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SUPPORTING INFORMATION (SI) APPENDIX 

1 GPDC values by EEG frequency band 
 

1.1 Experiment 1 : Video 

Shaded connections were not significantly above surrogate threshold (BH FDR-corrected at p<.05). See Section 10 for surrogate analysis. 

Table S1 – Experiment 1 GPDC values by EEG frequency band (mean in bold, SD in italics) 

 Across Individuals Within Individuals 

Adult -> Infant Infant -> Adult Infant -> Infant Adult -> Adult 

L  R  L  R  L R L R 

L R L R L R L R R L R L 

T
h

et
a
  

(3
-6

 H
z)

 

Direct 
0.076 0.082 0.087 0.090 0.068 0.067 0.071 0.070 0.135 0.134 0.065 0.078 

0.011 0.016 0.014 0.008 0.009 0.008 0.008 0.009 0.014 0.018 0.006 0.006 

Indirect 
0.076 0.082 0.081 0.084 0.069 0.075 0.067 0.068 0.137 0.135 0.066 0.065 

0.011 0.015 0.013 0.007 0.007 0.011 0.007 0.007 0.013 0.017 0.007 0.010 

Direct-

Oblique 

0.079 0.084 0.090 0.086 0.067 0.068 0.064 0.067 0.141 0.138 0.063 0.078 

0.013 0.012 0.012 0.012 0.006 0.007 0.007 0.008 0.016 0.014 0.006 0.009 

Surrogate 
0.065 0.068 0.074 0.077 0.068 0.069 0.068 0.069 0.118 0.114 0.057 0.062 

0.004 0.005 0.006 0.008 0.003 0.003 0.003 0.003 0.011 0.010 0.001 0.001 

A
lp

h
a
 

(6
-9

 H
z)

 

Direct 
0.078 0.088 0.091 0.094 0.043 0.045 0.045 0.045 0.138 0.136 0.044 0.055 

0.012 0.015 0.016 0.012 0.004 0.005 0.007 0.005 0.019 0.019 0.005 0.005 

Indirect 
0.080 0.087 0.085 0.091 0.043 0.048 0.042 0.045 0.140 0.136 0.043 0.043 

0.011 0.016 0.017 0.010 0.005 0.006 0.003 0.006 0.018 0.019 0.004 0.006 

Direct-

Oblique 

0.084 0.088 0.096 0.095 0.042 0.045 0.041 0.045 0.138 0.135 0.043 0.048 

0.011 0.013 0.011 0.017 0.004 0.004 0.005 0.006 0.017 0.019 0.005 0.005 

Surrogate 
0.071 0.075 0.081 0.085 0.042 0.044 0.042 0.044 0.119 0.115 0.037 0.039 

0.006 0.007 0.008 0.010 0.002 0.002 0.002 0.002 0.015 0.014 0.001 0.001 
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1.2 Experiment 2 : Live 

Shaded connections were not significantly above surrogate threshold (BH FDR-corrected at p<.05). See Section 10 for surrogate analysis. 

Table S2 – Experiment 2 GPDC values by EEG frequency band (mean in bold, SD in italics) 

 

 

 

 Across Individuals Within Individuals 

Adult -> Infant Infant -> Adult Infant -> Infant Adult -> Adult 

L  R  L  R  L R L R 

L R L R L R L R R L R L 

T
h

et
a
  

(3
-6

 H
z)

 

Direct 
0.072 0.071 0.070 0.072 0.068 0.060 0.067 0.068 0.100 0.110 0.075 0.077 

0.025 0.026 0.023 0.028 0.019 0.009 0.019 0.017 0.032 0.038 0.021 0.020 

Indirect 
0.072 0.064 0.068 0.066 0.061 0.064 0.066 0.061 0.100 0.106 0.073 0.080 

0.022 0.017 0.019 0.019 0.017 0.012 0.015 0.011 0.025 0.033 0.018 0.022 

Surrogate 
0.058 0.058 0.059 0.059 0.059 0.058 0.059 0.060 0.074 0.075 0.056 0.057 

0.012 0.010 0.013 0.012 0.010 0.008 0.010 0.007 0.012 0.013 0.009 0.009 

A
lp

h
a
 

(6
-9

 H
z)

 

Direct 
0.075 0.077 0.072 0.080 0.042 0.037 0.041 0.041 0.101 0.104 0.049 0.048 

0.022 0.029 0.027 0.034 0.010 0.005 0.011 0.008 0.038 0.038 0.014 0.012 

Indirect 
0.072 0.066 0.069 0.066 0.037 0.041 0.039 0.038 0.100 0.107 0.048 0.051 

0.024 0.027 0.025 0.023 0.010 0.010 0.007 0.008 0.035 0.039 0.014 0.014 

Surrogate 
0.061 0.062 0.061 0.062 0.035 0.035 0.035 0.036 0.073 0.073 0.034 0.034 

0.019 0.018 0.020 0.021 0.005 0.005 0.005 0.004 0.024 0.026 0.005 0.004 
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2 Infant vocalisation analysis and correlations with neural connectivity 
 

Infants’ vocalisations were manually coded from videos recorded during the experimental 

session according to Oller’s [1] infraphonological acoustic classification system. This coding 

scheme incorporates acoustic features (such as fundamental frequency and formant transitions) 

with qualitative descriptors (e.g. phonetic categories) to distinguish between four categories of 

vocalisations : quasi-resonant vowel nuclei, fully-resonant vowel nuclei, marginal syllables and 

canonical syllables. The infants in both studies (median age of 8/8.5 months) were expected to 

produce all four categories of vocalisations. The total mean number and (utterance) duration of 

infants’ vocalisations in each experiment and gaze condition are shown in Table S3.  

Table S3. Mean number and duration of infants’ vocalisations in each experiment and gaze 

condition. Means are shown in bold, standard errors are shown in italics. 
 

As discussed in the main manuscript, the total number of utterances increased 

significantly for Direct relative to Indirect gaze in Expt 2 (live), but not for Expt 1 (video) where 

interactions were uni-directional (the infant could not influence the adult). To assess whether the 

social interaction context significantly moderated the effect of gaze on infants’ vocalisations, we 

computed the mean difference between infants’ number of vocalisations under Direct versus 

Indirect gaze, predicting that this difference would be larger for Expt 2 (live) than for Expt 1 

(video). A normalized (i.e. Direct minus Indirect) index was used rather than raw values to 

account for differences in the baseline number of vocalisations between experiments. As there 

were two Direct gaze conditions in Experiment 1 (Direct and Direct-Oblique), we used the 

average number of vocalisations across these two conditions. An ANOVA was then conducted on 

the normalized vocalisation index, taking Experiment as the between-subjects factor, and 

controlling for infants’ looking time and age. This analysis revealed a trend toward a significant 

difference between experiments (F(1,23)=2.17, p=.077, one-tailed), with a larger benefit of Direct 

gaze for vocalisations in the live interaction context (Expt 1) than for video (Expt 2), as predicted. 

This live benefit is reminiscent of Kuhl et al’s study [2] where infants showed phoneme 

learning from live speakers but not from video DVDs of the same speakers. Similarly, Goldstein 

& Schwade [3] found that only infants who received live contingent feedback from their mothers 

showed re-structuring of their babbling patterns. Consistent with these studies, here, infants 

produced more vocalisations only when Direct gaze was offered in a live contingent context. 
 

2.1 Vocalisations by category 
 

A breakdown of the mean number of infant vocalisations by category of complexity is 

provided in Figure S1. For each experiment, a Repeated Measures ANOVA was conducted to 

assess whether the complexity of vocalisations differed across gaze conditions, taking 

Complexity (4 levels) and Gaze (3 or 2 levels) as within-subjects factors. For Experiment 1, there 

was no main effect of Gaze (F(2,32) = .29, p=.75, η2p = .02) and no interaction between Gaze and 

 
Gaze Condition 

Mean number per 

infant 

Mean duration per 

infant (s) 

Expt 1 

Direct 8.22 (2.43) 0.69 (.10) 

Indirect 7.44 (1.80) 0.82 (.15) 

Direct-Oblique 7.11 (1.69) 0.70 (.07) 

Expt 2 
Direct 6.32 (1.11) 0.80 (.10) 

Indirect 5.00 (1.20) 0.85 (.08) 
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vocalisation Complexity (F(6,96) = .39, p = .88, η2p =.02). However, there was a significant main 

effect of Complexity (F(3,48) = 8.94, p<.001, η2p = .36. Significantly more quasi-resonant and 

fully-resonant nuclei were produced than marginal and canonical syllables, but there was no 

difference within these sub-categories. 

For Experiment 2, there was a significant main effect of Gaze (F(1,18) = 5.80, p<.05, η2p 

= .24) but no interaction between Gaze and vocalisation Complexity (F(3,54) = 1.67, p = .18, η2p 

=.09). However, there was again a significant main effect of Complexity (F(3,54) = 8.20, p<.001, 

η2p = .31. As for Expt 1, significantly more quasi-resonant and fully-resonant nuclei were 

produced than marginal and canonical syllables, but there was again no difference within these 

sub-categories. Therefore, these results indicate that the adult speaker’s gaze did not change the 

complexity of infants’ utterances.  

 
Figure S1. Mean number of vocalisations in each category for Expt 1 (left) and Expt 2 (right). 

QR Nuc = Quasi-Resonant nucleus, FR Nuc = Fully-Resonant nucleus, M Syll = Marginal 

syllable; C syll = Canonical syllable. Error bars indicate the standard error of the mean. 

 

2.2 Correlations with neural coupling  
 

Table S4 shows the correlation between adult-to-infant and infant-to-adult GPDC values 

(averaged across Theta and Alpha bands) and vocalisation duration, for each Experiment. As 

there was no significant infant-to-adult sending in Experiment 1, these correlations were not 

computed. Infants’ vocalisation duration was only correlated to their own neural sending patterns 

(i.e. infant-to-adult), and not the adults’ sending patterns. Thus, infants were not vocalising for 

longer in response to the adult, rather, their longer vocalisations were having a stronger 

synchronizing effect on the adult. Since the analysed EEG segments excluded periods of infant 

vocalisations (motion), speech artifacts could not account for this effect. Further, the neural-

vocalisation relationship emerged only under Direct gaze from the adult, and was absent during 

Indirect gaze, consistent with the availability of the adult providing a stimulus for infants to 

vocalise with stronger communicative intent toward her. There were no significant correlations 

between neural connectivity and number of vocalisations for any gaze condition. This suggests 

that not every vocalization was equally effective in increasing neural connectivity with the adult. 

Rather, sustained vocalisations of a longer duration were more effective in influencing the adult.  
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Table S4. Pearson correlation r-values and raw (uncorrected) p-values for adult-to-infant and 

infant-to adult connectivity (GPDC averaged over Theta and Alpha) and infant vocalisation 

duration in each gaze condition. *p<.05 (Benjamini-Hochberg FDR corrected)

 
Gaze Condition 

Adult-to-Infant 

r (raw p-val) 

Infant-to-Adult 

r (raw p-val) 

Expt 1 

Direct -0.46 (.11) N.A. 

Indirect 0.03 (.93) N.A. 

Direct-Oblique -0.25 (.41) N.A. 

Expt 2 
Direct -0.09 (.47) *0.67 (.00) 

Indirect -0.12 (.28) 0.07 (.78) 
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3 Nursery rhyme stimuli  

 

3.1 Experiment 1 : Video 

 

 Duration (s) Mean Pitch (Hz) Pitch Variability (Hz) Loudness (dB) 

Direct  

gaze 

Indirect 

gaze 

Direct-

Oblique 

gaze 

Direct  

gaze 

Indirect 

gaze 

Direct-

Oblique 

gaze 

Direct  

gaze 

Indirect 

gaze 

Direct-

Oblique 

gaze 

Direct  

gaze 

Indirect 

gaze 

Direct-

Oblique 

gaze 

If You’re Happy 14.05 13.92 13.78 261.6 261.9 261.1 34.9 37.6 36.3 70.0 70.0 70.0 

Hickory Dickory Dock 6.84 6.76 6.93 224.2 224.4 224.4 39.3 33.0 33.7 70.0 70.0 70.0 

Humpty Dumpty 7.58 7.75 7.61 211.4 211.3 211.8 25.0 24.2 23.3 70.0 70.0 70.0 

Old MacDonald 19.29 19.11 19.33 246.5 246.2 246.8 36.7 35.4 36.4 70.0 70.0 70.0 

Where is Thumbkin 13.32 13.48 13.14 257.5 258.4 257.4 53.7 53.3 49.9 70.0 70.0 70.0 

Twinkle Twinkle 21.04 20.87 21.11 245.5 245.9 245.6 37.2 35.5 37.5 70.0 70.0 70.0 

Wheels on the Bus 10.54 10.6 10.8 243.6 243.2 243.3 42.0 43.8 41.2 70.0 70.0 70.0 

Average (SD) 
13.24 

(5.45) 

13.21 

(5.36) 

13.24 

(5.43) 

241.47 

(17.85) 

241.61 

(18.03) 

241.49 

(17.60) 

38.41 

(8.60) 

37.55 

(9.08) 

36.90 

(8.00) 

70.0 

(-) 

70.0 

(-) 

70.0 

(-) 

Table S5. Acoustic parameters of pre-recorded video nursery rhyme stimuli used in Experiment 1. Note that the loudness of all stimuli was equalized 

to 70dB. Pitch variability was computed as the standard deviation of pitch values across all timepoints in each stimulus. 

 

Repeated Measures ANOVA for Duration : F(2,12) = .10, p = .91 (n.s.) 

Repeated Measures ANOVA for Mean Pitch : F(2,12) = .38, p = .69 (n.s.) 

Repeated Measures ANOVA for Pitch Variability : F(2,12) = 1.31, p = .31 (n.s.) 

 

 

 



7 

 

3.2 Experiment 2 : Live 

 

 

Mean Duration (s) Mean Pitch (Hz) Pitch Variability (Hz) Loudness (dB) 

Direct 

gaze 

Indirect 

gaze 

t-test  

p-val 

(BH-

corr) 

Direct 

gaze 

Indirect 

gaze 

t-test  

p-val 

(BH-

corr) 

Direct 

gaze 

Indirect 

gaze 

t-test  

p-val 

(BH-

corr) 

Direct 

gaze 

Indirect 

gaze 

t-test  

p-val 

(BH-

corr) 

If You’re Happy 
13.84 

(0.54) 

13.88 

(0.49) 
0.77 

264.58 

(16.64) 

260.94 

(21.28) 
0.77 

39.97 

(8.43) 

39.42 

(9.24) 
0.77 

56.46 

(1.92) 

56.18 

(1.74) 
0.77 

Hickory Dickory Dock 
7.34 

(0.43) 

7.31 

(0.51) 
0.84 

232.88 

(19.33) 

234.84 

(21.95) 
0.77 

39.67 

(11.34) 

41.04 

(10.82) 
0.77 

54.19 

(2.97) 

53.96 

(3.16) 
0.77 

Humpty Dumpty 
8.70 

(0.61) 

8.63 

(0.63) 
0.77 

206.01 

(8.54) 

207.36 

(5.99) 
0.77 

37.87 

(8.07) 

38.45 

(6.12) 
0.77 

54.89 

(3.41) 

54.76 

(3.66) 
0.77 

Old MacDonald 
19.63 

(1.08) 

19.49 

(1.29) 
0.77 

242.17 

(14.36) 

243.77 

(18.96) 
0.77 

39.45 

(7.32) 

39.41 

(7.57) 
0.98 

54.12 

(3.18) 

53.88 

(3.04) 
0.77 

Where is Thumbkin 
13.19 

(0.73) 

13.23 

(0.62) 
0.77 

252.83 

(17.97) 

252.84 

(16.67) 
0.99 

57.21 

(9.91) 

57.75 

(9.66) 
0.77 

54.72 

(3.32) 

54.85 

(3.31) 
0.77 

Twinkle Twinkle 
21.62 

(1.10) 

21.39 

(0.98) 
0.77 

248.56 

(13.35) 

246.46 

(14.36) 
0.77 

42.26 

(8.07) 

43.04 

(8.67) 
0.77 

52.72 

(2.84) 

52.54 

(3.36) 
0.77 

Wheels on the Bus 
11.31 

(0.53) 

11.28 

(0.40) 
0.77 

261.44 

(12.20) 

262.09 

(14.45) 
0.77 

47.20 

(6.46) 

46.58 

(6.80) 
0.77 

54.85 

(2.77) 

54.66 

(2.78) 
0.77 

Table S6. Acoustic parameters of live nursery rhyme stimuli used in Experiment 2.  

Nursery rhymes were videoed live and the timings analysed post hoc. For each nursery rhyme, the average duration, mean pitch, pitch variability and 

loudness during Direct and Indirect conditions is given, and the SD is shown in brackets. Paired sample t-tests were calculated to assess whether the 

average duration, mean pitch, pitch variability or loudness of any of the nursery rhymes was significantly different across gaze conditions. No 

significant differences for any acoustic parameter or nursery rhyme were identified at the Benjamini-Hochberg (BH) FDR-corrected threshold of 

p<.05. 
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4 Experiment 2 : Experimenter’s gaze perspective  

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Example of experimenter’s view during Direct gaze (left) and Indirect gaze (right) 

 

During Direct gaze, the experimenter fixated on the infant and during Indirect gaze, 

she fixated on a red visual target placed 20o to the right or left side of the infant (in Figure S2, 

the target is placed on the right). Note that even during Indirect gaze, the infant was still 

clearly visible in her visual field. The infants’ image was more peripheral and also very 

slightly larger during Indirect gaze because by rotating her head, she also brought her 

contralateral eye slightly closer to the infant. 

Of note, in Experiment 2, we observed some, but much-reduced, infant-to-adult 

coupling in the Indirect condition. This was not unexpected, since the infant was facing the 

adult directly in both conditions, and, for the adult, the infant was positioned at 20° 

eccentricity from the fixation point, and so still clearly visible when her gaze was averted. 

 

5 EEG acquisition  

In both experiments, EEG signals were acquired using wireless amplifiers to reduce 

distraction for the infant during testing. In Experiment 1, EEG signals were obtained using a 

32-channel wireless Biopac Mobita Acquisition System and 32-channel Easycap caps with 

electrodes placed at Fp1, Fp2, AFz, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, T7, T8, FT9, 

FT10, Cz, C3, C4, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, TP9, TP10, POz and Oz 

according to the International 10–20 placement system. EEG was recorded at 500 Hz with no 

online filtering using AcqKnowledge software (Biopac Systems Inc). In Experiment 2, EEG 

signals were recorded from C3 and C4 locations at 1000 Hz using a 2-channel Biopac MP150 

Acquisition System with filters set at 0.1 Hz highpass and 100 Hz lowpass using 

AcqKnowledge software (Biopac Systems Inc). Both adult and infants’ data was recorded 

concurrently in a single acquisition session on the same computer, ensuring accurate time 

synchronisation of the two data streams.  

Prior to electrode or cap attachment, electrode sites were marked and wiped with 

alcohol. Conductive electrode gel was used to affix the electrodes/cap to the scalp. In 

Experiment 2, EEG was recorded from central sites to reduce potential confounding 

influences of muscle artefacts and blinking while still capturing a robust neural response (see 

analysis of speech production artifacts in Section 7). Across both experiments, a vertex 

reference location was used because it produces comparable results to other reference sites 

[4], and is the least invasive for young infants.  
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6 EEG artifact rejection  

 

To ensure that the EEG data used for analysis reflected only attentive and movement-

free behavior we performed a two-stage artifact rejection procedure. First, each experimenter-

infant dyad was video-taped and the videos were reviewed frame-by-frame (30 fps) to 

identify the onset and offset times of movement artifacts, including blinks, head and limb 

motion, and chewing. Only periods when infants were still and looking directly at the 

experimenter were accepted. Next, manual artifact rejection was performed on this still, 

attentive data to further exclude segments where the amplitude of infants' or adults' EEG 

exceeded +100 μV. 

 

6.1 Experiment 1 :  Video  

 

 Following the two-stage artifact detection and rejection process, 17/19 infants 

(12M/5F), gave sufficient data for inclusion in the final analysis. The median (st. err.) age of 

the retained infants was 8.0 months (0.28 months). On average, the retained infants 

contributed 94.82 seconds (range = 25s to 171s, SD = 43.02s) of attentive and artifact-free 

data in the Direct gaze condition, 86.29 seconds (range = 31 to 169s, SD = 41.67s) in the 

Indirect gaze condition and 89.00 seconds (range = 35 to 170s, SD = 43.08s) in the Direct-

Oblique gaze condition. Adult data was only analysed for those segments in which the infant 

data was retained. A larger quantity of clean and attentive data was obtained in the Direct 

gaze condition than in the Indirect gaze condition (t(16) = 2.83, p< .05), but data quantity did 

not differ between Direct-Oblique and Indirect gaze conditions (t(16) = 1.16, p=.26) or 

between Direct and Direct-Oblique gaze conditions (t(16) = 1.54, p=.14). However, 

additional analyses performed to assess the effect of these data quantity differences (e.g. sub-

sampling an equal number of epochs across gaze conditions) confirmed that the main effects 

of gaze were not affected by data quantity.  

 

6.2 Experiment 2 : Live  

 

 Following artifact rejection, 19/29 infants (10M/9F), gave sufficient data for inclusion 

in the final analyses. The median (st.err.) age of retained infants was 8.52 (0.57) months. On 

average, the retained infants contributed 45.52 seconds (range = 8s to 107s, SD = 28.18s) of 

attentive and artifact-free data in the Direct gaze condition, and 43.92 seconds (range = 11 to 

123s, SD = 30.07s) in the Indirect gaze condition. A paired t-test confirmed that there was no 

significant difference in the amount of clean data obtained between Direct and Indirect gaze 

conditions (t(18) = 0.44, p = .66) therefore all the clean data was used for analysis. Adult data 

was only analysed for those segments in which the infant data were retained. 

 

7 Adult speech artifact analysis (speaking versus rest) 

 

Speech production artifacts were present in the EEG signal of the adult speaker, and 

these articulatory motions are known to reduce the signal-to-noise ratio of neural signals that 

relate to cognition [5]. For instance, the temporalis muscle is used for closing the lower jaw 

and this muscle spreads widely over the scalp locations that correspond to the 

frontal/temporal/parietal junction of the brain, generating large artifacts in the EEG signals 

measured over these regions [5]. Muscle artifact contamination is greatest over frontal and 

temporal scalp regions [6] and generally less severe over central regions, where our recording 

electrodes were placed. Several methods have been proposed for removing speech artifacts 



10 

 

from the EEG signal. These include the use of low-pass filtering to remove muscle artifacts 

that most prominently occur at frequencies over 12 or 20 Hz [7,8], and blind source 

separation based on Canonical Correlation Analysis [6] or Independent Component Analysis 

[9] to separate cortical sources from electromyographic (EMG) responses. However, none of 

these methods are able to completely remove motion artifacts from the EEG signal, and may 

even remove some genuine neural activity of interest.  

Therefore, in order to understand whether these speech production artifacts could 

have introduced a pattern of bias into our results, it is first necessary to quantify the spatial 

(i.e. scalp topography) and spectral signature of the exact speech production artifacts that 

were generated by the adult speaker whilst singing nursery rhymes. According, we performed 

a control analysis to systematically document the topographical and spectral differences in 

the EEG signals of the speaker during speech production (in each gaze condition) as 

compared to rest.  
 

7.1 Protocol  
 

All recordings were performed by the same female speaker as in the main studies.  
 

Nursery rhymes. Twenty repetitions of each of the 7 nursery rhymes were recorded by 

the speaker in each of three gaze positions (Direct, Indirect and Direct-Oblique), in which the 

speaker maintained the same head and body position as in the original experiments. During 

recording, her gaze was fixated on a life-sized head image of an infant. 

Resting State. The adult was instructed to remain relaxed with her eyes open and to 

focus her gaze on the image of the infant. She was told to avoid eye, head or other 

movements. Resting state EEG was recorded for 12 minutes.  
 

7.2  EEG acquisition 
 

32-channels of EEG data were acquired from the adult at 500 Hz using a Biopac 

Mobita amplifier and Acqknowledge v5.0 software. No online referencing or filtering was 

used. Impedance for all channels was under 10KΩ. 

 

7.3 EEG pre-processing and analysis 

  

Average re-referencing was performed offline. No filtering was applied to the raw 

signal. Eye-movement and blink artifacts, as well as segments with raw amplitude above 100 

μV were manually identified and removed from the raw recordings. After cleaning, the 20 

repetitions of each nursey rhyme were concatenated for each gaze condition. A Fast Fourier 

Transform was applied to the nursery rhyme and resting state data in non-overlapping 1.0s 

windows for each EEG channel. As the frequency spectra of individual nursery rhymes did 

not differ, we collapsed the data across nursery rhymes and analysed the grand average 

frequency spectrum over all nursery rhymes. 

 

7.4 Scalp topography during resting state and speech production  
 

The scalp topography of EEG power in 5 frequency bands (Delta[1-3Hz]; Theta[3-

6Hz]; Alpha[6-9Hz]; Beta[9-25Hz]; Gamma[25-42Hz]) is shown in Figure S3 for resting 

state condition, and during speech production for each gaze condition.  
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Figure S3. Scalp topography of EEG power in Delta, Theta, Alpha, Beta and Gamma bands 

for Resting State (top row), Direct Gaze (second row), Indirect Gaze (third row) and Direct-

Oblique Gaze (bottom row). Color scaling for each topographical plot is identical. 

 

From visual inspection, it may be observed that during speech production (as 

compared to resting state), there were distinct increases in power, especially at Beta and 

Gamma frequencies, and particularly over left and right fronto-temporal regions. However, 

central regions (e.g. C3 and C4) appeared to be the least affected by speech production power 

artifacts. To assess these differences more closely, a detailed spectral analysis on the power 

spectrum at C3 and C4 was performed to test for frequency-specific changes in power during 

speech production as compared to resting state, as described next. 

 

7.5 Spectral analysis at C3 and C4  

 

To identify spectral differences between speech production conditions and resting 

state, one-way ANOVAs with 4 levels (RS, Direct gaze, Indirect gaze, Direct-Oblique Gaze) 

were conducted at each frequency between 0 to 40 Hz, for C3 and C4 channels. We 

performed all post-hoc comparisons (RS vs each gaze condition; each gaze condition against 

the other two gaze conditions) by running unpaired t-tests. For all tests, boot-strapping was 

performed by randomly selecting an equal subset (~1500) of 1.0s segments in each gaze 

condition, and permutating this selection 100 times. Only comparisons in which t-tests were 

significant at the alpha-level of p<0.05 for over 95% of all permutations are reported.  

As shown in Figure S4, the results of the ANOVA revealed that there were significant 

spectral differences between speaking and rest conditions at C3 at 12 Hz, 13 Hz and between 

15 – 39 Hz. At C4, significant differences were observed between 21 – 25 Hz, and between 

29 - 39 Hz. In each case, speech production increased power in the EEG signal relative to 



12 

 

rest. Note that for both electrodes, no overall differences in power were observed across 

conditions at frequencies under 12 Hz. 

 
Figure S4. Power spectrum and results of ANOVA conducted at C3 (left plot) and C4 (right 

plot) for spectral differences between the 4 conditions (RS [red line], Direct Gaze [black 

line], Indirect Gaze [green line], and Direct-Oblique Gaze [blue line]). The x-axis indicates 

Frequency (Hz) and the y-axis indicates power (units). Shaded areas indicate the 95% 

confidence interval around the mean for each condition, and [*] indicates an overall 

difference between conditions in the ANOVA analysis at p<.05.  

 

To assess the specific pattern of differences between conditions, post-hoc t-tests were 

conducted at every frequency between 0 and 40 Hz (as described above). For C3, significant 

differences between Rest and Direct gaze were observed at 12,13 and 15 – 39 Hz. For 

Indirect gaze, differences were additionally observed in the Delta band at 2 Hz. For Direct-

Oblique gaze, differences were observed at 12, 13, 15 – 23 and 28 – 39 Hz. For C4, Direct 

gaze differed from Rest at 21 – 23 and 29 - 39 Hz. For Indirect gaze, differences were 

observed at 21 – 25 and 29 – 39 Hz. For Direct-Oblique gaze, differences were only observed 

between 29 – 39 Hz. Over all comparisons, no significant differences between speaking 

and rest were observed in Theta (3-6 Hz) and Alpha (6-9 Hz) bands. 

In summary, our analysis of the adults’ speech production artifacts confirmed that 

speech gestures did indeed produce increases in EEG power that were most prominent over 

frontal and temporal scalp regions, consistent with previous studies [5,6]. However, our fine-

grained spectral analyses revealed that, relative to resting state EEG (when no overt motor 

activity was present), electrodes in the central scalp region (C3 and C4) showed no 

significant change in power at Theta (3 – 6 Hz) and Alpha (6 – 9 Hz) band frequencies for 

any gaze condition. Accordingly, our main connectivity analyses focused on this scalp region 

and frequency range.  

 

8 EEG power analysis 

As our main aim was to assess changes in connectivity between gaze conditions, it 

was important to first establish whether there were any properties of the underlying EEG 
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signal in each condition that might artifactually generate increases (or decreases) in computed 

connectivity. One such potential confounding factor is the composition of the power 

spectrum of the EEG signal. The accuracy of the partial directed coherence (PDC) metric can 

be sensitive to even moderate changes in signal-to-noise ratio [10]. For example, Adhikari et 

al [10] reported that a 10% decrease in signal power from 67% to 57% was associated with 

~15% lower accuracy in PDC directionality estimation, although a similar 11% power change 

from 57% to 46% only caused an accuracy drop of <5%. Therefore, if the EEG signal in one 

experimental condition has higher noise than in another condition (or if the spectral 

composition of the signal changes substantially), this can lead to greater error in estimation of 

connectivity patterns.  

To assess the power spectra of the EEG signals, their power spectral density (PSD) 

was estimated using the Matlab ‘periodogram.m’ function, which performs a discrete Fourier 

transform on the signal. One PSD estimate was computed for each channel (left and right 

electrodes for adult and infant respectively), for each participant pair, and for each 

experimental condition. The resulting power spectra were then divided into EEG frequency 

bands, and averages were taken for each frequency band and used for analysis.  

To assess whether there were differences in EEG power between the gaze conditions, 

for each experiment, a repeated measures ANOVA was conducted taking Gaze ([3 (Expt 1) 

or 2 (Expt 2) levels]), Frequency band ([2 levels, Theta 3-6 Hz and Alpha 6-9 Hz]) and 

Channel ([4 levels, infant and adult x left and right) as within-subjects factors.  

For Experiment 1, there was no overall difference in EEG power between the Direct, Indirect 

and Direct-Oblique conditions (F(2,32) = 0.25, p = .78). There was also no interaction 

between Gaze x Channel (F(6,96) = .23, p = .97), no interaction between Gaze x Frequency 

(F(2,32) = 1.94, p = .16), and no interaction between Gaze x Channel x Frequency (F(6,96) = 

2.04, p = .07).  For Experiment 2, there was again no overall difference in EEG power 

between the Direct and Indirect conditions (F(1,18) = 0.30, p = .59). There was no interaction 

between Gaze x Channel (F(3,54) = .14, p = .93), no interaction between Gaze x Frequency 

(F(1,18) = .00, p = .98), and no interaction between Gaze x Channel x Frequency (F(3,54) = 

.90, p = .45). Therefore, the gaze manipulation did not generate any detectable power changes 

that might systematically bias the PDC metric. 

 

9 Neural connectivity analysis : Partial Directed Coherence (PDC) 

Partial Directed Coherence (PDC) is a directional causal measure of direct flows 

between channels [11-13]. It is based on the principles of Granger Causality [14], and 

measures the degree of influence that channel j (the ‘Sender’) directly has on channel i (the 

‘Receiver’) with respect to the total influence of j on all channels in the network. Here, each 

individual electrode (Infant L, Infant R, Adult L, Adult R) was taken as one channel and the 

entire network consisted of 4 electrodes in total. We computed directed coherence values for 

all 12 possible pairwise connections, both within individual (e.g. Infant L -> Infant R) as well 

as across individuals (e.g. Infant L -> Adult L).  

For the current analysis, we used Generalised Partial Directed Coherence (GPDC; 

[12]), which is an adapted version of PDC with better variance stabilization properties and 

the advantage of scale-invariance [15].  As a first step in the analysis, a multivariate 

autoregressive (MVAR) model is fitted to the EEG time series, which has the advantage of 

providing information about causal linear interaction effects in addition to estimating the 

coupling strength between channels. A frequency representation of the MVAR model 

parameters is then generated via a Fourier Transform, as follows: 
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(eq.1) 

 

where Ap are the model coefficients, I refers to the M-dimensional identity matrix, fs is the 

sampling frequency, and i2 = −1. For each pair of channels (i and j), GPDCij is then computed 

as : 

 

 (eq.2) 

 

where σi
2  refers to the variance of the innovation process xi(t). GPDC takes values between 

[0,1] and is normalized across receivers (i.e. total outflow = 1 at each frequency), with larger 

values indicating strong connectivity.  

The MVAR model was estimated using the Burg-type Nuttall-Strand method [16] 

which is thought to perform best for small sample sizes [17], and a model order (MO) of 5 

was used. The model order (MO) indicates the number of preceding samples that are used to 

predict the data at sample time t, and determines the number of observed frequency 

components for each pair of channels, which is typically half the model order. Following 

prior studies on autoregressive modeling [18,19] and multivariate autoregressive modeling of 

EEG time series [20-23], here a model order of 5 was used for this analysis. For example, 

Jansen et al [18] reported that a fifth order AR model was sufficient in 90% of cases to 

adequately capture variance in EEG time series data. Vaz et al [19] also noted that “a 5th 

order AR model represents adequately 1- or 2-s EEG segments with the exception of 

featureless background, where higher order models are necessary”. Model orders used in 

other MVAR EEG studies typically range between 3 and 6 [20-23].  

One MVAR model and the resulting set of GPDC estimates (spanning the entire 

frequency spectrum) was computed for each non-overlapping 1.0s EEG epoch (200 data 

samples), and these estimate GPDC values were averaged across all epochs for each 

participant pair, for each experimental condition. The resulting epoch-averaged GPDC 

spectrum was then divided into discrete Theta (3-6 Hz) and Alpha (6-9 Hz) EEG frequency 

bands. Note that as infants’ Theta and Alpha EEG bands are lower in frequency as compared 

to adults [24], our frequency banding was adjusted lower accordingly. The mean GPDC value 

was taken within each frequency range, for each pairwise connection, condition and 

participant.  

10 Control analysis 1: Surrogate connectivity data 

As a control analysis, we generated a surrogate dataset comprising 1000 temporally-

shuffled versions for each participant pair. The aim of this control analysis was to disrupt the 

fine-grained temporal correspondence between adult and infant neural signals by randomly 

pairing each adult 1.0s epoch with a non-matching infant 1.0s epoch from a different 

timepoint within the same experimental session. For example, the adult neural signal whilst 

singing “Twinkle Twinkle” may be paired to the infant signal whilst listening to “Wheels on 

the Bus”. The pairing of adult and infant time-shuffled epochs was determined by random 

permutation, and was non-identical for each of the 1000 shuffled versions generated for each 

participant pair, as well as for different participant pairs.  

 𝐺𝑃𝐷𝐶𝑖𝑗(𝑓) =
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This shuffled control allowed us to establish a baseline level of non-specific 

connectivity between brains that could have arisen, for example, from commonalities in the 

physical environment during a particular experimental session, or due to general increases in 

infants’ and adults’ arousal. We could then be assured that any neural connectivity which 

could be detected over and above this baseline was specifically related to the time-contingent 

neural coupling between speaker and listener for the given experimental stimulus. Identical 

connectivity analyses were then performed on the real and surrogate datasets. All GPDC 

analyses were performed using the eMVAR (Extended Multivariate Autoregressive 

Modelling) Toolbox [25] in Matlab (The Mathworks Inc). The resulting GPDC values are 

shown in Tables S1 and S2. 

11 Control analysis 2: Neural entrainment to the speech stimulus 

In order to assess whether interpersonal connectivity gaze effects could be attributed 

to differences in basic speech processing across gaze conditions, we examined whether neural 

oscillatory entrainment to the amplitude envelope (temporal structure) of the adult’s speech 

signal differed between gaze conditions. The EEG data was first low-pass filtered under 45 

Hz using an inverse fft filter to remove line noise (EEGLAB eegfiltfft.m function [26]). Next, 

the wholeband amplitude envelopes of the speech signal of the nursery rhyme stimuli were 

extracted using the Hilbert transform. To assess the degree of entrainment between the neural 

EEG signal and the speech amplitude envelope the phase-locking value (PLV, [27]) was 

computed. The PLV takes values between [0, 1], where a value of 0 reflects the absence of 

phase synchrony and a value of 1 reflects perfect synchronisation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Speech-brain entrainment for Experiment 1 (top panel) and Experiment 2 (bottom 

panel) infants and adults by gaze condition for Theta (left) and Alpha (Right) frequency 

bands respectively. Error bars show the standard deviation. 

Expt 1 

Expt 2 
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Prior to calculating the PLV, a continuous wavelet transform was applied to the neural 

and speech data, which convolves each time series with scaled and translated versions of a 

wavelet function [28]. Here, the wavelet function chosen was the complex Morlet wavelet 

(bandwidth of mother wavelet = 1 Hz, time resolution = 0.1 Hz). The wavelet time-frequency 

decomposition was performed at 40 log-spaced frequencies. The phase series at each 

frequency was extracted from the complex wavelet coefficients, and divided into matching 

EEG and speech epochs of length 2.0s (with no overlap). The PLV for each epoch was then 

computed, and averaged over all epochs for each participant. Finally, frequency band-

averaged PLV values were computed for Theta (3-6 Hz) and Alpha (6-9 Hz) frequency bands 

for each gaze condition, as shown in Figure S5.  

For each experiment, a Repeated Measures ANOVA was conducted taking Gaze (3 or 

2 levels) and Frequency (2 levels) as within-subjects factors, and Group (Infant or Adult) as 

the between-subjects factor. For both experiments, there was no significant difference in 

speech-brain entrainment between gaze conditions (Expt 1 : F(2,64) = 1.89, p = .16; Expt 2 : 

F(1, 36)=.06, p=.80), and no significant interaction between Gaze and Frequency (Expt 1 : 

F(2, 64)=.72, p=.49); Expt 2 :  F(1, 36)=.42, p=.52), suggesting that gaze did not change the 

pattern of speech-brain entrainment for Theta or Alpha bands. Therefore, any interpersonal 

connectivity gaze effects cannot be attributed to differences in basic speech processing.  

 

12 Full infant scalp topography of receiving GPDC values (Expt 1) 

To assess the scalp topography of infants’ neural receiving patterns with respect to 

adults’ C3 and C4 electrodes, 4-channel GPDC analyses were conducted for all 

hemispherically-dichotomous pairs of infants’ electrodes (e.g. infants’ left temporal [T7] and 

right temporal [T8] electrodes). The results indicated that across both EEG frequency bands, 

and across all gaze conditions, the strongest adult-to-infant connectivity was observed over 

infants’ central and posterior scalp locations (including C3 and C4). By contrast, lower 

connectivity was observed over infants’ frontal and temporal regions, particularly for the 

Alpha band. This topographical pattern confirms that the connectivity data from C3 and C4 

(reported in the main manuscript) is indeed representative of infants’ overall neural response 

to the adult. 

13 ANOVA results of gaze effects on interpersonal neural connectivity 

To recap our analysis approach, the average (a) infant-to-adult GPDC (IA) and (b) 

adult-to-infant (AI) GPDC was computed for each gaze condition, and for Theta and Alpha 

bands separately. We then conducted Repeated Measures (RM) ANOVAs using these 

average indices, taking Frequency (2 levels) and Gaze (3/2 levels) as within-subjects factors. 

From Table S2, it may be noted that a few individual connections in Expt 2 were not 

significantly above threshold for one of the gaze conditions (but this never occurred across 

both gaze conditions). These values were included in the grand averages in order to maintain 

representativeness and a balanced ANOVA structure, since they were still statistically 

meaningful in terms of potentially revealing a difference between gaze conditions. For all 

analyses, infants’ looking times across each gaze condition were entered as co-variates to 

control for individual differences in attentiveness. For the IA analysis, age was entered as 

an additional co-variate to control for individual differences in infants’ maturation. To assess 

the specific gaze effects at each frequency, we conducted planned pairwise comparisons 

using Dunnett’s multiple range t-test [29], which independently controls for familywise error 

rate without a prior F-test. Requiring a significant F-test before performing multiple 
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comparison tests (like Dunnett’s) is not recommended as this inflates the false negative rate 

[30,31]. At each frequency, we performed 3 planned pairwise comparisons using Dunnett’s 

test : (1) Direct > Indirect (Expt 1 & Expt 2); (2) Direct-Oblique > Indirect (Expt 1 only) and 

(3) Direct = Direct-Oblique (Expt 1 only). The results of these pairwise tests are reported in 

the main text. Here we provide a breakdown of the RM ANOVA results. 

13.1 Experiment 1 : Adult-to-infant GPDC (AI) 

 

RM ANOVA Effect  

Gaze  F(2,26) = .66, p = .53, η2p = .05 

Frequency  F(1,13) = 6.92, p<.05, η2p = .35 

Gaze x Frequency  F(2,26) = 1.61, p = .22, η2p = .11 

Table S7 – Experiment 1 adult-to-infant RM ANOVA results  

It may be noted that although there were strong pairwise differences between 

individual gaze conditions (as revealed by Dunnett’s test and reported in the main text), the 

overall F-test for the Gaze effect was not significant. This apparent discrepancy could arise 

from the fact that the null hypothesis for the ANOVA F-test is that the means across all gaze 

conditions (and frequencies) are equal. However, this null hypothesis is inconsistent with our 

a-priori predictions that Direct/Direct-Oblique gaze would both differ from Indirect gaze, but 

Direct gaze would not differ from Direct-Oblique gaze. Therefore, we expected 2 out of our 3 

condition means to be equal, and only 1 to differ. Conversely, if we had conducted the 

ANOVA analysis with only 2 gaze conditions that were predicted to differ (such as Direct-

Oblique versus Indirect), then there would indeed be a significant main effect of Gaze 

(F(1,14) = 6.05, p<.05, η2p = .30). However, conducting 3 separate ANOVAs for each 

pairwise gaze contrast would be unparsimonius and lead to Type I error inflation. 

Accordingly, the ANOVA F-test was ill-suited to evaluate our predicted hypotheses in 

Experiment 1. To address this, we relied on the findings of the Dunnett’s tests (which 

independently control for Type 1 error) to assess our specific predictions in Experiment 1.  

13.2 Experiment 2 : Adult-to-infant GPDC (AI) 
 

RM ANOVA Effect  

Gaze  F(1,16) = 5.51, p<.05, η2p = .26 

Frequency  F(1,16) = .00, p=.96, η2p = .00 

Gaze x Frequency  F(1,16) = 5.48, p<.05, η2p = .26 

Table S8 – Experiment 2 adult-to-infant RM ANOVA results  

As expected, the results of the RM ANOVA showed a significant main effect of Gaze 

(Direct > Indirect), which corroborated with findings from pairwise Dunnett’s tests (reported 

in the main manuscript) showing that AI connectivity was higher for Direct > Indirect gaze 

in both Theta and Alpha bands. 
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13.3 Experiment 2 : Infant-to-adult GPDC (IA) 
 

RM ANOVA Effect  

Gaze  F(1,15) = 6.18, p<.05, η2p = .29 

Frequency  F(1,15) = 38.8, p<.001, η2p = .72 

Gaze x Frequency  F(1,15) = 10.5, p<.01, η2p = .41 

Table S9 – Experiment 2 infant-to-adult RM ANOVA results  

For infant-to-adult connectivity in Experiment 2, the results of the RM ANOVA 

showed a significant main effect of Gaze (Direct > Indirect), which corroborated with 

findings from pairwise Dunnett’s tests (reported in the main manuscript) showing that IA 

connectivity was higher for Direct > Indirect gaze in both Theta and Alpha bands.  

14 Infant looking times 

14.1 Experiment 1 : Video  

For Direct gaze stimuli, infants’ average looking time was 101.61s (SD = 43.04s). 

Their looking time was 92.73s (SD = 41.73s) for Indirect gaze stimuli, and 95.13s (SD = 

43.02s) for Direct-Oblique gaze stimuli. A repeated measures ANOVA analysis with Gaze (3 

levels) as the within-subjects factor revealed that there was a significant main effect of Gaze 

(F(2,32) = 4.46, p<.05) on infants’ looking times. Tukey HSD post hoc analysis indicated that 

infants looked for significantly longer at the Direct gaze nursery rhymes as compared to the 

Indirect gaze stimuli (p<.05), but there was no difference in looking time between Direct gaze 

and Direct-Oblique gaze (p=.10) or between Indirect gaze and Direct-Oblique gaze (p = .72). 

As the acoustic parameters of the video stimuli were tightly controlled across conditions, 

these differences in infants’ looking patterns could not have arisen from inconsistencies in the 

speakers’ presentation of the stimuli. 

14.2 Experiment 2 : Live  

For Direct gaze stimuli presented in a live format, infants’ mean looking time was 

61.01s (SD = 31.61s) and for Indirect live stimuli, infants’ mean looking time was 61.11s 

(SD = 34.21s). A paired t-test confirmed that there was no significant difference in infants’ 

looking time for Direct and Indirect gaze conditions (t(18) = 0.03, p = .98). Therefore, infants 

were not more inattentive during Indirect gaze for live stimuli. 

It is interesting that infants showed a different pattern of looking for Direct versus 

Indirect gaze stimuli across the two experiments. In Experiment 1 (video), consistent with 

previous screen-based studies (Farroni et al, 2002), infants looked longer at Direct gaze than 

Indirect gaze stimuli. However, in Experiment 2 (live), infants looked equally long at both 

types of gaze stimuli. This apparent attentional benefit for live speech was also observed in a 

phonetic learning experiment by Kuhl et al (2003), in which infants were more attentive to 

(and showed more phonetic learning from) live adult speakers than DVD movies of the same 

speakers.  However, even though infants were equally attentionally-engaged for Direct and 

Indirect gaze stimuli in Experiment 2, their neural connectivity to the adult differed across 

gaze conditions, suggesting that attention did not underlie the neural gaze effect. 
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15 Effect of infant age   
 

We examined the effect of age based on a median split analysis that divided our data 

into younger and older infants (Experiment 1 = 8.0 months, Experiment 2 = 8.52 months), 

entering this as an additional between-subjects factor in the RM ANOVA analyses. For both 

Expt 1 and 2, there was no main effect of Age on adult-to-infant GPDC (Expt 1 : F(1,12) = 

1.38, p=.26, η2p = .10; Expt 2 : F(1,15) = .00, p=.96, η2p = .00). There was also no significant 

interaction between Age and other factors (Frequency Band, Gaze, p>.13 for all). For infant-

to-adult GPDC in Expt 2 (Alpha band), there was similarly no effect of Age (F(1,15) = .15, 

p=.70, η2p = .01). Thus, the effects of Gaze did not differ as a function of infants’ age.  

16 Internal replicability of gaze findings 
 

We conducted a permutation analysis to assess the internal replicability of our two 

main gaze findings [1] Direct > Indirect (E1 and E2) and [2] Direct-Oblique > Indirect (E1). 

In the permutation analysis, 71%/75% of the E1/E2 cohort data (N=12 or 14 out of 17 or 19) 

was randomly selected in all possible ways (=6,188 or 11,628 permutations). For each cohort 

permutation, one main test statistic was computed for each Gaze contrast. To permit direct 

comparison across Experiments 1 and 2, we selected the same test statistic for the Direct v 

Indirect contrast in each experiment : Alpha band adult-to-infant GPDC. For completeness 

and to avoid bias, a different frequency band was selected for the Direct-Oblique v Indirect 

contrast : Theta band adult-to-infant GPDC. For each permutation, an RM ANOVA was 

performed on the test statistic, taking Gaze as the within-subjects factor and controlling for 

infant looking time. The effect size (r2) was recorded for each permutation to yield a 

distribution of possible effect sizes over all permutations.  
 

15.1 Experiment 1  
 

For the Direct vs Indirect gaze contrast (left subplot in Figure S6), the effect size (r2) 

obtained across all permutations was 0.219 (mean) / 0.212 (median), indicating the presence 

of a medium-large effect size in the data. For the Direct-Oblique vs Indirect gaze contrast 

(right subplot, Figure S6), the effect size (r2) obtained across all permutations was 0.192 

(mean) / 0.183 (median), indicating the presence of a medium effect size in the data.  

 
Figure S6. Experiment 1 : Distribution of effects sizes for Direct vs Indirect (left) and Direct-

Oblique vs Indirect (right) contrasts obtained for 71% (n=12) sub-samples of the data.  
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15.2 Experiment 2 
 

For the Direct vs Indirect gaze contrast (which used the same test statistic as 

Experiment 1), the mean effect size (r2) obtained across all permutations was 0.332 (mean) / 

0.321 (median), indicating the presence of a large effect size in the data (see Figure S7). It is 

also interesting to note that the effect size distribution appeared to be bimodal, which could 

indicate that there is a subset of infants who show particularly strong sensitivity to adult gaze. 
 

 
Figure S7. Experiment 2 : Distribution of effect sizes for the Direct vs Indirect contrast 

obtained for 75% (n=14) sub-samples of the data. 

 

Comparing across Experiments 1 and 2, the Direct vs Indirect gaze contrast 

consistently yielded at least a medium-sized effect across both experiments, indicating that 

this gaze finding is replicable across two different testing modalities (video versus live 

presentation) and two different infant cohorts.  
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