Supplementary Table 1. Studies documenting racial, ethnic, and/or socioeconomic disparities in exposures to EDCs associated with metabolic disease. ‡: Statistical comparisons between groups not reported, or not possible due to varying detection limits and high non-detect frequency. §: group differences are significant, but single comparisons between groups were not reported. †: Values were estimated from graphs using Digitizelt software (<u>http://www.digitizeit.de</u>). *Denotes statistically significant differences at P<0.05 or lower.

<u>Abbreviations</u>: AA, African-American; BBP, benzyl butyl phthalate; CI, confidence interval; DBP, dibutyl phthalate; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; DEHP, di-2-ethylhexyl phthalate; GM: geometric mean; GSD, geometric standard deviation; GSE, geometric standard error; HCB, hexachlorobenzene; β-HCH, β-hexachlorocyclohexane; LSGM, least square geometric mean; MA, Mexican-American; MBzP, mono-benzyl phthalate; MEP, monoethyl phthalate; MnBP, mono-n-butyl phthalate; NHANES: National Health and Nutrition Examination Survey; NHW, Non-Hispanic White; NO_x, nitrogen oxides; PM: particulate matter; ppb, parts per billion; ppm, parts per million; Ref., reference; RSE, relative standard error.

	Polychlorinated Biphenyls (PCBs)								
Reference	Population	Assessment	Comparisons	Pollutants	Differences				
James et	Pregnant	Percent	Non-White vs. White	PCB 105	6.57 [-7.32-22.1]†				
al., 2002	Women from	difference of		PCB 110	-1.84 [-20.5-21.2]†				
(1)	the Child	serum PCBs		PCB 118	-1.37 [-11.8-10.2]†				
	Health and	between [95%		PCB 137	-15.1 [-30.9-3.12]†				
	Development	CI]		PCB 138	9.5 [-1.69-22.2]†				
	study cohort			PCB 153	5.35 [-4.3-15.9]†				
	1963-1967			PCB 170	6.68 [-3.19-18.5]†				
				PCB 180	12.8 [2.52-24.2]†*				
				PCB 187	17.9 [5.83-31.9]†*				
				Sum PCBs	6.28 [-2.05-15.9]				
Krieger et al. 1994 (2)	Women from the Northern California	Adjusted mean difference of	AA vs. NHW	PCBs (not specified)	1.4 [0.7-2.1]*				
	Region Kaiser	serum PCBs (ppb) [95%	AA vs. NHW (Breast Cancer Patients)		1.7 [0.8-2.5]*				
	Permanente Medical Care Program, 1964-1971	CI]	AA vs. NHW (Control Patients)		1.1 [0.0-2.2]				

Weintraub and Birnbaum, 2008 (3)	National Adipose Tissue Survey 1972- 1979	Population percentage with >3 ppm PCB in adipose tissue; no statistical comparisons are reported	Non-White vs. White	Total PCBs	5.05 vs. 4.52 (1972)† 11.0 vs. 4.68 (1973)† 5.58 vs. 4.89 (1974)† 12.6 vs. 7.00 (1975)† 12.6 vs. 6.03 (1976)† 14.6 vs. 8.96 (1977)† 10.1 vs. 8.02 (1978)† 6.11 vs. 4.68 (1979)† 9.71 vs. 6.10 (Average, '72-'79)*
Lordo et al.	National	Average	Non-White vs. White	Tetrachlorobiphenyl	73.0 [22] vs. 53.0 [11]
1996 (4)	Human	adipose levels		Pentachlorobiphenyl	141 [30] vs. 133 [14]
	Adipose Tissue	(ng/g) [RSE]		Hexachlorobiphenyl	435 [15] vs. 289 [8]
	Survey 1986			Heptachlorobiphenyl	195 [31] vs. 111 [24]
Wang et	Pregnant	GM for serum	AA vs. NHW	PCB-126 (pg/g)	20.3 [16.9–24.5] vs.
al., 2009	women from	lipid adjusted			13.9 [12.4–15.6]*
(5)	NHANES	PCBs [95%		PCB-138/158 (ng/g)	21.7 [19.4–24.2] vs.
	1999-2002	CI]			16.2 [15.1–17.3]*
				PCB-153 (ng/g)	30.5 [28–33.2] vs. 22.8 [21.5–24.2]*
				PCB-169 (pg/g)	13.4 [12.1–14.9] vs.
					10.9 [9.9–12]*
				PCB-180 (ng/g)	17.2 [16.1–18.4] vs.
		-			14.1 [13.2–15]*
			MA vs. NHW	PCB-126 (pg/g)	15.9 [14.2–17.7] vs.
				PCB-138/158 (ng/g)	13.9 [12.4–15.6] 13.9 [12.6–15.4] vs.
				1 CD-130/130 (lig/g)	16.2 [15.1–17.3]*
				PCB-153 (ng/g)	18.2 [16.5–20] vs. 22.8
					[21.5–24.2]*
				PCB-169 (pg/g)	9.4 [8.7–10.2] vs. 10.9
					[9.9–12]*
				PCB-180 (ng/g)	12.3 [11.5–13.2] vs.

					14.1 [13.2–15]*
Bouchard	NHANES	GM [GSD] of	AA vs. NHW	Sum of 12 non-	410 [1.74] vs. 283
et al., 2014	1999-2002	serum PCBs		dioxin and dioxin-like	[1.67]*
(6)	Elders 60-84	(ng/g lipid)	MA vs. NHW	PCBs	206 [1.76] vs. 283
	years old				[1.67]*
			First PIR quartile vs.		244 [1.80] vs. 294
			fourth quartile		[1.72]
Xue et al.,	NHANES	Total blood	AA vs. NHW (>30 years	30 PCB congeners	1.97 vs. 1.54†
2014 (7)	2001-2004	concentration	old)	-	
		of 30 PCB	AA vs. NHW (50+ years		3.08 vs. 2.02
		congeners	old)	-	
		(ng/g lipid)	MA vs. NHW (>30 years		1.50 vs. 1.54†
			old)		
			MA vs. NHW (50+ years		1.57 vs. 2.02
				-	7.00 4.70
			AA vs. NHW (50+ years		7.68 vs. 4.72
			old, female, 95 th		
			percentile)		7.70 vs. 4.21
			AA vs. NHW (50+ years old, male, 95 th		7.70 vs. 4.21
			percentile)		
Sjodin et	NHANES	Serum PCB	AA vs. NHW Females	PCB 153 in people	146.5 ± 27.7 vs. 62.1 ±
al., 2014	2003-2008	153 (ng/g	('03-'04)	≥60 years old	7.8*
(8)	Women and	lipid) ± 95%CI	AA vs. NHW Females		129.5 ± 74.8 vs. 58.0 ±
(-)	men > 60		('05-'06)		10.8
	years of age		AA vs. NHW Females	-	102.4 ± 15.6 vs. 56.4 ±
			('07-'08)		7.8*
			AA vs. NHW Males ('03-		153 ± 53.6 vs. 65.0 ±
			ʻ04)		11.0*
			AA vs. NHW Males ('05-		103.5 ± 40.9 vs. 60.4 ±
			ʻ06)		6.2
			AA vs. NHW Males ('07-	1	94.5 ± 29.3 vs. 63.9 ±
			ʻ08)		10.6
			MA vs. NHW Females	1	39.5 ± 11.4 vs. 62.1 ±
			('03-'04)		7.8*

			MA vs. NHW Females		36.2 ± 9.3 vs. 58.0 ±
			('05-'06) MA vs. NHW Females		10.8*
					40.9 ± 32.1 vs. 56.4 ±
			('07-'08)		7.8
			MA vs. NHW Males ('03-		36.7 ± 5.5 vs. 65.0 ±
			·04)		11.0*
			MA vs. NHW Males ('05-		37.3 ± 16.8 vs. $60.4 \pm$
			·06)		6.2
			MA vs. NHW Males ('07-		39.5 ± 8.9 vs. $63.9 \pm$
			(08)		10.6*
			AA vs. NHW Females	PCB 153 in people	53.2 ± 11.9 vs. 34.2 ±
			('03-'04)	40-59 years old	3.5*
			AA vs. NHW Females		41.2 ± 10.1 vs. 27.8 ±
			('05-'06)		2.5*
			AA vs. NHW Females		35.7 ± 8.0 vs. 27.7 ±
			('07-'08)		2.3
			AA vs. NHW Males ('03-		59.9 ± 27.2 vs. 38.2 ±
			<u>'04)</u>		9.4
			AA vs. NHW Males ('05-		38.8 ± 15.3 vs. 36.4 ±
			(06)		16.4
			AA vs. NHW Males ('07-		41.0 ± 18.6 vs. 28.2 ±
			⁽⁰⁸⁾ MA vs. NHW Females		4.8 23.7 ± 10.5 vs. 34.2 ±
			('03-'04) MA vs. NHW Females		3.5 19.1 ± 3.3 vs. 27.8 ±
			('05-'06)		19.1 ± 3.3 vs. 27.0 ± 2.5*
			MA vs. NHW Females		2.3 20.9 ± 6.0 vs. 27.7 ±
			('07-'08)		20.9 ± 0.0 vs. 27.7 ± 2.3
			MA vs. NHW Males ('03-		26.5 ± 7.3 vs. 38.2 ±
			(04)		9.4
			MA vs. NHW Males ('05-		16.5 ± 2.6 vs. 36.4 ±
			·06)		16.4*
			MA vs. NHW Males ('07-		22.4 ± 6.1 vs. 28.2 ±
			·08)		4.8
Patterson	NHANES	Serum PCBs	AA vs. NHW (GM)	Sum of 35 PCBs	148.3 [129.0-170.5]

et al., 2009 (9)	2003-2004	(ng/g lipid) [95% CI]			vs. 142.7 [134.2- 151.9]
			MA vs. NHW (GM)	1	71.2 [61.0-83.1] vs.
					142.7 [134.2-151.9]*
			AA vs. NHW (90 th		604.6 [454.4-830.6]
			percentile)		vs. 406.0 [363.9-
					433.8]*
			MA vs. NHW (90 th		188.2 [155.8-220.3]
			percentile)		vs. 406.0 [363.9-
				4	433.8]*
			AA vs. NHW (95 th		984.3 [631.1-1426.9]
			percentile)		vs. 508.8 [461.8-
			• • • • • • • • • • • • • • • • • • •	-	539.2]*
			MA vs. NHW (95 th		245.1 [192.7-323.9]
			percentile)		vs. 508.8 [461.8-
\A/in alla ana					539.2]*
Windham	6-8 year old	Serum PCB	AA vs. NHW	PCB 118	2.4 vs. 3.0*
et al., 2010 (10)	girls from California and	GM (ng/g lipid)		PCB 138/158	3.6 vs. 4.5*
(10)	Ohio 2005-	iipid)		PCB 153	4.2 vs. 6.0*
	2007			PCB 170	1.0 vs. 1.4*
	2001			PCB 180	2.2 vs. 3.2*
			Latinas vs. NHW	PCB 118	2.4 vs. 3.0*
				PCB 138/158	3.6 vs. 4.5*
				PCB 153	4.4 vs. 6.0*
				PCB 170	0.9 vs. 1.4*
				PCB 180	2.1 vs. 3.2*
			ganochlorine (OC) Pestic		.
Reference	Population	Assessment	Comparisons	Pollutants	Differences
Krieger et	Women from	Adjusted	AA vs. NHW	DDE	13.2 [5.6, 20.9]*
al. 1994 (2)	the Northern	mean			
	California	difference	AA vs. NHW (Breast	4	15.5 [4.0, 26.9]*
	Region Kaiser	(ppb) [95% CI]	Cancer patients)		

	Permanente Medical Care Program, 1964-1971		AA vs. NHW (Control patients)		11.6 [1.4, 21.8]**
Davies et al., 1969	Dade County, FL, study	Mean adipose (ppm) and	DDE	AA vs. NHW (adipose)	10.8 vs. 5.5*
(11)	population, 1965-1967	whole blood (ppb) DDE		AA vs. NHW (serum)	16 vs. 8*
Davies et al., 1972 (12)	Dade County, FL, residents, 1970-1971	Mean [SD] serum DDT and DDE	Lowest Social Classes vs. Highest Social Classes (AA)	DDT	10.4 vs. 8.0*
		(ppb)	Lowest Social Classes vs. Highest Social Classes (NHW)		7.4 vs. 5.1*
			AA vs. NHW (Highest Social Class)		7.7 [2.6] vs. 5 [2.7] ‡
			AA vs. NHW (Lowest Social Class)		11.4 [7.0] vs. 7.9 [6.0] ‡
			Lowest Social Classes vs. Highest Social Classes (AA)	DDE	46.8 vs. 35.3*
			Lowest Social Classes vs. Highest Social Classes (NHW)		31.2 vs. 24.3*
			AA vs. NHW (Highest Social Class)		33.1 [11.3] vs. 22.3 [10.4]
			AA vs. NHW (Lowest Social Class)		50.5 [30.1] vs. 33.9 [25.2]
James et	Pregnant	Percent	Non-White vs. White	p,p'-DDE	53.4 [38.3-70.8]†*
al., 2002	Women from	difference of		o,p'-DDT	24.5 [6.53-44.2]†*
(1)	the Child	serum [95%		<i>p,p</i> '-DDT	48.0 [32.9-64.2]†*
	Health and Development Study Cohort 1963-1967	CI]		sum DDTs	53.5 [38.6-69.9]†*

Lordo et al.	National	Average	Non-White vs. White	pp'-DDT	301 [25] vs. 152 [15]
1996 (4)	Human	adipose		pp'-DDE	2780 [25] vs. 2250 [13]
	Adipose	concentration		β-НСВ	212 [32] vs. 146 [21]
	Tissue	s (ng/g) [RSE]		Heptachlor epoxide	51.6 [19] vs. 58.8 [8]
	Survey 1986			Oxychlordane	103 [22] vs. 116 [8]
				trans-nonachlor	131 [32] vs. 130 [14]
				Dieldrin	54.1 [41] vs. 45.6 [21]
Wang et	Pregnant	GM for serum	AA vs. NHW	β-HCH (ng/g)	7.3 [6.5–8.3] vs. 6.7
al., 2009	women in	lipid adjusted		P ([6.2–7.2]
(5)	NHANES	pesticides		<i>p</i> , <i>p</i> '-DDE (ng/g)	311.6 [253.2–383.4]
	1999-2002	[95% CI]			vs. 177.2 [156.7–
					200.3]*
				trans-nonachlor	18.2 [16–20.8] vs. 13.9
				(ng/g)	[12.7–15.2]*
			MA vs. NHW	β-HCH (ng/g)	19 [16–22.5] vs. 6.7
					[6.2–7.2]*
				<i>p,p</i> '-DDE (ng/g)	806.8 [674.6–964.8]
					vs. 177.2 [156.7–
					200.3]*
				trans-nonachlor	14.8 [13.2–16.7] vs.
				(ng/g)	13.9 [12.7–15.2]
Harley et	Pregnant	GM (ng/g	CHAMACOS vs.	p,p'-DDE	1,500 [49 - 159,303]
al., 2008	women in in	lipid) [range]	NHANES		vs. 210.5 [5.4 -
(13)	the Center for	for			17,900] ‡
	the Health	CHAMACOS	CHAMACOS vs.	p,p'-DDT	24 [2 - 33,174] vs. 6.8
	Assessment	cohort,	NHANES		[3.3 - 1,070] ‡
	of Mothers	Median (ng/g			
	and Children	lipid) [range]	CHAMACOS vs.	o,p'-DDT	2 [0.1 - 1,878] vs.
	of Salinas	for NHANES	NHANES	0,9 001	<pre>2 [0.1 1,070] v3. <lod‡< pre=""></lod‡<></pre>
	(CHAMACOS				~LOD+
) cohort,				
	1999-2000				

Bradman et al., 2007 (14)	Pregnant women in the CHAMACOS cohort, 1999- 2000	Median serum pesticides (ng/g lipid)	CHAMACOS vs. NHANES	HCB	64.9 vs. <lod‡< th=""></lod‡<>
			CHAMACOS vs. NHANES	β-НСН	36.9 vs. 5‡
Windham	6-8 year old	GM (ng/g	AA vs. NHW	НСВ	6.6 vs. 7.8*
et al., 2010	girls from	lipid)	Latinas vs. NHW		7.8 vs. 7.8
(10)	California and		AA vs. NHW	trans-nonachlor	3.4 vs. 4.7*
	Ohio 2005-		Latinas vs. NHW		4.3 vs. 4.7
	2007		AA vs. NHW	p,p-DDE	69.1 vs. 72.1
			Latinas vs. NHW		110.7 vs. 72.1*
Patterson et al., 2009	NHANES 2003-2004	LSGM of serum	AA vs. NHW	НСВ	14.8 [14.3-15.3] vs. 15.0 [14.2-15.8]
(9)		pesticides (ng/g lipid)	MA vs. NHW		17.2 [15.9-18.6] vs. 15.0 [14.2-15.8]*
		[95% CI]	AA vs. NHW	GM of pp'-DDE	262.4 [233.38-294.98] vs. 208.2 [165.00- 262.54]
			MA vs. NHW		444.2 [361.72-545.43] vs. 208.2 [165.00- 262.54]*
			AA vs. NHW	β-HCH at the 75 th percentile	9.60 [8.30-11.90] vs. 12.80 [10.90-14.70]
			MA vs. NHW		23.50 [17.50-29.90] vs. 12.80 [10.90- 14.70]*
			AA vs. NHW	pp'-DDT at the 90 th percentile	17.50 [14.80-25.40] vs. 9.70[8.50-11.20]*
			MA vs. NHW	· ·	24.00 [18.50-33.30]

					vs. 9.70[8.50-11.20]*
			AA vs. NHW	pp'-DDT at the 95 th	30.70 [19.00-53.40]
				percentile	vs. 12.90 [10.70-
				_	16.60]
			MA vs. NHW		48.60 [31.00-71.10] vs. 12.90 [10.70-
					16.60]*
			AA vs. NHW	GM of trans-	14.4 [12.24-16.98] vs.
				nonachlor	15.8 [13.72-18.21]
			MA vs. NHW		10.2 [7.68 - 13.24] vs.
					15.8 [13.72-18.21]*
		[ical Constituents of Air		
Reference	Population	Assessment	Comparisons	Pollutants	Differences
Bell and	215 U.S.	Percent	AA	PM _{2.5}	1.88*
Ebisu, 2012	Census tracts	increase in			
(15)	from 2000- 2006	long-term	Latino	-	0.13
	2006	average exposure per			
		an additional		_	
		10% increase	NHW		-1.37*
		in			
		demographic			
Jones et al.	5921	Ambient GM	AA vs. NHW	PM _{2.5}	16.5 [16.4, 16.6] vs.
2014 (16)	participants	for $PM_{2.5}$		_	15.7 [15.6, 15.8]*
	from the Multi-Ethnic	(µg/m ³), and NOx (ppb)	Latinos vs. NHW		16.9 [16.8, 17.1] vs.
	Study of	NOX (ppb)	AA vs. NHW	NOx	15.7 [15.6, 15.8]* 43.3 [42.2, 44.4] vs.
	Atheroscleros			NOA	33.6 [33.0, 34.4]*
	is, 2000-2002		Latinos vs. NHW		58.7 [57.1, 60.4] vs.
					33.6 [33.0, 34.4]*
Schweitzer	80	Coefficient of	% AA	PM _{2.5}	3.82*
and Zhou,	metropolitan	total .			
2010 (17)	areas in the	exposure: Log	% Latino	_	0.23
	U.S.	(μ x p x e) +1); μ =			0.20
		$+1), \mu =$			

		concentration at pollution monitor, $p =$	%Poverty		8.85*
		population living within ½	% AA	Ozone	2.37*
		mile of monitor, e = total number	% Latino		0.02
		of days monitor reported levels higher than federal standards from 2001- 2003	% Poverty		1.77*
Miranda et al. 2011	U.S. Census demographic	Odds Ratio for a county	% AA	Annual PM _{2.5}	2.73*
(18)	s from 2000, air quality	being in the worst 20% vs.	% Latino		0.83
	data from 587 U.S. counties	best 20% of counties for	% Living in Poverty		3.95*
	from 2005-	each pollution	% AA	Daily PM _{2.5}	1.58*
	2007	metric per increase in	% Latino		1.13
		IQR for each demographic across all U.S. counties	% Living in Poverty		1.92*
Clark et al. 2014 (19)	U.S. population	Population- weighted	Non-White vs. White	NO ₂	14.5 vs. 9.9, 38% Relative Difference*
	demographic	mean (ppb)	AA vs. NHW		13.3 vs. 9.9
	s from 2000,		Latinos vs. NHW		15.6 vs. 9.9
	air pollution data from 2006		Non-White vs. White (children below the poverty line)		14.3 vs. 9.1

			Non-White vs. White (elderly below the poverty line)		14.5 vs. 9.9					
	Bisphenol A (BPA)									
Reference	Population	Assessment	Comparisons	Pollutants	Differences					
Calafat et al., 2008 (20)	NHANES 2003-2004	Adjusted LSGM [95% CI] of Total urinary BPA (µg/L)	Income <\$20,000 vs. >\$45,000	BPA	3.1 [2.7–3.5] vs. 2.5 [2.3–2.7]*					
LaKind and Naiman, 2011 (21)	NHANES 2005-2006	Total urinary BPA (ng/mL)	AA vs. NHW	BPA	Higher urinary BPA levels in AA than NHW, (Wilcoxon test, P< 0.00001); Note: Original article does not provide urinary concentrations					
Nelson et al., 2012 (22)	NHANES 2003-2006	Total urinary median BPA (µg/g creatinine)	Emergency food assistance vs. no food assistance (Children, 6- 11 years olds) Lowest family Income	BPA	Percent change 54 [13 to 112]* 2.5 vs. 1.8 µg/g;					
			vs. highest family income		Percent Change: 22.8 [10.6, 36.4]*					
			Very low food security vs. full food security		2.6 vs. 2.0 μg/g; Percent change: 19.6 [5.6, 35.5]*					
			AA vs. NHW		2.2 vs. 2.2 µg/g					
			MA vs. NHW		1.9 vs. 2.2 µg/g					
Unal et al., 2012 (23)	South Carolina Pilot	Total serum median	AA vs. NHW	BPA	30.13 [0–134.8] vs. 3.14 [0–37.1]*					
	Study of 27 pregnant	[range] BPA (ng/mL)	Latinas vs. NHW		24.46 [0.2–153.5] vs. 3.14 [0–37.1]					
	women		Unemployed vs. Employed		41 [8.55–153] vs. 7.45 [0–43.7]†*					
			Phthalates							

Reference	Population	Assessment	Comparisons	Pollutants	Differences
Koo et al., 2002 (24)	NHANES 1988-1994	Relation between the log of	Monthly family income <\$1,500 vs. ≥\$1,500	BBP	0.23*
		exposure estimates for phthalates and demographic factors	Monthly family income <\$1,500 vs. ≥\$1,500	DEHP	0.68*
Silva et al.,	NHANES	LSGM of	AA vs. NHW	MEP	237.8 vs. 162.1*
2004 (25)	1999-2000	urinary	MA vs. NHW		191.9 vs. 162.1
		phthalates	AA vs. NHW	MBzP	14.7 vs. 15.5
		(µg/L)	MA vs. NHW		13.1 vs. 15.5*
Branch et	2001-2004	GM [GSE] of	AA vs. NHW	MEP	268 [26.5] vs. 127
al., 2015	NHANES,	urinary			[10.7]; Percent
(26)	(20-49 year old women)	phthalates (ng/mL);			change: 48.4 [16.8- 88.6]*
		percent	MA vs. NHW		247 [26.1] vs. 127
		change [95%			[10.7]; Percent
		CI]			change: 58 [24.7-
		- 1			100.8]*
			AA vs. NHW	MnBP	32.3 [2.0] vs. 18.2 [1.0]
					§
			MA vs. NHW		23.7 [2.3] vs. 18.2 [1.0]
					§
Trasande	2003-2008	Mean urinary	AA vs. NHW	Low molecular	1.010 vs. 0.662*
et al., 2013	NHANES,	phthalates	MA vs. NHW	weight phthalates	0.891 vs. 0.662*
(27)	(12-19 years	(µM)	First PIR quartile (poor)		0.982 vs. 0.727*
Kabraalu at	old) NHANES	Multiplicative	vs. fourth PIR quartile Non-white vs. white	DBP molar sum	
Kobrosly et al., 2012	2001-2008,	Multiplicative differences in			1.26 [1.12-1.40]* 1.16 [1.03-1.32]*
(28)	(20-39 year	urinary	Income-to-poverty ratio 0-1 (most poor) vs. 4-5		1.10[1.03-1.32]
(20)	old women)	phthalate	Non-white vs. white	MEP	1.44 [1.24-1.68]*
		levels [95%	Income-to-poverty ratio	MBzP	1.62 [1.37-1.91]*

C	I] 0-1 (most poor) vs. 4-5		
	Food Security (Full,	DBP molar sum	1 (ref), 1.07 [0.87,
	Marginal, Low, Very		1.31], 1.19 [0.97,
	Low)		1.46], 1.30 [0.98,
			1.73]; Trend*
		MBzP	1 (ref), 1.14 [0.97,
			1.35], 1.17 [0.95, 1.45]
			1.24 [0.98, 1.56];
			Trend*

References for Supplementary Table 1

1. James RA, Hertz-Picciotto I, William E, Keller JA, Charles MJ. Determinants of Serum Polychlorinated Biphenyls and Organochlorine Pesticides Measured in Women from the Child Health and Development Study Cohort, 1963–1967. Environ Health Perspect. 2002;110(7):617-24.

2. Krieger N, Wolff MS, Hiatt RA, Rivera M, Vogelman J, Orentreich N. Breast cancer and serum organochlorines: a prospective study among white, black, and Asian women. JNCI: Journal of the National Cancer Institute. 1994;86(8):589-99.

3. Weintraub M, Birnbaum LS. Catfish consumption as a contributor to elevated PCB levels in a non-Hispanic black subpopulation. Environ Res. 2008;107(3):412-7.

4. Lordo RA, Dinh KT, Schwemberger JG. Semivolatile organic compounds in adipose tissue: estimated averages for the US population and selected subpopulations. American journal of public health. 1996;86(9):1253-9.

5. Wang RY, Jain RB, Wolkin AF, Rubin CH, Needham LL. Serum concentrations of selected persistent organic pollutants in a sample of pregnant females and changes in their concentrations during gestation. Environ Health Perspect. 2009;117(8):1244-9.

6. Bouchard MF, Oulhote Y, Sagiv SK, Saint-Amour D, Weuve J. Polychlorinated biphenyl exposures and cognition in older U.S. adults: NHANES (1999-2002). Environ Health Perspect. 2014;122(1):73-8.

7. Xue J, Liu SV, Zartarian VG, Geller AM, Schultz BD. Analysis of NHANES measured blood PCBs in the general US population and application of SHEDS model to identify key exposure factors. J Expo Sci Environ Epidemiol. 2014;24(6):615-21.

8. Sjodin A, Jones RS, Caudill SP, Wong LY, Turner WE, Calafat AM. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the national health and nutrition examination survey: 2003-2008. Environ Sci Technol. 2014;48(1):753-60.

9. Patterson J, Donald G, Wong L-Y, Turner WE, Caudill SP, DiPietro ES, McClure PC, et al. Levels in the US population of those persistent organic pollutants (2003–2004) included in the Stockholm Convention or in other long-range transboundary air pollution agreements. Environmental science & technology. 2009;43(4):1211-8.

10. Windham GC, Pinney SM, Sjodin A, Lum R, Jones RS, Needham LL, et al. Body burdens of brominated flame retardants and other persistent organo-halogenated compounds and their descriptors in US girls. Environmental research. 2010;110(3):251-7.

11. Davies JE, Edmundson WF, Maceo A, Barquet A, Cassady J. An epidemiologic application of the study of DDE levels in whole blood. American Journal of Public Health and the Nations Health. 1969;59(3):435-41.

12. Davies JE, Edmundson WF, Raffonelli A, Cassady JC, Morgade C. The role of social class in human pesticide pollution. American journal of epidemiology. 1972;96(5):334-41.

13. Harley KG, Marks AR, Bradman A, Barr DB, Eskenazi B. DDT exposure, work in agriculture, and time to pregnancy among farmworkers in California. Journal of occupational and environmental medicine/American College of Occupational and Environmental Medicine. 2008;50(12):1335.

14. Bradman A, Schwartz JM, Fenster L, Barr DB, Holland NT, Eskenazi B. Factors predicting organochlorine pesticide levels in pregnant Latina women living in a United States agricultural area. Journal of Exposure Science and Environmental Epidemiology. 2007;17(4):388-99.

15. Bell ML, Ebisu K. Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States. Environmental Health Perspectives. 2012;120(12):1699-704.

16. Jones MR, Diez-Roux AV, Hajat A, Kershaw KN, O'Neill MS, Guallar E, et al. Race/ethnicity, residential segregation, and exposure

to ambient air pollution: the Multi-Ethnic Study of Atherosclerosis (MESA). American journal of public health. 2014;104(11):2130-7.

17. Schweitzer L, Zhou J. Neighborhood air quality, respiratory health, and vulnerable populations in compact and sprawled regions. Journal of the American Planning Association. 2010;76(3):363-71.

18. Miranda ML, Edwards SE, Keating MH, Paul CJ. Making the environmental justice grade: the relative burden of air pollution exposure in the United States. International journal of environmental research and public health. 2011;8(6):1755-71.

19. Clark LP, Millet DB, Marshall JD. National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States. PloS one. 2014;9(4):e94431.

20. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116(1):39-44.

21. LaKind JS, Naiman DQ. Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey. Journal of Exposure Science & Environmental Epidemiology. 2011;21(3):272-9.

22. Nelson JW, Scammell MK, Hatch EE, Webster TF. Social disparities in exposures to bisphenol A and polyfluoroalkyl chemicals: a cross-sectional study within NHANES 2003-2006. Environ Health. 2012;11:10.

23. Unal ER, Lynn T, Neidich J, Salazar D, Goetzl L, Baatz JE, et al. Racial disparity in maternal and fetal-cord bisphenol A concentrations. J Perinatol. 2012;32(11):844-50.

24. Koo J-W, Parham F, Kohn MC, Masten SA, Brock JW, Needham LL, et al. The association between biomarker-based exposure estimates for phthalates and demographic factors in a human reference population. Environmental Health Perspectives. 2002;110(4):405-10.

Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004;112(3):331-8.
Branch F, Woodruff TJ, Mitro SD, Zota AR. Vaginal douching and racial/ethnic disparities in phthalates exposures among

reproductive-aged women: National Health and Nutrition Examination Survey 2001-2004. Environ Health. 2015;14:57.

27. Trasande L, Spanier AJ, Sathyanarayana S, Attina TM, Blustein J. Urinary phthalates and increased insulin resistance in adolescents. Pediatrics. 2013;132(3):e646-55.

28. Kobrosly RW, Parlett LE, Stahlhut RW, Barrett ES, Swan SH. Socioeconomic factors and phthalate metabolite concentrations among United States women of reproductive age. Environmental Research. 2012;115(0):11-7.

Supplementary Table 2. Representative animal and cellular studies linking endocrine disrupting chemicals (EDCs) with metabolic dysfunction.

Metabolic Alteration	Polychlorinated Biphenyls (PCBs)	Organochlorine (OC) Pesticides	Chemicals Constituents of Air Pollution	Bisphenol A (BPA)	Phthalates
Weight Gain and/or Increased Adiposity	(1)	(2)	(3, 4)	(5)	(6)
Glucose Intolerance	(7)	(2)		(8)	(9)
Systemic and/or Cellular Insulin Resistance or Hyperinsulinemia	(7)	(2)	(10)	(8, 11, 12)	(13, 14)
Altered β-cell Function, Reduced β-cell Mass, or Increased Insulitis	(15)	(16)		(12, 17, 18)	(9)
Altered Hepatic Gene Expression, Lipid Handling, and Steatosis	(19, 20)	(20)	(4)	(21)	(22)
Altered Adipocyte Differentiation and Adipose Gene Expression, including Inflammatory Mediators	(1)	(23)	(10)	(11, 24, 25)	(6)
Alterations α-cell Signaling				(26)	

References for Supplementary Table 1

1. Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect. 2008;116(6):761-8.

2. La Merrill M, Karey E, Moshier E, Lindtner C, La Frano MR, Newman JW, et al. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PloS one. 2014;9(7):e103337.

3. Weldy CS, Liu Y, Liggitt HD, Chin MT. In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. PloS one. 2014;9(2):e88582.

4. Ortiz L, Nakamura B, Li X, Blumberg B, Luderer U. In utero exposure to benzo[a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protective. Toxicology letters. 2013;223(2):260-7.

5. Miyawaki J, Sakayama K, Kato H, Yamamoto H, Masuno H. Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb. 2007;14(5):245-52.

6. Hao C, Cheng X, Xia H, Ma X. The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci Rep. 2012;32(6):619-29.

7. Baker NA, Karounos M, English V, Fang J, Wei Y, Stromberg A, et al. Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ Health Perspect. 2013;121(1):105-10.

8. Moon MK, Jeong IK, Jung Oh T, Ahn HY, Kim HH, Park YJ, et al. Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. The Journal of endocrinology. 2015;226(1):35-42.

9. Lin Y, Wei J, Li Y, Chen J, Zhou Z, Song L, et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. American journal of physiology Endocrinology and metabolism. 2011;301(3):E527-38.

10. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009;119(4):538-46.

11. Valentino R, D'Esposito V, Passaretti F, Liotti A, Cabaro S, Longo M, et al. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells. PloS one. 2013;8(12):e82099.

12. Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect. 2006;114(1):106-12.

13. Rajesh P, Sathish S, Srinivasan C, Selvaraj J, Balasubramanian K. Phthalate is associated with insulin resistance in adipose tissue of male rat: role of antioxidant vitamins. J Cell Biochem. 2013;114(3):558-69.

14. Rajesh P, Balasubramanian K. Di(2-ethylhexyl)phthalate exposure impairs insulin receptor and glucose transporter 4 gene expression in L6 myotubes. Hum Exp Toxicol. 2014;33(7):685-700.

15. Fischer LJ, Zhou HR, Wagner MA. Polychlorinated biphenyls release insulin from RINm5F cells. Life Sci. 1996;59(24):2041-9.

16. Yau DT, Mennear JH. The inhibitory effect of DDT on insulin secretion in mice. Toxicol Appl Pharmacol. 1977;39(1):81-8.

17. Alonso-Magdalena P, Garcia-Arevalo M, Quesada I, Nadal A. Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology. 2015;156(5):1659-70.

18. Bodin J, Bolling AK, Becher R, Kuper F, Lovik M, Nygaard UC. Transmaternal bisphenol A exposure accelerates diabetes type 1

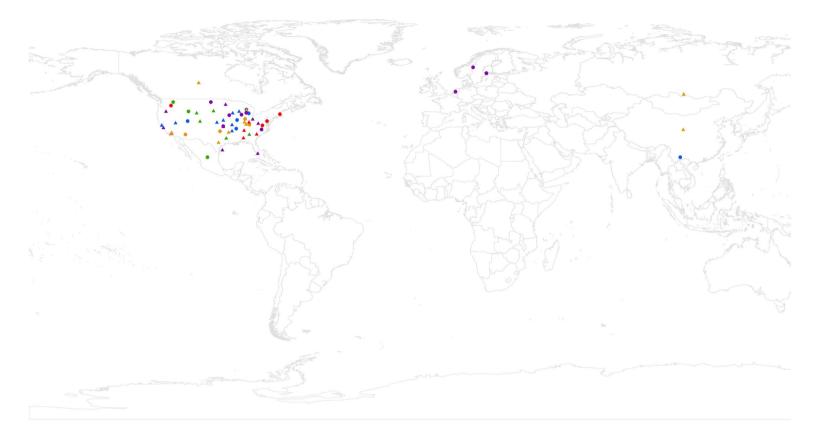
development in NOD mice. Toxicol Sci. 2014;137(2):311-23.

19. Wahlang B, Song M, Beier JI, Cameron Falkner K, Al-Eryani L, Clair HB, et al. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicol Appl Pharmacol. 2014;279(3):380-90.

20. Mulligan C, Kondakala S, Yang EJ, Stokes JV, Stewart JA, Kaplan BL, et al. Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls Promotes hepatic steatosis in male Ob/Ob mice. Environ Toxicol. 2017;32(4):1399-411.

21. Wei J, Sun X, Chen Y, Li Y, Song L, Zhou Z, et al. Perinatal exposure to bisphenol A exacerbates nonalcoholic steatohepatitis-like phenotype in male rat offspring fed on a high-fat diet. The Journal of endocrinology. 2014;222(3):313-25.

22. Maranghi F, Lorenzetti S, Tassinari R, Moracci G, Tassinari V, Marcoccia D, et al. In utero exposure to di-(2-ethylhexyl) phthalate affects liver morphology and metabolism in post-natal CD-1 mice. Reprod Toxicol. 2010;29(4):427-32.


23. Mangum LH, Howell GE, 3rd, Chambers JE. Exposure to p,p'-DDE enhances differentiation of 3T3-L1 preadipocytes in a model of sub-optimal differentiation. Toxicology letters. 2015;238(2):65-71.

24. Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, et al. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect. 2009;117(10):1549-55.

25. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008;116(12):1642-7.

26. Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect. 2005;113(8):969-77.

Supplementary Figure 1. Geographic location of studies linking exposure to endocrine disrupting chemicals (EDCs) with diabetes (from **Table 1**) as well as studies documenting racial, ethnic, and socioeconomic disparities in exposures to diabetogenic EDCs (from **Supplemental Table 1**).

EDC Exposures and Diabetes Risk

- BPA
- Chemical Constituents of Air Pollution
- Organochlorine (OC) Pesticides
- Polychlorinated Biphenyls (PCBs)
- Phthalates

Disparities in EDC Exposures

- BPA
- Chemical Constituents of Air Pollution
- Organochlorine (OC) Pesticides
- Polychlorinated Biphenyls (PCBs)
- Phthalates

SUPPLEMENTARY DATA Healthcare Provider Guide: Strategies for Reducing Environmental Exposures Linked to Diabetes

This Guide was developed based upon interpretation of the current scientific literature. The intent of this document is to assist healthcare practitioners in providing guidance to their patients who seek to take a precautionary approach with regard to their environmental exposures as one component of a comprehensive, individualized diabetes treatment plan. While the chemicals discussed in this Guide have been linked to diabetes, research is ongoing regarding the human health effects arising from these exposures.

Polychlorinated Biphenyls (PCBs)

What are PCBs? PCBs are a class of 209 synthetic chemicals introduced in the U.S. in the 1930s. Based on their unique chemical properties, PCBs were used in electrical, heat transfer, and hydraulic equipment; as plasticizers in paints, plastics, and rubber products; as pigments and dyes; and for a variety of other industrial purposes. PCBs were banned by the U.S. Environmental Protection Agency in 1977; however, they remain detectable in human tissues due to their environmental and biological persistence.

What are sources of exposure to PCBs?

- 1. Contaminated fish, meat, and dairy products, including bottom-feeding freshwater fish that consume PCBladen sediment
- 2. Dusts contaminated with low levels of PCBs coating the surfaces of fruits and vegetables
- 3. Contaminated drinking water arising from PCB leaching from toxic waste sites or old submersible pumps containing PCBs
- 4. Older fluorescent lights with transformers or ballasts containing PCBs
- 5. Deterioration of old building materials, including paints and caulking

Air Pollution

What is air pollution? Air pollution is a diverse mixture of natural and human-made airborne substances that arise from outdoor and indoor sources. These substances include fine particles, noxious gases, ground level ozone, tobacco smoke, mold, pollen, building materials, and household products and chemicals.

What are sources of exposure to air pollution?

- 1. Burning of fossil fuels (including power plants, motorized vehicles, and lawn care equipment)
- 2. Chemical plants, factories, refineries, and gas stations
- 3. Gas appliances, paints, solvents, and household chemicals
- 4. Combustion of organic matter (including fireplaces, wood stoves, charcoal grills, and leaf burning)

Bisphenol A (BPA)

What is BPA? BPA is a common synthetic chemical used in the production of polycarbonate and other plastics commonly used in consumer products. BPA is used to make plastics more rigid. It is also employed in the lining of food and beverage cans and thermal paper used for generating receipts. Exposure to BPA is nearly universal in the U.S. population.

What are sources of exposure to BPA?

- 1. Polycarbonate plastics, including some water and baby bottles, compact discs, impact-resistant safety equipment, and medical devices
- 2. Epoxy resins coating food cans, bottle tops, and water supply pipes
- 3. Thermal paper, including sales receipts
- 4. Some dental sealants and composites

Phthalates

What: Phthalates are a diverse class of widely used synthetic compounds. Phthalates are used to enhance the flexibility of plastics, including those composed of polyvinyl chloride (PVC). They are also used in a variety of personal care products, including fragrances, cosmetics, shampoos, and lotions. They can be found in some

plastic medical devices and some time-released medications. Phthalates are also found as contaminants of the food supply with high fat and processed foods having particularly high levels.

What are sources of exposure to phthalates?

- 1. Plastic food and beverage containers
- 2. Plastic toys, shower curtains, and raincoats
- 3. Personal care products, such as perfumes, hair sprays, deodorants, and nail polishes
- 4. Most consumer products containing "fragrances", including shampoos, air fresheners, and detergents
- 5. Carpeting, vinyl flooring, and plastic coatings on wires, cables, and other equipment
- 6. Medical devices, including IV bags and tubing as well as some extended-release medications
- 7. Polyvinyl chloride (PVC)-containing products
- 8. Contaminated food and water

Organochlorine (OC) Pesticides

What: Organochlorine (OC) pesticides were an early generation of synthetic pesticides used extensively in the U.S. for agriculture and mosquito control. This class includes such pesticides as dieldrin, methoxychlor, and dichlorodiphenyltrichloroethane, commonly known as DDT. They were banned by the U.S. Environmental Protection Agency in the 1970s; however, their use continued in other countries for decades. Indeed, DDT is still used in a few countries for malaria control. Largely because of their environmental and biological persistence, several OC pesticides and their metabolites are still measurable in the U.S. population.

What are sources of exposure to OC pesticides?

- 1. Some high-fat dairy products, high-fat meats, and fatty fish
- 2. Dust and soil from past use
- 3. Some shampoos used to treat lice that contain lindane
- 4. Exposures outside the U.S.

Data Sources and Further Reading

Polychlorinated Biphenyls (PCBs)

United States Environmental Protection Agency https://www.epa.gov/pcbs/learn-about-polychlorinated-biphenyls-pcbs

Illinois Department of Public Health http://www.idph.state.il.us/cancer/factsheets/polychlorinatedbiphenyls.htm

Air Pollution

American Lung Association http://www.lung.org/our-initiatives/healthy-air/outdoor/air-pollution/10-tips-to-protect-yourself.html National Institute of Environmental Health Sciences

https://www.niehs.nih.gov/health/topics/agents/air-pollution/index.cfm

European Respiratory Society http://www.europeanlung.org/assets/files/factsheets/ten-top-tips-en.pdf

Bisphenol A

National Toxicology Program https://www.niehs.nih.gov/research/supported/assets/docs/a_c/bpa_fact_sheet_508.pdf

Pediatric Environmental Health Specialty Units http://www.pehsu.net/_Phthalates_and_Bisphenol_A_Advisory.html

Phthalates

Centers for Disease Control and Prevention https://www.cdc.gov/biomonitoring/phthalates factsheet.html

Pediatric Environmental Health Specialty Units http://www.pehsu.net/_Phthalates_and_Bisphenol_A_Advisory.html

Organochlorine (OC) Pesticides

California Environmental Contaminant Biomonitoring Program

SUPPLEMENTARY DATA http://biomonitoring.ca.gov/sites/default/files/downloads/OrganochlorinePesticidesFactSheet_0.pdf

Delaware Health and Social Services

http://dhss.delaware.gov/dph/files/organochlorpestfaq.pdf

Suggestions for Reducing Exposures to Chemicals Linked to Diabetes

Food and Water

- 1. Consult local guides regarding which sport fish are safe to consume.
- 2. Trim fat from meat and the skin from fish and cook using a rack to allow fat to drain.
- 3. Wash fruits and vegetables before consuming them.
- 4. Don't microwave polycarbonate plastic food containers or use them for storing hot liquids.
- 5. Avoid plastic containers designated #3, #6, and #7.
- 6. Eat fresh and frozen foods while reducing consumption of canned and processed foods.
- 7. Opt for glass, porcelain, or stainless steel containers when possible, especially for hot food and drinks.
- 8. Prepare more meals at home and emphasize fresh ingredients.
- 9. Consider using a water filter.
- 10. If possible, purchase organic produce, meat, and dairy products.
- 11. Eat a diversified diet with plenty of variety.

Exercise and Activity

- 1. Check air quality in your area [https://airnow.gov].
- 2. Avoid outdoor exercise when pollution levels are high.
- 3. Avoid exercise near high traffic areas. Instead, choose routes away from busy roads and vehicles.

Personal Care

- 1. Read labels and avoid products containing phthalates.
- 2. Choose products labeled "Phthalate-Free" and "BPA-Free".
- 3. Avoid fragrances and opt for cosmetics labeled "no synthetic fragrance", "scented only with essential oils", or "phthalate-free".
- 4. Wash your hands often, especially before preparing and eating food.
- 5. Minimize handling of receipts and thermal paper.

Around the Home

- 1. For those with a submersible pump in their well who notice an oily film or fuel odor in their well water, check to see if the pump has failed and, if so, replace it. Contact your local Department of Public Health for information on how to clean the well.
- 2. Old fluorescent bulbs and deteriorating construction materials from older buildings should be replaced and discarded safely. Contact your local Department of Public Health.
- 3. Don't burn wood or trash.
- 4. Use hand-powered or electric lawn care equipment instead of gas-powered alternatives.
- 5. Forbid smoking indoors and advocate for measures to make public spaces tobacco-free.
- 6. Clean your floors regularly and remove dust from your home with a damp cloth.
- 7. Plant trees, which filter out airborne gases and particulate matter.

For Children

- 1. Avoid hand-me-down plastic toys.
- 2. Opt for infant formula bottles and toys that are labeled "BPA-Free".

Transportation

- 1. Choose transportation options and transit routes that limit time sitting in traffic.
- 2. Encourage your child's school to reduce school bus emissions, including reducing idling.

<u>Disclaimer</u>: The suggestions listed above are based upon limited scientific studies examining the impact of lifestyle interventions on levels of chemicals in humans. Where studies have not been conducted, exposure reduction strategies are based upon common sources of exposure. Ongoing studies will provide further guidance on best practices for risk reduction. Because many chemicals are used for multiple purposes and in a diverse array of products, an individual may have additional exposures that will not be addressed by these general suggestions. Such individuals should consult with their healthcare provider for individualized guidance.