SUPPLEMENTAL INFORMATION

Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses

Hui Cai,^a Jared Orwenyo,^a John Giddens,^a Qiang Yang,^a Roushu Zhang,^a Celia C. LaBranche,^b David C. Montefiori,^b and Lai-Xi Wang^{a,*}

^a Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA

^b Department of Surgery, Duke University, Durham, North Carolina 27705, USA

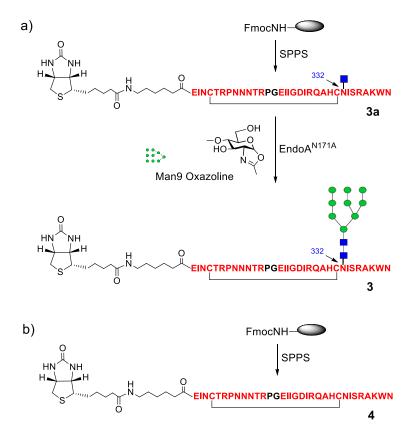


Figure S1, related to Figure 1: Synthesis of 33-mer V3 peptides. a) Chemoenzymatic synthesis of 33-mer V3 high-mannose glycopeptide **3.** b) SPPS Synthesis of 33-mer V3 peptide **4**.

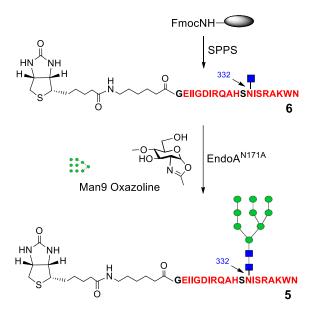


Figure S2, related to Figure 1: Chemoenzymatic synthesis of 20-mer V3 high-mannose glycopeptide $\bf 5$ and GlcNAc peptide $\bf 6$.

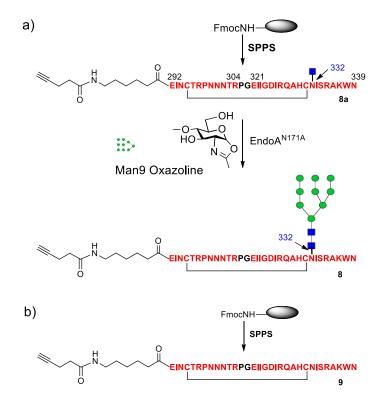


Figure S3, related to Figure 3: Synthesis of alkyne V3 glycopeptide and peptide. a) Chemoenzymatic synthesis of 33-mer V3 high-mannose glycopeptide 8 carrying an alkyne moiety. b) Synthesis of 33-mer V3 peptide 9 carrying an alkyne moiety.

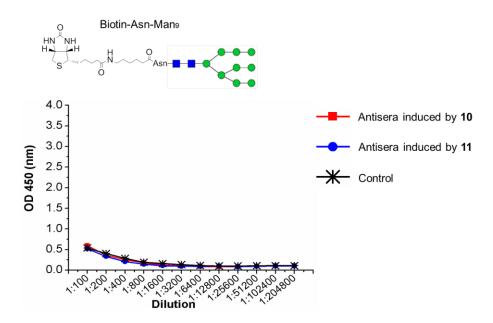


Figure S4, related to Figure 6: ELISA binding of the antisera induced by $\bf 10$ and $\bf 11$ to the biotin-labeled high-mannose type N-glycan (Man₉GlcNAc₂-Asn).