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Supplementary Figure 1. A UPS-enabled autophagy assay that broadens dynamic activity
window. (a) pH titration of solutions containing UPS4s nanoparticles using 0.4 M HCIL
Chloroquine (CQ, pK; = 8.3 and 10.4) and NH4Cl, two small molecular bases, and
polyethyleneimines (PEI) were included for comparison. (b) Number of GFP-LC3 puncta per
cell counted after various time of incubation with UPS44 nanoprobes (n = 20-30 cells from 3
independent experiments). (¢) Chemical structure of UPS44 polymers (poly(ethylene
oxide)-b-poly(2- (dipentylamino)ethyl methacrylate), PEO-b-PD5A) with or without
tetramethylrhodamine (TMR) conjugation. (d) Immunofluorescent images of GFP-LC3 HelLa
cells pretreated with UPS,4 4 labeled with a fluorescent dye TMR (UPS,44-TMR) for 18 hours in
DMEM (upper panel) or followed by EBSS treatment for 0.5 hours. LAMP1 was used as a
lysosomal marker. Scale bar =20 um. (e) Time-course images showing the effect of UPS4 4~-TMR
treatment on GFP-LC3 puncta accumulation and clearance in Dulbecco's Modified Eagle
Medium (DMEM) and a subsequent nutrient-starvation in Earle's Balanced Salt Solution
(EBSS) for indicated time. Scale bar = 20 um. (f) Confocal fluorescent images of GFP-LC3
HeLa cells pretreated with UPS44-TMR for 18 hours before being treated 100nM baf Al in
DMEM or EBSS for 4 hours. Scale bar = 20 um. (g, h) GFP-LC3 HeLa cells were seeded on a
384-well plate in DMEM, and were treated with (h) or without (g) UPS4 4 for for 18 hours before
they were transferred into EBSS or DMEM with 100nM baf A1. Cells that stayed in the original
DMEM with UPS, 4 being washed off (if applicable) were used as a control. GFP and Hoechst
fluorescence were read from a plate reader. GFP/Hoechst ratio was calculated after subtraction of
saline background. The fold change of the GFP/Hoechst signal was calculated against the

DMEM control group (mean =+ s.d. for n = 3 independent experiments).
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Supplementary Figure 2. A cell-based screen for small-molecule TFEB agonists. (a) A pie
chart showing the composition of the chemical library. (b) Schematic of the autophagy screen
and the workflow of it. (¢) Distribution of all the screened chemicals over the GFP/Hoechst ratios
after background correction. Two red lines indicate the positions of the positive control
(wild-type HeLa cells) and the negative control (GFP-LC3 HeLa cells treated with UPS, 4 only),

respectively. (d) Robust Z score plot of all compounds in the autophagy screen. (e) Robust Z



score plot of the 80 primary hits of the autophagy screen in a triplicate confirmation assay. (f)
Schematic of the TFEB screen. (g) Representative images from the high-content TFEB screen.
The cells and their nucleus were identified and outlined in green and red, respectively.
Bafilomycin A1 was used as a positive control in the screen. Scale bar, 50 um. (h) Workflow of
the TFEB screen and a schematic showing the overlapping compounds between the top 30 hit
lists from the two screens. (i) The % CV (coefficient of variation) value and the Z-factor was
calculated for all the plates of the autophagy (buffered with UPS,4, left) and TFEB screen
(right), and the individual and averaged results were as shown. (j) Chemical structure of DG,
and AD. (k) The "H NMR spectrum of purified IKA at 500 MHz in DMSO-ds. (I) The >C NMR
spectrum of purified IKA at 100 MHz in DMSO-ds. (m) Dose-response curves of DG, AD and
IKA in GFP-TFEB HeLa cells. (n) Dose-response curves of DG, AD and IKA in GFP-LC3 HeLa
cells treated with UPS,4 showing the clearance of LC3 puncta by these compounds. (o)
Autophagic flux and p62/SQSTMI1 protein level changes were measured in HeLa cells treated
with 370.4 nM DG, 3.3 uM AD and IKA in the presence or absence of 100nM baf A1 for 4 hr
(mean £ s.d. for n = 2 independent experiments). Untreated cells in DMEM and
nutrient-deprived cells in EBSS were used as controls. LC3-II/GAPDH (middle) and
p62/GAPDH (right) ratios were quantified from immunoblots using Imagel. (p) Western blot of
wild-type HeLa cells treated with various doses of DG, AD and IKA (left panel). p62/SQSTM1
and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) protein levels and the dose-response
curves were quantified and simulated using ImageJ (mean + s.d. for n = 2 independent
experiments, right panel). (q) Quantitative polymerase chain reaction (QPCR) was used to
quantify relative abundance of mRNA levels in HeLa cells treated with different doses (ECj,
ECso, ECop) of compounds. DMSO was used as a control (mean + s.d. for n = 3 independent
experiments, * p<0.05, *** p<0.001, **** p<0.0001). (r) Western blot of wild-type HeLa cells
treated with various doses of DG, AD and IKA. Cytosolic and nuclear TFEB and the
corresponding loading controls were blotted. (s) qPCR analysis result of MEFs treated with

370.4 nM DG, 3.3 uM AD and IKA for 4 hr (mean =+ s.d. for n = 3 independent experiments, *



p<0.05, *** p<0.001, **** p<0.0001). (t) Endosomal maturation rate was measured in HelLa
cells treated with DG, AD and IKA for 4 hr using 100 pg mL™ always-ON/OFF-ON UPSs 3
nanoprobes. (u) Dose-response curves of cathepsin B activity in cells treated with various doses
of DG, AD and IKA. Immunoblots of wild-type HeLa cells under DG, AD and IKA treatment
(ECqp) with control siRNA (siLONRF1), siTFEB or siTFEB in combination with siTFE3 are
shown in the upper panel of (v) and (w). Corresponding quantification of p62 protein is shown in
the lower panels of (v) and (w) (mean = s.d., n = 2, * p<0.05, ** p<0.01, *** p<0.001, ****
p<0.0001). (x) A qPCR analysis was done on HeLa cells under the same treatment conditions as
used in (v) or (w). Significance testing between the siControl and siTFEB/siTFEB+siTFE3
groups in compound-treated cells was performed by two-way ANOVA (Tukey test, mean + s.d.,

n =3, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).



Supplementary Figure 3
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Supplementary Figure 3. DG and IKA inhibit the activity of mMTORCI. (a) Immunoblots of the
indicated proteins in HeLa cells treated with indicated doses of DG. (b, ¢) Immunoblots of p53 "
or p53” and TSC2” MEFs treated with 370.4 nM DG, proscillaridin A (PA) and DMSO using
whole-cell-lysate (WCL) (b) and cytosolic/nuclear lysate (¢). (d) Immunoblots of wide-type
HeLa cells treated with various doses (starting from 3.3 uM with a 3-fold dilution, and rightmost
lane is DMSO) of IKA. Phosphorylation of p70-S6 kinase (S6K) was used as the readout of
mTORCI activity.
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Supplementary Figure 4. Small-molecule agonists activate TFEB through different pathways.
(a) HeLa cells were pretreated with or without 5 uM BAPTA-AM for 1 hr, washed off and treated
with DG, AD and IKA for 2 hrs before lysates were collected. (b) Representative images of
GFP-TFEB HelLa cells treated with 3.3 uM AD or in combination with 5 uM FK506, 10 uM CsA
or both. The graph (right panel) represents the percentage of cells with GFP-TFEB translocation
under these conditions (mean + s.d. for n = 3 independent experiments, **** p<(0.0001). Scale
bar, 20 um. (¢) Representative images of GFP-TFEB HeLa cells treated with DG, AD and IKA at
indicated intermediate doses (EDs), and in combination with 5 uM BAPTA-AM, 5 uM FK506,
10 uM cyclosporine A (CsA) or both calcineurin inhibitors. The graph (right panel) represents
the percentage of cells with GFP-TFEB translocation under these conditions (mean + s.d. for n =
3 independent experiments, ** p<(0.01, **** p<0.0001). Scale bar, 20 um. (d) Endogenous
NFAT nuclear translocation in cells treated with high (EDg) or intermediate (EDs) doses of DG,
AD and IKA alone or with FK506. The graph shows the percentage of NFAT translocation (mean
+ s.d. for n = 3 independent experiments, ** p<0.01, **** p<0.0001). (¢) Known AMPK
activators AICAR and metformin were sufficient to activate TFEB. The graph represents the
percentage of cells with GFP-TFEB translocation under these conditions (mean + s.d. for n =3

independent experiments, **** p<0.0001). Scale bar, 20 pm. (f, g) Immunoblots of wide-type
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HelLa cells treated with various doses (starting from 3.3 uM with a 3-fold dilution, and rightmost

lane is DMSO) of AD and IKA.
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Supplementary Figure 5. Small-molecule activators of TFEB engage different sources of Ca”".
(a) HeLa cells were pretreated with or without N-acetyl-cysteine (NAC) for 1 hr and then treated
with tert-butyl hydroperoxide (TBHP) or AD for 4 hrs. TBHP and NAC were used as positive
and negative controls. A ROS-sensitive DNA dye CellROX Green was used to detect cellular
ROS levels after these treatments. Endogenous TFEB localization was also shown. (b)

Quantification of the fluorescent intensity of CellROX Green in cells treated as in a was done by
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a plate reader. (¢) Quantification of endogenous TFEB nuclear translocation in a. (d) Cells were
pretreated with or without 25 uM IP3R inhibitor Xestosporine C (Xesto) for 1 hr and then treated
with DG, AD and IKA for indicated time. Quantification of TFEB translocation was shown in
e-g (graphs represent mean + s.d. ** p<0.01, *** p<0.001, ****p<0.0001). (h, i)
RNA-interference were used to knock down inositol 145-trisphosphate receptor type 1 (IP3R1)
in GFP-TFEB cells before they were treated with DG, AD and IKA. siLONRF1 was used as a
negative control. TFEB translocation percentage was quantified from images as shown in (i)

(mean =+ s.d. for n = 3 independent experiments, **** p<(0.0001). Scale bar, 20 um.
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Supplementary Figure 6
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Supplementary Figure 6. Small-molecule activators of TFEB decrease the body weight of fat
mice without induce toxicity in major organs, and improved acute lipid-accumulation induced by
short-term starvation and chloroquine (CQ) treatment. (a) The body weight (left y-axis, solid
symbols) and food intake (right y-axis, open symbols) was measured in normal-diet-fed mice
treated with vehicle or 2.5mg/kg DG. (b) Drug release curves of AD (upper panel) and IKA
(lower panel) in PBS. (¢, d) Food uptake (open symbols) and body weight changes (solid
symbols) of mice feed with regular diet (RD), high-fat diet with intravenous injection of empty
PEG-PLA nanoparticles (HFD-i.v. ctrl) and HFD with AD (HFD-AD) or IKA (HFD-IKA) i.v.
injections three times a week starting from Day 35 as indicated by the arrows (bars represent
mean + s.d. * p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001, HFD-AD or HFD-IKA compared
with HFD-i.v. ctrl group). () Known TFEB target genes were upregulated in the liver rather than
in the muscle of HFD mice treated with AD or IKA. qPCR analysis of mRNA levels of some
known TFEB target genes, including known TFEB targets 7feb, Csta and Mcolnl, and key
regulators of lipid metabolism Ppargcla, Pparloand FGF21 in the liver (upper panel) and
muscle (lower panel) samples from mice treated with AD, IKA or their corresponding controls
(HFD-i.v. ctrl). (f) Cells were treated with various doses DG, AD and IKA for 4 hours, and cell
viability was measured immediately or after 72 hours. Dose response curves were simulated
using ImageJ. (g) H&E staining of heart, spleen and kidney sections from mice treated with
DG, AD, IKA and their corresponding controls. Scale bar, 100 um. (h) H&E staining of liver and
heart sections as well as ORO and p62/SQSTM1 IHC staining of liver sections from mice under
fed and fast conditions with orally injected DG and intraperitoneally injected CQ, individually
and jointly, or their corresponding control (Saline). Scale bar, 50 um. (i) The body weight of mice
after the treatment described in h. (i-k) Total serum levels of cholesterol, triglyceride and glucose

of mice after the treatment described in g.
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Supplementary Figure 7. The original blots that correspond to those presented in the main

paper.
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Supplementary Table 1. Characterization of AD- and IKA-loaded PEGs00-PLAs000

nanoparticles.

PEG-PLA | PEG-PLA+AD | PEG-PLA+IKA
Dy, (nm)* 67.9 68.1 68.2
pPDI" 0.168 0.172 0.15
Loading content (% wt) N/A 5.4 3.5

“PThe hydrodynamic diameter (Dy,) and polydispersity index (PDI) were analyzed by dynamic light scattering

analysis.

Supplementary Table 2. Statistical analysis of the lifespan experiments.

Mean Lifespan +

Compound . 75th% Observed Lifespan
s.e.m. (Median . p-values
treatment ] ) (Day) /Total events | increase (%)
lifespan in days)
Ist DMSO 18.5+0.5 (18) 22 98/100 N/A N/A
s
IKA 21.8+0.6 (22) 26 97/100 22.2 <0.001
and DMSO 18.8+0.5 (17) 22.5 80/80 N/A N/A
n
IKA 23.0+0.5 (24) 26 79/80 22.3 <0.001
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