
1 Justification of the super-delta method

1.1 The Model and the Proposed Methods

In this section, we will provide theoretical justifications to the super-delta method based on a
mixed effects model for gene expression [1, 2, 3, 4, 5]. Specifically, we consider that within each
phenotypic group (a = A,B), the (log)-expression level of the ith gene sampled from j = 1, 2, . . . , Na

arrays are realizations of the following model

yaij = αj + xaij , xaij := µai + εaij , αj ∼ N(0, η2), εaij ∼ N(0, σ2
i ). (1)

Here αj is a slide-specific factor, µai is the mean for each phenotype. xaij can be viewed as
the oracle expression level, which has biological variation and possibly some other independent
variation but no slide-specific noise. We are interested in testing the following hypotheses for
each i = 1, 2, ...,m:

H
(i)
0 : µAi = µBi , H

(i)
1 : µAi 6= µBi . (2)

Ideally, we would like to remove αj from Model (1) by a normalization method, and then test
hypotheses (2) based on two-sample t-statistics constructed from xaij , the “noise-free” expressions:

t∗i :=
x̄Ai − x̄Bi

σ̂pi

√
1
NA

+ 1
NB

, σ̂pi :=

√∑NA
j=1(xAij − x̄Ai )2 +

∑NB
j′=1(xBij′ − x̄Bi )2

N − 2
. (3)

Here N = NA +NB is the total sample size. We will call these t∗i as the oracle t-statistics hence-
forth. In practice, even the most effective normalization cannot perfectly recover xaij from yaij . Our
previous studies show that commonly used normalization methods can effectively reduce sample
variance explained in part by αj , at a price of introducing certain bias to the normalized expres-
sions, which in turn reduces statistical power and increases type I error rate [6, 5].

In this study, we take a completely different approach. We will first compute pairwise differences
called “deltas”, defined as follows:

δaik,j := yaij − yakj = xaij − xakj = µai − µak + εaij − εakj ∼ N(µai − µak, σ2
i + σ2

k). (4)

Next, we compute two-sample t-statistics based on these deltas for all i = 1, 2, . . . ,m; k =
1, 2, . . . ,m; and i 6= k

tik :=
δ̄Aik − δ̄Bik

spik

√
1
NA

+ 1
NB

, spik :=

√∑NA
j=1(δAik,j − δ̄Aik)2 +

∑NB
j′=1(δBik,j′ − δ̄Bik)2

N − 2
. (5)

Let us denote the vector (ti1, ti2, . . . , ti,i−1, ti,i+1, . . . , tim)T , by ~ti·. Once we obtain ~ti·, we can
estimate the oracle statistic, t∗i , by one of the following three approaches:

1. Sample mean. t̂
(mean)
i :=

√
2

m− 1

∑
k 6=i tik. The use of the multiplicative coefficient

√
2 will be

justified later.

2. Sample median. t̂
(med)
i :=

√
2×Med(~ti·). Again, the coefficient

√
2 will be justified later.

3. A robust estimator median fold trimmed median (MFTM), t̂
(robust)
i , defined as follows.
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(a) Filter out a proportion (say c = 20%) of the most extreme test statistics from ~ti. Here
the most extreme values are determined by |tij |, the absolute values of tij . This step
ensures that most, if not all, δij ’s normalized with DEGs will be excluded. Again we need
to reiterate that filtering out 20% of tij according to |tij | is not equivalent to filtering
out 10% of smallest tij and 10% of largest tij . If up/down regulations are unbalanced,
filtering according to |tij | will automatically take care of it yet filtering based on removing
the smallest and largest 10% tij ’s will result in some bias.

(b) Now estimate the center from the rest 1 − c of the δij ’s. We use the median for this
purpose.

(c) In the end, we still need to multiply the trimmed median by
√

2.

1.2 The conditional interpretation of the estimation procedure

Because tik are computed from the difference of the ith gene expression and all the rest genes,
they are correlated by construction. Besides, t∗i , the oracle statistic, is not a population character-
istic so the very “estimation” needs to be interpreted in an unconventional way. In this section, we
will provide a rigorous interpretation based on conditional inference.

Proposition 1.1. When conditioned on εaij, δ
a
ik,j and δaik′,j are independent, for all k 6= k′ and

k, k′ 6= i.

Proof. The proof is trivial because εaij is the source of randomness of the ith gene. Once it is fixed
by conditioning, the only source of randomness in δaik,j is from εakj , which are independent of each
other for different j’s.

Corollary 1.2. When conditioned on εaij, any tik and tik′ in ~ti (k 6= k′) are independent.

Apparently, the above corollary is true because tik depends only on the values of δaik,j and tik′

depends on δaik′,j ; and we already know that δaik,j and δaik′,j are conditionally independent. The
relationship can be seen more clearly from the following flow chart:

tik ←− δaik,j ←− εakj , (given εaij)

tik′ ←− δaik′,j ←− εak′j , (given εaij)
(6)

Let us denote by S0 the set of all NDEGs (null genes) and S1 the set of all DEGs. Obviously,
dk := µAk − µBk = 0 for k ∈ S0 and dk 6= 0 for k ∈ S1. Simple calculations lead to the following
conclusions.

Proposition 1.3. When conditioned on εaij, the sample mean difference of deltas, δ̄Aik− δ̄Bik, follows
a normal distribution

δ̄Aik − δ̄Bik ∼ N

µAi − µBi︸ ︷︷ ︸
di

−(µAk − µBk︸ ︷︷ ︸
dk

) + ( ε̄Ai − ε̄Bi︸ ︷︷ ︸
cond. mean diff.

), σ2
k

(
1

NA
+

1

NB

) . (7)
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Proof. We can write δ̄Aik in terms of ε̄Ai and ε̄Ak :

δ̄Aik =
1

NA

NA∑
j=1

δAik,j

=
1

NA

NA∑
j=1

(yAij − yAkj)

=
1

NA

NA∑
j=1

(xAij − xAkj)

=
1

NA

NA∑
j=1

[(µAi + εAij)− (µAk + εAkj)]

= µAi − µAk + ε̄Ai − ε̄Ak .

Similarly,
δ̄Bik = µBi − µBk + ε̄Bi − ε̄Bk .

Therefore, we have the following (conditional) distributions:

δ̄Aik

∣∣∣εAij ∼ N (µAi − µAk , 1

NA
σ2
k

)
δ̄Bik

∣∣∣εBij ∼ N (µBi − µBk , 1

NB
σ2
k

)
δ̄Aik − δ̄Bik

∣∣∣εi· ∼ N (di − dk + (ε̄Ai − ε̄Bi ), (
1

NA
+

1

NB
)σ2
k

)
E
(
δ̄Aik − δ̄Bik

∣∣∣εi·) = di − dk + (ε̄Ai − ε̄Bi )

= x̄Ai − x̄Bi − dk,

Var
(
δ̄Aik − δ̄Bik

∣∣∣εi·) = σ2
k

(
1

NA
+

1

NB

)
.

Proposition 1.4. Sample variance of deltas computed in each phenotypic group, denoted by (saik)
2,

a = A,B, has the following non-central χ2 distribution conditional on εai·

(Na − 1)(saik)
2

σ2
k

∼ χ2
Na−1;λaik

, λaik =
(Na − 1)(σ̂aε,i)

2

σ2
k

. (8)

Here (σ̂aε,i)
2 := 1

Na−1

∑Na
j=1 (εij − ε̄i·)2 is the sample variance of εai·.

Proof. By definition,

(saik)
2 :=

∑Na
j=1

(
δaik,j − δ̄aik

)2

Na − 1

=

∑Na
j=1

(
εaij − ε̄ai −

(
εakj − ε̄ak

))2

Na − 1

=
1

Na − 1
(εai· − εak·)

T

(
I − 1

Na
J

)
(εai· − εak·) .
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Here J denotes an Na ×Na-dimensional matrix with all entries being 1. Simple calculation shows
that (I − 1

nJ) is symmetric, idempotent, with rank Na− 1. In fact, it is the projection matrix onto
span(1)⊥, where 1 is a vector of all 1s. When conditioned on εaij , ε

a
ij − εakj is a normal distribution

with mean εaij and variance σ2
k. Therefore

(Na − 1)(saik)
2

σ2
k

∼ χ2
Na−1;λaik

, λaik = (εai·)
T

(
I − 1

Na
J

)
εai· =

(Na − 1)(σ̂aε,i)
2

σ2
k

.

Corollary 1.5. The pooled sample variance, (spik)
2 :=

(NA−1)(sAik)
2
+(NB−1)(sBik)

2

N−2 , has the following

conditional non-central χ2 distribution representation

N − 2

σ2
k

· (spik)
2 ∼ χ2

N−2;λik
, λik =

(N − 2)(σ̂pε,i)
2

σ2
k

. (9)

Here N = NA+NB is the total sample size and (σ̂pε,i)
2 is the pooled sample variance of εi computed

from both phenotypic groups.

Proof. This corollary is a direct consequence of Proposition 1.4 and the additivity of noncentral
χ2-distribution.

Proposition 1.6. The sample mean and sample variance of deltas are independent conditional on
εi· in each phenotypic group. Hence, the sample mean difference and pooled sample variance of
deltas are independent.

Proof. This is just because εakj − ε̄ak is independent of ε̄ak, for all j.

Based on Proposition 1.3, Corollary 1.5, and Proposition 1.6, we have the following conclusion.

Lemma 1.7. tik computed from deltas follows a doubly non-central t-distribution as follows

tik ∼ t′′ (N − 2, µik, λik) , µik :=
x̄Ai − x̄Bi − dk
σk

√
1
NA

+ 1
NB

, λik :=
(N − 2)(σ̂pε,i)

2

σ2
k

. (10)

Proof.

tik =
√
N − 2 ·

δ̄Aik−δ̄
B
ik

σk
√

1
NA

+ 1
NB√

N−2
σk
· spik

∼
√
N − 2 · N (µik, 1)

χN−2;λik

.

Lemma 1.8. The conditional mean value of tik given εi·, which is a doubly noncentral t-distribution,
has the following large-sample approximation

E (tik|εi·) = µik

√
N − 2

2
·

Γ
(
N−3

2

)
Γ
(
N−2

2

) ·H (1

2
,
N − 2

2
;−λik

2

)
=

µik√
1 +

(σ̂pε,i)
2

σ2
k

+O(N−1)

=
x̄Ai − x̄Bi − dk√

σ2
k + σ̂2

ε,i ·
√

1
NA

+ 1
NB

+O(N−1).

(11)
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In particular, for k ∈ S0,

E(tik|εi·) =

√√√√ 1

1 +
(σ̂pε,i)

2

σ2
k

· t∗i +O(N−1). (12)

for k ∈ S1,

E(tik|εi·) =

√√√√ 1

1 +
(σ̂pε,i)

2

σ2
k

· t∗i +
dk√

σ2
k + σ̂2

ε,i ·
√

1
NA

+ 1
NB

+O(N−1)

=

√√√√ 1

1 +
(σ̂pε,i)

2

σ2
k

· t∗i + dk ·O(N) +O(N−1) = O(N).

(13)

Proof. For simplicity, let us skip “|εi·” in the following derivation. Namely, all expectations/variance
in the following proof are conditioned on εi·.

Let us denote
δ̄Aik−δ̄

B
ik

σk
√

1
NA

+ 1
NB

by U and
σk
spik

by W , so tik := U ·W . By construction, we know that

U ∼ N (µik, 1), (N − 2)W−2 = (N − 2) ·
(spik)

2

σ2
k

∼ χ2
N−2;λik

, and U , W are independent.

First, we will calculate some useful moments of W based on the large sample approximation.

Since (spik)
2 follows a conditional scaled non-central χ2-distribution, there exists a sequence of

i.i.d. normal random variables u1, u2, . . . , uN−2 such that

W−2 :=
(spik)

2

σ2
k

d
=

∑N−2
l=1 u2

l

N − 2
= u2, ul ∼ N

(
σ̂pε,i
σk

, 1

)
, u2

l ∼ χ2

1;
(σ̂
p
ε,i

)2

σ2
k

.

Eu2
l =

(σ̂pε,i)
2

σ2
k

+ 1, var
(
u2
l

)
= 2 + 4 ·

(σ̂pε,i)
2

σ2
k

, SK(u2
l ) =

√
8(1 + 3 · (σ̂pε,i)

2

σ2
k

)

(1 + 2 · (σ̂pε,i)
2

σ2
k

)3/2
.

Based on Taylor expansion, we have

EW := E
(
u2
)−1/2

=
(
Eu2

l

)−1/2
+

3

8
·
(
Eu2

l

)−5/2 ·
var
(
u2
l

)
N

+O(N−2)

=
1√

1 +
(σ̂pε,i)

2

σ2
k

+

3

(
1 + 2

(σ̂pε,i)
2

σ2
k

)
4

(
1 +

(σ̂pε,i)
2

σ2
k

)5/2
·N−1 +O(N−2).

=
1√

1 +
(σ̂pε,i)

2

σ2
k

+O(N−1).

(14)
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EW 2 := E
(
u2
)−1

=
(
Eu2

l

)−1 − 1

2
·
(
Eu2

l

)−2 ·
var
(
u2
l

)
N

+O(N−2)

=
1

1 +
(σ̂pε,i)

2

σ2
k

+O(N−1).
(15)

EW 3 := E
(
u2
)−3/2

=

(
1 +

(σ̂pε,i)
2

σ2
k

)−3/2

+O(N−1). (16)

Therefore, based on the independence of the denominator and numerator,

E(tik|εi·) = E

 δ̄Aik − δ̄Bik
σk

√
1
NA

+ 1
NB

 · E (u2
)−1/2

=
µik√

1 +
(σ̂pε,i)

2

σ2
k

+O(N−1)

=
x̄Ai − x̄Bi − dk√

σ2
k + σ̂2

ε,i ·
√

1
NA

+ 1
NB

+O(N−1).

As a special case, for k ∈ S0, dk = 0, therefore

E (tik|εi·) =

√√√√ 1

1 +
(σ̂pε,i)

2

σ2
k

· t∗i +O(N−1).

Similarly, we conclude that for k ∈ S1, E (tik|εi·) is dominated by the
dk√

σ2
k + σ̂2

ε,i ·
√

1
NA

+ 1
NB

term, which approaches ∞ with rate O(N).

Below we will prove a similar lemma for the median. But first, we will need to understand the
asymptotic properties of the higher order moments of tik.

Proposition 1.9. The conditional variance and skewness of tik have the following asymptotic
representation

var (tik|εi·) = 1 +
(σ̂pε,i)

2

σ2
k

+O(N−1), (17)

and
SK (tik|εi·) = O(N−1). (18)

Proof. Let us use the same decomposition as in the previous proof, namely tik := U ·W .
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For variance, we have

Var (UW ) = E[(UW )− E (UW )]2

= E
(
U2W 2

)
− E2 (UW )

= E
(
U2
)
· E
(
W 2
)
− (EU)2 · (EW )2

=
(

Var(U) + (EU)2
)
·
(

Var(W ) + (EW )2
)
− (EU)2 · (EW )2

=
(

Var(U) + (EU)2
)

Var(W ) + Var(U) (EW )2 + (EU)2 · (EW )2 − (EU)2 · (EW )2

=
(

Var(U) + (EU)2
)

Var(W ) + Var(U) (EW )2

=
(1 + µ2

ik)σ
2
W

N
+ 1 +

(σ̂pε,i)
2

σ2
k

+O(N−1)

= 1 +
(σ̂pε,i)

2

σ2
k

+O(N−1).

For skewness, we have the following computation. Denote 1√
1+

(σ̂
p
ε,i

)2

σ2
k

by νik,

E (UW − E(UW ))3 = E[(UW )3 − 3 (UW )2 · E (UW ) + 3 (UW ) · E2 (UW )− E3 (UW )]

=
(
EU3

) (
EW 3

)
− 3

(
EU2

) (
EW 2

)
(EU)(EW ) + 3(EU)3(EW )3 − (EU)3(EW )3

=
(
EU3

) (
EW 3

)
− 3

(
EU2

) (
EW 2

)
(EU)(EW ) + 2(EU)3(EW )3

=
(
µ3
ik + 3µik

) (
ν3
ik +O(N−1)

)
− 3

(
1 + µ2

ik

) (
ν2
ik +O(N−1)

)
· µik ·

(
νik +O(N−1)

)
+ 2µ3

ik

(
νik +O(N−1)

)3
= O(N−1).

So the skewness is

SK(UW ) :=
E (UW − E(UW ))3

Var (UW )3/2
= O(N−1).

Next, we prove that both the median and mean of tik converges to
√

1
2 · t

∗
i , up to an O(N−1)

difference.

Lemma 1.10. The conditional median of tik is

Med(tik|εi·) =
x̄Ai − x̄Bi − dk√

σ2
k + σ̂2

ε,i ·
√

1
NA

+ 1
NB

+O(N−1). (19)

In particular, for k ∈ S0,

Med(tik|εi·) =

√√√√ 1

1 +
(σ̂pε,i)

2

σ2
k

· t∗i +O(N−1). (20)

For k ∈ S1

Med(tik|εi·) = O(N). (21)
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Proof. Based on Cornish-Fisher expansion,

Med(tik|εi·) = E(tik|εi·) +
SK(tik) · (E(tik|εi·)− 1)

6
√
N

+O(N−1). (22)

However, the skewness of tik is of order N−1. so

Med(tik|εi·) = E(tik|εi·) +O(N−1) =
x̄Ai − x̄Bi − dk√

σ2
k + σ̂2

ε,i ·
√

1
NA

+ 1
NB

+O(N−1).

Putting all the above conclusions together, we have the following theorem.

Theorem 1.11. Assume that σ2
k ≡ σ2 for all k (interchangeable covariance structure). The con-

ditional mean and median of tik, have the following asymptotic representation.
For k ∈ S0,

E(tik|εi·)
Pεi·−→

√
1

2
· t∗i +O(N−1),

Med(tik|εi·)
Pεi·−→

√
1

2
· t∗i +O(N−1).

(23)

For k ∈ S1, both the mean and median approaches infinity with rate O(N):

E(tik|εi·)
Pεi·−→ Sgn(dk) · ∞,

Med(tik|εi·)
Pεi·−→ Sgn(dk) · ∞.

(24)

Here Sgn(dk) is the sign of dk and Pεi· stands for the probability law of εi·.

Proof. We only need to use the strong law of large number (SLLN) of Pεi· ,

σ̂2
ε,i

Pεi·−→ σ2.

Therefore √√√√ 1

1 +
(σ̂pε,i)

2

σ2
k

Pεi·−→
√

1

2
.

The divergence result for k ∈ S1 follows from the fact that
dk√

σ2
k + σ̂2

ε,i ·
√

1
NA

+ 1
NB

is the domi-

nating term if dk 6= 0.

Remark. Equations (23) justifies the use of multiplicative coefficient
√

2 in super-delta method
when estimating the oracle t-statistic. The asymptotic behavior of the “S0-pairing” means that
when N →∞, the bulk of the empirical distribution of ~ti converges to a (constant times) noncentral
Student t-distribution, centered at the oracle t-statistic. On the other hand, the “S1-pairing”, which
constitutes two smaller proportions (one for up- and one for down-regulated genes) of the empirical
distribution of ~ti, will “move away” from that bulk distribution.

This phenomenon is illustrated in Figure 1.
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Figure 1: An illustration of different asymptotic behavior of tik. The large central density represents
those tik paired with NDEGs (k ∈ S0). Two smaller densities represents tik calculated from pairing
with up- and down-regulated genes. The proportions are: π0 = 0.85 for true NDEGs; π+

1 = 0.05
for down-regulated genes; π−1 = 0.10 for up-regulated genes. Oracle t∗ is set to be 1.7 (represented
by the red vertical line). When the up- and down-regulation effect sizes are fixed and N becomes
larger, the centers for the two smaller densities of tik converges to −∞ and +∞, respectively.
Consequently, a 20% median fold trim (represented by the two dotted vertical lines) can effectively
remove the two smaller clusters of tik.
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