. These were desalted and dried down into a pellet, which was resuspended 
in Binding Buffer (85% 11.1M Lactic Acid, 50% acetonitrile, pH ~1.5-2.0) at 10 mg/mL and spun for 30 minutes 
at 21K RCF at RT. 5 μm Titanium Dioxide microspheres (GL Sciences 5020-75000) were added at 8:1 peptide 
to bead ratio (by weight) and washed 3X with 1 mL of Binding Buffer. Peptides were added to dried Titanium 
Dioxide beads and incubated for 1 hr at RT with constant agitation. PTFE membrane filters (0.2 μm low-
binding hydrophilic, Millipore UFC30LG25) were washed three times with Binding Buffer, and then used to filter 
the TiO2 microspheres, spinning at no more than 10K rcf until dryness. The first flow-through was used for a 
second serial enrichment as described below (A and B enrichments). The final flow-through was saved and 
used as a protein replicate. The A and B enrichments were each washed twice with two column-volumes of 50% 
acetonitrile, 0.1% Trifluoroacetic Acid and then twice with 25% acetonitrile, 0.1% Trifluoroacetic Acid. 
Phosphopeptides were eluted from the beads 3 times with 1 column volume of Elution Buffer (200mM of 
KH2PO4, pH 10) each. Beads were incubated in Elution Buffer for 5 minutes with occasional agitation before 
spinning the beads to dryness; the 3 eluates were combined. The A and B enrichments remained separated. 
All samples were acidified with 10% formic acid and 0.5% TFA and each desalted on C18 SepPak. We found if 
more than ~15 mg of beads were used in one filter, the specificity of the enrichment suffered as the column 
clogs and causes the washes and elution to be less efficient. Therefore, for the second two experiments, we 
split the sample onto 10 columns processed in parallel for the A enrichment. Since the peptides are pre-labeled 
and already multiplexed, the measured peptide ratios are unaffected by splitting the samples. For the B 
enrichment, the washing steps were performed in a single Eppendorf tube and the beads were washed by 
pelleting (a practical step to reduce the use of filter tubes). The A and B enrichments and the flow-through were 
desalted again. A typical yield of 50-80 μg of peptides eluted from the column for the A and B enrichments 
combined, with a median specificity of ~80% between biological replicates. The flow-through sample was 
fractionated with HPLC as in the main text. For the enriched samples, peptides were subjected to an offline 
Strong Cation Exchange fractionation adapted from Dephoure and Gygi (21). Peptides were re-supsended in 
Buffer A (7mM KH2PO4, pH 2.65 and 30% ACN) and loaded onto 20um, 30 angstrom PolySulfoethyl A beads 
(Nest Group, BMSE2003). Salt cuts were made by mixing appropriate ratios of Buffer A with Buffer B (7mM 
KH2PO4, pH 2.65, 30% ACN, and 350 mM KCl) for Enrichment A: 0, 5, 10, 20, 40, 60, and 350mM, for 
Enrichment B: 0, 5, 10, 40, 350. Fractions were desalted on STAGE tips and analyzed by mass spectrometry.  
 
EM imaging time series 
 Eggs were prepared and electro-activated as described in the main text. Time points collected were 0 
sec, 8 sec, 15 sec, then at 15 second intervals until 105 seconds, then 2 min, 4 min, and 10 min. 8 sec time  
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point was the earliest condition we were able to collect. 3-5 eggs were collected in 200 μL of volume with a cut 
pipette tip. The eggs and buffer were added to 2X fixative solution (see below) and quickly mixed to final 1X 
concentration. We are confident the fixation occurred quickly at the cortex, where we focused our imaging. 
Eggs were fixed with 3% gluteraldehyde in 0.1X MMR for 30 minutes. The fixed eggs were cut and the animal 
and vegetal poles separated and placed into fix in separate tubes to maintain orientation in later steps. In most 
cases, halving the eggs led to the loss of the vitelline membrane, and the extracellular morphology is therefore 
not present in the images. Eggs were rinsed 2 times in 0.1X MMR and 3 times in 0.05M cacoydylate buffer pH 
7.0. They were then post-fixed with 1% osmium in 0.8% K3Fe(CN)6 in cacodylate buffer on ice in a fume hood 
for 1 hour (22). They were then washed 3 times with cacodylate buffer and 2 times in distilled water prior to 
staining overnight in 1% aqueous uranyl acetate in the dark. Samples were washed in distilled water prior to 
dehydration in an ethanol series using the progressive lowering of temperature method followed by exchanges 
of 100% ethanol and propylene oxide at room temperature (23). Infiltration was done in 2:1, 1:2 mixtures of 
propylene oxide epon araldite for 1 hour each step followed by 100% epon araldite for 2 hours. Samples were 
embedded and polymerized at 65°C for 48 hours. The animal poles of the eggs were thin-sectioned on a 
Reichert Ultracut S microtome and the sections viewed on a Technai G2 Spirit Bio TWIN Transmission 
Electron Microscope and imaged with an AMT 2k CCD camera. 
 
Data normalization 
 Every protein or phospho-site was required to have a summed TMT Signal to Noise value across the 
ten TMT channels of greater than or equal to 386 on the Thermo Fusion or Lumos, or 189 for the Orbitrap 
Elite. Each condition was then normalized to the condition median to correct for pipetting errors. Each trend 
was then normalized to its mean. Replicates trends were averaged. For proteins and phospho-sites that 
appear in the phosphatase-treated experiment, the 12 min and 16 min time points are missing. In this case, 
these time points are replaced by averaging the two flanking conditions. For the supernatant experiments, 
median normalization per time point is not appropriate, as the time series are not expected to be flat. We 
therefore estimated an accumulation curve and normalized each trend to this curve. Similarly, median 
normalization is not appropriate for the phosphatase treated samples on the phospho-level as the signal is 
expected to be lower than the rest for these conditions. We normalize by the mean of the averages of all 
untreated conditions. This correction is unnecessary on the protein level for the phosphatase-treated 
conditions, as the majority of proteins are not affected by the treatment.    
 
Establishment of absolute changes of protein and phosphorylation level 
 Proteins were matched by gene symbol to our previous dataset of protein abundance in the Xenopus 
egg. For the protein loss, the abundance of candidates that passed the 1% FDR threshold were multiplied by 
the fold change from the first condition, which is the unactivated egg that is equivalent to the sample used in 
the previous study. Securin was not seen in our previous absolute abundance data set. We estimated its 
abundance from its stoichiometric binding partner, Separase. The rates of degradation for the known cell cycle 
targets were calculated with a linear fit using Matlab “polyfit” function. Confidence intervals were calculated 
using File ID: 39126 on The MathWorks File Exchange. For obtaining absolute values of phospho site, the 
same procedure was followed for proteins for which we could estimate phospho-stoichiometry. In this case, the 
abundance was multiplied by the percent occupancy at each time point.  
 
Estimating maximal degradation rates of the APC/Proteasome  
 The overall rate of ubiquitination-dependent degradation is dependent on the rates of ubiquitination, 
deubiquitination, and proteasome reaction. It is difficult to estimate the Kcat for the APC or deubiquitination 
activity. However, we can approximate the rate of the proteasome reaction. We estimate 1/ Kdegradation as ~80 
seconds, given that 1/ Kdegradation = N x (1/ ([Proteasome] x Kon) + 1/Kcat. N, number of times a substrate must 
bind before degradation occurs, is ~6; Kon was measured at ~105 M−1 s−1; Kcat is ~20 seconds per substrate 
bound (24). The proteasome concentration is ~1μM in the frog egg (14). For [SubstrateUbiq], though we cannot 
infer from rates 1 and 2, we can estimate that 1% or at most 10% of the substrate concentration is modified at 
steady state (25). The total concentration of known APC substrates is ~400nM, therefore [SubstrateUbiq] = 4-40 
nM. The rate of degradation is ~3-30nM /min (or [SubstrateUbiq] / Kdegradation). Our estimated rate of degradation  
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rate from the data is ~14 nM/min, or 150 pg/min (Fig. 2A), and the original concentration estimates contain ~2 
fold error (14). Thus, with these parameters, an estimate of the upper bound of the degradation rate overlaps 
with the range measured from the data.  

K-means clustering and multi-site artifact correction  
 K-means clustering was implemented in MATLAB using the ‘kmeans’ function with K = 56, which was 
chosen because we found it gave stable clusters. The analysis was performed on the mean normalized, 
replicate-averaged data for both protein and phosphorylation data. The 56 clusters were manually collapsed 
into 7 clusters for phosphorylation and 4 clusters for the protein that qualitatively represented the data. The last 
cluster was reserved for sites that were consistently clustered individually, unstably, or into clusters with less 
than 10 protein/sites. For the purposes of display, these are not included in Fig. 1 but are provided in Fig. S17 
and Fig. S18 and were included in any statistical analyses. These cases constitute <1% of the data. The 
modified Waterfall plots in Fig. 1 are normalized to the first time point and ordered by their cluster and then 
then ascending within each cluster by the value of the last time point. For the phosphorylation trends, we 
corrected for possibly misleading trends of single sites with corresponding composite sites. A double site and 
corresponding single site can often show the same reciprocal behavior as shown between unmodified and 
singly modified species (see Fig. S14). Therefore, a trend that appears as phosphorylation is really 
dephosphorylation of the double form. To avoid being misled by this trend, we systematically identified single 
sites with reciprocal trends to their corresponding composite sites (as evaluated by a Spearman correlation of 
<-0.5). These sites were removed from the analysis, and the most-modified composite site was kept, as this is 
the form most likely to give the true direction of the sites. This correction totaled ~50 dynamic sites. This 
phenomenon has been previously discussed in the literature (26).   
  
Motif enrichment analysis  
 Using localized sites with possible artifacts from reciprocal trends removed, we evaluated the 
enrichment of various motifs -S#/T#-P- or -RxxS- using regular expression searches in each cluster discussed 
above and in Fig. 1E. A p-value was calculated with the Fisher’s exact test (27).  
 
Gene set enrichment analysis  
 Gene Symbols classified by their artifact corrected K-means clusters were used for gene set 
enrichment analysis performed with WebGestalt (28). Enrichment was assessed with the hypergeometric test, 
and multiple-hypothesis testing correction was performed with the Benjamini-Hochberg procedure (29).  
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