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Supplementary Figure 1: Trends of mobility and carrier density in Cd3As2 samples. Elec-
tron mobility versus (a) sample thickness and (b) volume carrier density summarized for
Cd3As2 film and bulk samples fabricated to date. Our films prepared with pulsed laser de-
position (PLD) are indicated by closed circles, and in particular, high quality ones obtained by
high temperature annealing are highlighted with bigger circles. Other films previously grown
by molecular beam epitaxy (MBE) [1, 2], thermal evaporation (TE) [3], or pulsed laser evapo-
ration (PLE) [4, 5] techniques are represented by open circles. Bulk samples grown such as by
Cd flux or chemical vapor transport are denoted by other gray symbols (♢ [6], △ [7], ▽ [8],
2 [9], 3 [10], � [11], � [12], 1 [13], × [14], + [15], ⊙ [16], ⊗ [17], and ⊕ [18]).
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Supplementary Figure 2: Annealing effect probed by x-ray diffraction. (a) Typical x-ray
diffraction θ–2θ scan and (b) small angle reflectivity curve of a Cd3As2 film capped with
TiO2/Si3N4 layers before annealing. The SrTiO3 substrate peaks are marked with an asterisk.
(c) and (d) Results of the same film after high-temperature annealing.
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Supplementary Figure 4: X-ray diffraction characterization of the Cd3As2 films. (a) Lower
speed θ–2θ scan of the 14 nm Cd3As2 film. The substrate peaks are marked with an asterisk. A
background hump around 40 degrees is ascribable to polycrystalline TiO2 peaks. (b) Magnifi-
cation of the (224) peak and its Laue oscillations, compared to those for 12 and 16 nm films. (c)
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grees. (d) In-plane reciprocal space mapping and (e) ϕ scan of the (440) peak, showing locked
in-plane orientation of the film.
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Supplementary Figure 5: Transmission electron microscopy characterization of the Cd3As2
film. (a) Overall picture of the heterostructure and (b) magnified view of the Cd3As2 film of the
boxed area in (a), taken with cross-section high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM). The lengths of the scale bars are 50 nm and 1 nm,
respectively. (c) Higher-resolution magnified image of the Cd3As2 film of the boxed area in (b),
(d) simulated image for the low-temperature structure of Cd3As2 (I41/acd), and corresponding
element maps taken with energy dispersive x-ray spectrometry (EDX) for (e) Cd L and (f) As
K edges. Shift of Cd atoms peculiar to the low-temperature structure is clearly confirmed as
indicated in the box.

5



15

10

R
x
x
 (

k
Ω

)

2824
B (T)

a

b

c

t = 12 nm15

10

5

0

R
x
x
 (

k
Ω

)

6

5

4

i x
 (
µ

A
)

60

40

20

0

B
 (

T
)

403020100
time (ms)

Supplementary Figure 6: Correction of data taken in the pulsed magnetic fields. (a) Raw
(dashed line) and corrected (solid line) Rxx curve for the 12 nm film, taken in a single scan of
pulsed field shown in (c). The inset shows magnified data resolving hysteresis. The correction
was made using a classic model [19] as expressed in Eq. S1, in which a small capacitive
component of 5 nF is taken into consideration to calculate (b) a time-variable actual current ix
though the sample.

15

10

5

0

R
x
x
 (

k
Ω

)

50403020100
B (T)

a b50 K

35 K

20 K

10 K

5 K

1.4 K

t = 12 nm

0.01

0.1

1

10

R
x
x
 (

k
Ω

)

0.250.200.150.100.050.00

1/T (K
-1

)

∆=19K

ν   
ν   
=246

ν   
ν   
=2

Supplementary Figure 7: Temperature dependence of quantum Hall effect. (a) Temperature
dependence of Rxx for the 12 nm Cd3As2 film in high magnetic fields. (b) Arrhenius plot of the
Rxx minima for the ν = 2 quantum Hall state. The error bars were estimated from maximum
and minimum values in the upward and downward sweeps.

6



2

1

0

R
x
x
 (

k
Ω

)

4

3

2

1

0

-R
y
x  (k

Ω
)

10

8

6

4

2

0

R
x
x
 (

k
Ω

)

4

3

2

1

0

-R
y
x  (k

Ω
)

10

8

6

4

2

0

R
x
x
 (

k
Ω

)

4

3

2

1

0

-R
y
x  (k

Ω
)

a

b 16 nm

8

10

12

16
18

10

12
14

16
18

23 nmc

9
10

12
14

16
20

t = 12 nm

d

e

37 nm

100 nm

1.2

0.8

0.4

0.0

R
x
x
 (

k
Ω

)

2

1

0

-R
y
x  (k

Ω
)

0.15

0.10

0.05

0.00

R
x
x
 (

k
Ω

)

151050
B (T)

0.6

0.4

0.2

0.0

-R
y
x  (k

Ω
)

Supplementary Figure 8: Low-field magnetotransport dependent on the confinement thick-
ness. Rxx and Ryx, taken using a conventional superconducting magnet at 2 K, are plotted for
the (a) 12 nm, (b) 16 nm, (c) 23 nm, (d) 37 nm, and (e) 100 nm films. Shubnikov-de Haas
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Supplementary Figure 9: Temperature dependence of the SdH oscillations and their analy-
sis. (a)-(c) Temperature dependence of the SdH oscillations, plotted as a function of 1/B after
subtracting a smooth background. (d)-(f) Lifshitz-Kosevich analysis of the oscillation ampli-
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of 0.035 ∼ 0.042m0. (g)-(i) Dingle plots of the oscillation amplitude. A quantum scattering
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Supplementary Figure 10: Field angle dependence of the SdH oscillations reflecting the
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