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Web Appendix A: Large Sample Theory for β̂λ

To facilitate a statement about the asymptotic properties of the mark-scale regularized coefficient

estimator, we need some additional notation, including a simple expression for asymptotic covari-

ance of n1/2(β̂0−β0). Without loss of generality, let ϑ̂0 be a root to the weighted log-rank estimat-

ing function, Sϑ(θ) = op(n
1/2), and β̂λ be a root of the penalized estimating function Sβ,λ(b, ϑ̂0),

Sβ,λ(b,v) = (Sβ,λ,1(b,v), . . . , Sβ,λ,d(b,v))
T. Next, partition the asymptotic slope matrix

∇

lim
n

n−1

 Sβ(θ)

Sϑ(θ)

 =

 Γββ Γβϑ

Γϑβ Γϑϑ

 = Γ

and define

Ξ = E

[{
s(Oi,θ0) + ΓβϑΓ

−1
ϑϑ

∫ ∞

−∞
hi(u,ϑ0) dMi,ϑ(u,ϑ0)

}⊗2
]
,

where S(θ) =
∑n

i=1 s(Oi,θ), Oi = (Yiδi, Xi, δi, zi), a
⊗2 = aaT for a column vector a, hi(u,ϑ) is

a mean-zero function of the data and Mi,ϑ(u,ϑ) is the time-scale martingale process for the ith

subject (e.g. Tsiatis, 1990; Wei et al., 1990; Ying, 1993).

Lemma 1 Under conditions (A)–(E) in Huang (2002, Appendix) and conditions A.1–A.2 in Sec-

tion 2,

(a) there exist n1/2-consistent roots to Sλ(θ) such that ∥β̂λ − β0∥ = Op(n
−1/2);
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(b) limn P (β̂λ,j ̸= 0, for j ∈ Ac) = 0;

(c) If we let βA = {β0j |β0j ̸= 0}, β̂A = {β̂λ,j |β0j ̸= 0}, SA(θ) = {Sβ,λ,j(θ)|β0j ̸= 0} and d0 = |A|,

then

n1/2(Γ†
AA +ΣA)

{
β̂A − βA + (Γ†

AA +ΣA)
−1g

}
−→d N

(
0,Ξ†

A

)
where ΣA is the d0×d0 sub-matrix of diag{−(∂/∂βj)qλ(|βj |)sign(βj)}, g = −{qλ(|βj |)sign(βj), j ∈

A}, Γ†
AA is the upper-left d0 × d0 sub-matrix of Γ†, Γ†

Aϑ is the upper-right d0 × d sub-matrix

of Γ†,

Γ† = ∇[lim
n

n−1{STA(θ), STϑ (θ)}T],

Ξ†
A = E

[{
sA(Oi,θ) + Γ†

AϑΓ
−1
ϑϑ

∫ ∞

−∞
hi(u,ϑ) dMi,ϑ(u,ϑ)

}⊗2
]
,

and SA(θ) =
∑n

i=1 sA(Oi,θ).

Proof. Under conditions (A)–(E) in Huang (2002), the 2d-estimating function S(θ) is, almost surely,

asymptotically linear in a neighborhood of the true value θ0. Because conditions A.1–A.2 agree

with condition C.2 of Johnson et al. (2008), the conclusions of Lemma 1 follow by an extension of

Theorem 1 from Johnson et al. (2008). □

Web Appendix B: Simulation Results With 2 Predictors

To investigate the operating characteristics of the resampling procedure in finite samples without

regularization, we repeated one of the simulation exercises in Huang (2002). We simulated data

according to joint lifetime model

Y = z1β1 + z2β2 + εY , T = z1ϑ1 + z2ϑ2 + εT ,

with d = 2 independent covariates z1 and z2, where z1 is Bernoulli with equal probability on

−1 and 1 and z2 is Un(−1, 1). The coefficients are (ϑ1, ϑ2) = (1, 1) and (β1, β2) = (1, 1), and

the error vectors ε = (εY , εT )
T are independent and identically distributed bivariate normal with

E(εT ) = E(εY ) = 0, var(εT ) = var(εY ) = 1 and cov(εY , εT ) = 0.5. The censoring distribution was

Un(0, 3.25) and Un(0, 0.9) which lead to 20% and 40% average censoring levels, respectively.
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The simulation results for 500 Monte Carlo data sets and using B = 500 resamples are displayed in

Table 1. We find that the performance of the point and interval estimator perform somewhat better

when the censoring is 20% compared with 40%. For example, when the sample size was n = 80, the

coverage probabilities for the log-rank estimator were roughly 2 points closer to the nominal level

when censoring was 20% compared to 40%. There are some finite sample differences between results

for the Bernoulli and uniform covariate but no strong trends to report. The log-rank estimator

was more precise than the Gehan estimator. For example, the log-rank estimator was 10-15% more

efficient than the Gehan estimator at n = 80 and 20% censoring. The Wald and percentile method

both performed similarly in this simulation study and we saw no strong advantage to one versus

the other. Finally, the results in Table 1 suggest the coverage probabilities are close to the nominal

level but the asymptotic properties are not fully satisfied at n = 80. We conducted additional

numerical studies at n = 100 and larger sample sizes and the empirical coverage probabilities are

very close to 95%. More importantly, the results presented in Table 1 suggest that the resampling

technique works well even for moderately-sizes samples.

Web Appendix C: Additional Simulation Results for Interval Esti-

mators

In our simulation studies, we were interested in the performance of interval estimators across 4

models, Model 1–4, of varying complexity, with Model 4 being most complex. In the interest

of space, only simulation results for lasso and adaptive lasso were presented in the manuscript.

Here, we provide a graphical presentation of simulation results for all estimators. These estimators

include bridge (Frank and Friedman, 1993), lasso (Tibshirani, 1996), hard thresholding (Antoniadis,

1997), scad (Fan and Li, 2001), elastic net (Zou and Hastie, 2005), adaptive lasso (Zou, 2006), and

logarithmic penalty (Zou and Li, 2008; Johnson et al., 2008). Each figure contains four panels:

empirical coverage probabilities (ECP) for the inactive sets in the upper left-hand panel, ECP

for active sets in upper right-hand panel, average expected length for the inactive set in lower

left panel, and average expected interval length for the active set in lower right-hand panel. In
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summary, we find that a normal approximation to the variance of n1/2(β̂A−βA) works well across

a variety of simulation scenarios although the interval width can be unnecessarily wide at times.

The percentile method gave confidence intervals that covered nominally in Model 1 but became

too narrow in Models 2–4. High density regions (HDR) similarly performed well in Model 1 and

not as well in Models 2–4. The simplified HDR method performed worst among all methods and

generally sacrificed coverage probability for narrower intervals.
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Figure 1: Simulation results of inference procedures for adaptive lasso, including confidence intervals

based on normal approximation (N), percentile method (Q), highest density region by Minnier et al.

(2011, M) and the simplified method (S).
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Figure 2: Simulation results of inference procedures for lasso, including confidence intervals based

on normal approximation (N), percentile method (Q), highest density region by Minnier et al.

(2011, M) and the simplified method (S).
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Figure 3: Simulation results of inference procedures for scad, including confidence intervals based

on normal approximation (N), percentile method (Q), highest density region by Minnier et al.

(2011, M) and the simplified method (S).
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Figure 4: Simulation results of inference procedures for bridge, including confidence intervals based

on normal approximation (N), percentile method (Q), highest density region by Minnier et al.

(2011, M) and the simplified method (S).
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Figure 5: Simulation results of inference procedures for elastic net, including confidence intervals

based on normal approximation (N), percentile method (Q), highest density region by Minnier et al.

(2011, M) and the simplified method (S).
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Figure 6: Simulation results of inference procedures for log, including confidence intervals based on

normal approximation (N), percentile method (Q), highest density region by Minnier et al. (2011,

M) and the simplified method (S).
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Figure 7: Simulation results of inference procedures for hard thresholding, including confidence

intervals based on normal approximation (N), percentile method (Q), highest density region by

Minnier et al. (2011, M) and the simplified method (S).
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Table 1: Simulations results with d = 2 predictors. Table entries include Monte Carlo bias and

standard error (SSE), the average of the standard error estimates (SEE), the empirical coverage

probabilities (ECP) for Wald-type intervals and using the percentile method. All table entries are

multiplied by 1000 except the empirical coverage probabilities which are reported as percentages.

Gehan Log-rank

ECP ECP

n Cens. β Bias SSE SEE Wald Pcntl. Bias SSE SEE Wald Pcntl.

40 20% β1 -17 209 193 92.0 92.8 -16 188 178 91.8 93.2

β2 14 365 331 92.0 91.4 8 322 307 93.6 93.2

40% β1 9 291 247 87.6 85.8 4 278 236 88.8 88.2

β2 28 481 404 88.0 88.0 32 436 382 90.8 89.2

60 20% β1 -9 178 160 91.4 91.2 -14 158 146 91.8 92.6

β2 -8 323 273 88.0 88.2 -2 291 251 89.2 88.4

40% β1 23 230 200 90.8 89.4 18 219 193 92.2 91.0

β2 9 383 323 88.6 89.2 23 344 300 90.6 89.0

80 20% β1 -6 163 142 91.0 91.4 -4 143 129 93.0 92.2

β2 -11 248 241 94.0 94.0 -1 222 219 94.6 94.6

40% β1 -15 199 177 90.4 90.4 -15 183 168 90.6 90.8

β2 -6 332 282 89.8 89.2 -10 287 259 92.8 92.0
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