1 Justification of the super-delta method

1.1 The Model and the Proposed Methods

In this section, we will provide theoretical justifications to the super-delta method based on a
mixed effects model for gene expression [1, 2, 3, 4, 5]. Specifically, we consider that within each
phenotypic group (a = A, B), the (log)-expression level of the ith gene sampled from j = 1,2,..., N,
arrays are realizations of the following model

i =y +afy, af=pd e, aj~ N0, e~ N(0,07). (1)

Here «; is a slide-specific factor, uf is the mean for each phenotype. Ty

¢ can be viewed as
the oracle expression level, which has biological variation and possibly some other independent
variation but no slide-specific noise. We are interested in testing the following hypotheses for
each i =1,2,...,m:

HY it =pf, HY il £l (2)

Ideally, we would like to remove o from Model (1) by a normalization method, and then test
hypotheses (2) based on two-sample t-statistics constructed from z7;, the “noise-free” expressions:
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Here N = N4 + Np is the total sample size. We will call these t; as the oracle t-statistics hence-
forth. In practice, even the most effective normalization cannot perfectly recover z; from y;;. Our
previous studies show that commonly used normalization methods can effectively reduce sample
variance explained in part by «;, at a price of introducing certain bias to the normalized expres-
sions, which in turn reduces statistical power and increases type I error rate [0, 5].

In this study, we take a completely different approach. We will first compute pairwise differences
called “deltas”, defined as follows:
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ihy = Yig — Yy = iy — Ty = 15— My ey — ey ~ N(ui = p, 0 + o). (4)
Next, we compute two-sample t-statistics based on these deltas for all ¢ = 1,2,...,m; k =
1,2,...,m;and ¢ # k
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Let us denote the vector (ti1,ti2, ..., ii—1, tii+1,--- tim)T, by t;.. Once we obtain t;., we can

estimate the oracle statistic, t;, by one of the following three approaches:

Sm n 2 . . . . .
1. Sample mean. t, ean) . _ m\fl Dk 4 Lik- The use of the multiplicative coefficient v/2 will be
justified later.

2. Sample median. fémed) := /2 x Med(t;.). Again, the coefficient /2 will be justified later.

robust)

3. A robust estimator median fold trimmed median (MFTM), tAl(- , defined as follows.



(a) Filter out a proportion (say ¢ = 20%) of the most extreme test statistics from t;. Here
the most extreme values are determined by |t;;|, the absolute values of t;;. This step
ensures that most, if not all, d;;’s normalized with DEGs will be excluded. Again we need
to reiterate that filtering out 20% of t;; according to |t;;| is not equivalent to filtering
out 10% of smallest ¢;; and 10% of largest ¢;;. If up/down regulations are unbalanced,
filtering according to |t;;| will automatically take care of it yet filtering based on removing
the smallest and largest 10% t¢;;’s will result in some bias.

(b) Now estimate the center from the rest 1 — ¢ of the d;;’s. We use the median for this
purpose.

(c) In the end, we still need to multiply the trimmed median by /2.

1.2 The conditional interpretation of the estimation procedure

Because t;;, are computed from the difference of the ith gene expression and all the rest genes,
they are correlated by construction. Besides, t7, the oracle statistic, is not a population character-
istic so the very “estimation” needs to be interpreted in an unconventional way. In this section, we
will provide a rigorous interpretation based on conditional inference.

Proposition 1.1. When conditioned on €, 5;’,”- and 5?]«;’ are independent, for all k # k' and
kK 1.

Proof. The proof is trivial because €f; is the source of randomness of the ith gene. Once it is fixed
by conditioning, the only source of randomness in 4§, ;18 from €} ;» which are independent of each
other for different j’s. O

Corollary 1.2. When conditioned on €, any tix and t; in & (k # k') are independent.

Apparently, the above corollary is true because ¢;;, depends only on the values of 67 j and t;z/
depends on 5&,7 IH and we already know that 5%@,]‘ and 5?]&,;’ are conditionally independent. The
relationship can be seen more clearly from the following flow chart:

tik <— Ojfj ¢ € (given €;) (©)
tikr < O j < €pr» (given €7;)
Let us denote by S° the set of all NDEGs (null genes) and S' the set of all DEGs. Obviously,

dp = u‘,? — MkB =0 for k € S” and d;, # 0 for k € S'. Simple calculations lead to the following
conclusions.

Proposition 1.3. When conditioned on e%, the sample mean difference of deltas, 5{,2 — SiB, follows
a normal distribution
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Proof. We can write Sﬁc in terms of EA and E,?:
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Therefore, we have the following (conditional) distributions:
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Proposition 1.4. Sample variance of deltas computed in each phenotypic group, denoted by (sf,
a = A, B, has the following non-central x* distribution conditional on €
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Here (62,)% : Na_l Zj L (eij — &.)? is the sample variance of €.
Proof. By definition,
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Here J denotes an N, X N,-dimensional matrix with all entries being 1. Simple calculation shows
that (I — 2 ~.J) is symmetric, idempotent, with rank N, — 1. In fact, it is the projection matrix onto
span(1)*, Where 1 is a vector of all 1s. When conditioned on €f;, €/ — € is a normal distribution
with mean eij and variance ak. Therefore

(Ng —1)(s8,)? 2 T 1 (Na — 1)(&21')2
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Corollary 1.5. The pooled sample variance, (sh)? := (Va 1)(Sik)Nt(QNB D(sik) , has the following
conditional non-central x? distribution representation
N -2 (N —2)(67,)
7 (D)2 ~ XR 2 Aifp = ———5——. (9)
Ok Ok

Here N = N4+ Np is the total sample size and (&f’i)z is the pooled sample variance of €; computed
from both phenotypic groups.

Proof. This corollary is a direct consequence of Proposition 1.4 and the additivity of noncentral
x2-distribution. O

Proposition 1.6. The sample mean and sample variance of deltas are independent conditional on
€;. in each phenotypic group. Hence, the sample mean difference and pooled sample variance of
deltas are independent.

Proof. This is just because €hj — € 18 independent of €, for all j. O
Based on Proposition 1.3, Corollary 1.5, and Proposition 1.6, we have the following conclusion.

Lemma 1.7. t;; computed from deltas follows a doubly non-central t-distribution as follows
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Lemma 1.8. The conditional mean value of t;;, given €;., which is a doubly noncentral t-distribution,
has the following large-sample approximation

N-—2 I (&3 1 N—-2 N\
Bule) =5 mim (5 )

2
= Mizk:” +O(N_1)
14 O (11)
k
~A _ =B _d
— Ly Ly k _’_O(Nfl)




In particular, for k € S,
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Proof. For simplicity, let us skip “|e;.” in the following derivation. Namely, all expectations/variance
in the following proof are conditioned on ¢;..

SA
Let us denote 6'7 by U and ZF by W, so ti := U - W. By construction, we know that

i
Tk / NA+NB zk

U~ N(Mikal)a (N_2)W_2 = (N_2) ’

XN 9 i and U, W are independent.
First, we will calculate some useful moments of W based on the large sample approximation.

Since (sfk)2 follows a conditional scaled non-central x2-distribution, there exists a sequence of

i.i.d. normal random variables uq, us, ..., uny_o such that
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Based on Taylor expansion, we have
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Therefore, based on the independence of the denominator and numerator,

04 _ 5B _\—1/2
Bltile) = B | —f—t— | - 5 ()
Ok N7A+N73

- Mk __LonY)

Similarly, we conclude that for k € S', E (t;]e;.) is dominated by the
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Below we will prove a similar lemma for the median. But first, we will need to understand the
asymptotic properties of the higher order moments of ;.

term, which approaches co with rate O(N).

Proposition 1.9. The conditional variance and skewness of t; have the following asymptotic
representation

o (6571)2 -1
var (tlk\ez) =1+ 0_2 + O(N ), (17)
k
and
SK (tzk\ez) = O(Nﬁl). (18)

Proof. Let us use the same decomposition as in the previous proof, namely t;; := U - W.



For variance, we have
Var (UW) = E[(UW) — E (UW)]?
=E (UW?) — E*(UW)
E(U?) -E(W?) — (EU)*- (EW)?
Var(U) + (BU 2) (Var EW)Q) —(BU)? - (EW)?

( )
- (Var (U) + (EU)Q) Var(W) + Var(U) (EW)? + (EU)2 - (EW)2 — (BU)? - (EW)?
= (Var U)+ EU)2 Var(W) + Var(U) (EW)?

(
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= O(N7h).
So the skewness is
E(UW - EUW))®
Var (UW)3/2

SK(UW) :=

Next, we prove that both the median and mean of ¢;; converges to f t*, up to an O(N1)

7?
difference.

Lemma 1.10. The conditional median of t; is

_ _d,

Med(tix|e;.) = +O(NT). (19)
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In particular, for k € S,
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For k € St
Med(tik|€i.) = O(N). (21)



Proof. Based on Cornish-Fisher expansion,

Med(tik|€i.) = E(tiklei.) + SK(tir) - (E(tiklei) — 1)

However, the skewness of t;, is of order N~1. so
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Putting all the above conclusions together, we have the following theorem.

Theorem 1.11. Assume that 0,3 = o2 for all k (interchangeable covariance structure). The con-

ditional mean and median of t;, have the following asymptotic representation.
For k € SY,

Pe;. 1, _
E(tlk‘ez) — \/;'ti +O(N 1),

. (23)
P,
Med(t;x|€;.) — \/gt;" +O(N7Y).
For k € S', both the mean and median approaches infinity with rate O(N):
E(tuler) = Sgn(dy)
ik |€i- n 00,
k gnidg (24)

P,
Med(t;x|€;.) — Sgn(dy) - oc.
Here Sgn(dy,) is the sign of di, and Pe, stands for the probability law of ;..

Proof. We only need to use the strong law of large number (SLLN) of P, ,

Therefore

The divergence result for k& € S' follows from the fact that is the domi-

dp,
- 1 1
VoR+ o+
nating term if dj # 0. O

Remark. Equations (23) justifies the use of multiplicative coefficient v/2 in super-delta method
when estimating the oracle t-statistic. The asymptotic behavior of the “S%-pairing” means that
when N — oo, the bulk of the empirical distribution of ; converges to a (constant times) noncentral
Student t-distribution, centered at the oracle t-statistic. On the other hand, the “S'-pairing”, which
constitutes two smaller proportions (one for up- and one for down-regulated genes) of the empirical
distribution of ;, will “move away” from that bulk distribution.

This phenomenon is illustrated in Figure 1.
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Figure 1: An illustration of different asymptotic behavior of ¢;;. The large central density represents
those t;;, paired with NDEGs (k € 80). Two smaller densities represents t;; calculated from pairing
with up- and down-regulated genes. The proportions are: my = 0.85 for true NDEGs; 7rfr = 0.05
for down-regulated genes; m; = 0.10 for up-regulated genes. Oracle t* is set to be 1.7 (represented
by the red vertical line). When the up- and down-regulation effect sizes are fixed and N becomes
larger, the centers for the two smaller densities of t;; converges to —oo and +oo, respectively.
Consequently, a 20% median fold trim (represented by the two dotted vertical lines) can effectively

remove the two smaller clusters of ¢;.
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