Journal name:

Frontiers in Microbiology

Manuscript title:

Carbon catabolite repression regulates the production of the unique volatile sodorifen of *Serratia plymuthica* 4Rx13

Authors:

Nancy Magnus¹, Teresa Weise², Birgit Piechulla^{1*}

present addresses:

1University of Rostock, Institute for Biological Sciences, Albert-Einstein-Str. 3, 18059 Rostock, Germany

2 EuroImmun, Medizinische Labordiagnostik AG, Seekamp 31, 23560 Lübeck

*corresponding author

e-mail: <u>birgit.piechulla@uni-rostock.de</u>; phone: 0049 381 4986130 fax: 0049 381 4986132

Figure S1: Expression of sodorifen cluster in different producer strains. Expression status of the sodorifen cluster genes was assessed in the different producer strains *Serratia plymuthica* 4Rx13, HRO-C48, 3Re4-18, S13 and V4 after 24 h cultivation in minimal medium + 55mM succinate. **A)** RT-PCR was performed with primers specific for the terpene cyclase gene of the sodorifen cluster to prove expression in all producing strains (lane 2). Lane 1: negative control (without reverse transcriptase), lane 3: positive control (16 S rRNA). For each bacterial isolate 1 µg of RNA was used as a template. M = marker (GeneRuler 1 kb). **B)** Northern blot was performed to quantify expression levels of the terpene cyclase gene in the sodorifen producers after 24 h, 48 h and 72 h cultivation (1: *S.p.* 4Rx13, 2: *S.p.* HRO C48, 3: *S.p.* 3Re4-18, *S.p.* S13, 5: *S.p.* V4). Blotting was done with 5 µg RNA each and DIG-dUTP-labelled probes specific for the terpene cyclase (upper panel) and the 16 S rRNA (lower panel) as a positive control. Finally, labelled RNA molecules were detected by fluorescence measurement for 1 min.

4Rx13 HRO-C48 3Re4-18 S13 V4	GGTATTTCCTCTTACTGG GGTATTTCCTCTTGCTGG GGTATTTCCTCTTGCTGG GGTATTTCCTCTTGCTGG GGTATTTCCTCTTGCTGG ***********	CTCGCTATAGATCC. CTCGCTATAGATCC. CTCGCTATAGATCC. CTCGCTATAGATCC. CTCGCTATAGATCC. CTCGCTATAGACCC.	ATCCGATTTGACAC ATCCGATTTGACAC ATCCGATTTGACAC ATCCGATTTGACAC ATCCGATTTGACAC ATCCGATTTGACAC	CATGACGCAGGCGG CATGACGCAGGCGG CATGACGCAGGCGG CATGACGCAGGCGG 'CATGACGCAGGCGG ******	60 60 60 60
4Rx13 HRO-C48 3Re4-18 S13 V4	GAACAAGAAGTAAATGTT GAACAAGAAGTAAATGTT GAACAAGAAGTAAATGTT GAACAAGAAGTAAATGTT GAACAAGAAGTAAATGTT *********	ATGTTAACTGCAGC ATGTTAACTGCAGC ATGTTAACTGCAGC ATGTTAACTGCAGC ATGTTAACTGCAGC ATGTTAACTGCAGC	JACGCACAATAACC JACGCACAATAACC JACGCACAATAACC JACGCACAATAACC JACGCACAATAACC	CCACTCTGCAATCA CCACTCTGCAATCA CCACTCTGCAATCA CCACTCTGCAATCA CCACACTGCAATCA **** ********	120 120 120 120 120
4Rx13 HRO-C48 3Re4-18 S13 V4	ACATGACCGAGACGCTTC: ACATGACCGAGACGCTTC: ACATGACCGAGACGCTTC: ACATGACCGAGACGCTTC: ACATGACCGAGACGCTTC:	ATTACGGTCGG-GA ATTACGGTCGG-GA ATTACGGTCGG-GA ATTACGGTCGG-GA ATTACGGTCGGGGG ATTACGGTCGGG	CAGAGGGTATCGGT CAGAGGGTATCGGT CAGAGGGTATCGGT CAGAGGGTATCGGT CAGAGGGTATCGGT *********	GAGCACGTAATATC GAGCACGTAACATC GAGCACGTAACATC GAGCACGTAACATC GAGCACGTAACATC GAGCACGTAACATC	179 179 179 179 180
4Rx13 HRO-C48 3Re4-18 S13 V4	ATTGGGCTAGCCGACCCC ATTGGGCTAGCCGACCCT ATTGGGCTAGCCGACCCT ATTGGGCTAGCCGACCCT ATTGGACTAGCCGACCCT	FTTGTTTCTGTAGC FTTGTTTCTGTAGC FTTGTTTCTGTAGC FTTGTTTCTGTAGC FTTGTTTCTGTAGC	CGAAAACATCCATC CGAAAACATCCATC CGAAAACATCCATC CGAAAACATCCATC CAAAAATATTCATC * **** ** *****	GCCTGGCTTTAACA GCCTGGCTTTAACA GCCTGGCTTTAACA GCCTGGCTTTAACA ACCTGGCTTTGACA	239 239 239 239 239 240
4Rx13 HRO-C48 3Re4-18 S13 V4	AAAAATAGTTGCACCCTA AAAAATAGTTGCACCCTA AAAAATAGTTGCACCCTA AAAAATAGTTGCACCCTA TAAAATAGTTTCCCCCTA ********* * ** **	GCAAAACTCCCACA GCAAAACTCCCACA GCAAAACTCCCACA GCAAAACTCCCACA GCAAAACTCCCACA	PCGTTGAATTAACA PCGTTGAATTAACA PCGTTGAATTAACA PCGTTGAATTAACA TCGTTGAATTAACA	TTAAGTTAAACCAT TTAAGTTAAACCAT TTAAGTTAAACCAT TTAAGTTAAACCAT TTAAGTTAAACCAT	299 299 299 299 300
4Rx13 HRO-C48 3Re4-18 S13 V4	ААБТТАААААТАТАТСАС" ААБТТАААААТАТАТАТСАС ААБТТАААААТАТАТАТСАС ААБТТАААААТАТАТАССС ААБТТАААААТАТАТАССС *******	CGCTGATACTTCA CAGCTGATACTTCA CAGCTGATACTTCA CAGCTGATACTTCA CAGCTGATACTTCA	ГСАТААААТАĞТСА ГСАТААААТАĞТСА ГСАТААААТАĞТСА ГСАТААААТАĞТСА ГСАТААААТАĞТСА	TCATCATGATTAAT TCATCATGATTAAT TCATCATGATTAAT TCATCATGATTAAT TCATCATGATTAAT TCATCATGATTAAT	359 359 359 359 360
4Rx13 HRO-C48 3Re4-18 S13 V4	TTATTTTTTTATAAAACC TTATTTTTTTTTTATAAAGCC, TTATTTTTTTTTTATAAAGCC, TTATTTTTTTTTATAAAGCC, TTATTTTTTTTTATAAAGCC, ********	GTCATTAAATAAAA ATCATTAAATAAAA ATCATTAAATAAA	PTTGACAATGAAAG TTTGACAATGAAAG TTTGACAATGAAAG TTTGACAATGAAAG TTTGACAATGAAA **********	AAATTCGTCTTTAA AAATGCGTCTTTAA AAATGCGTCTTTAA AAATGCGTCTTTAA AAATGCGTCTTTAA	419 419 419 419 420
4Rx13 HRO-C48 3Re4-18 S13 V4	TTAAATTTCATTGATTAA TTAAATTTCATTGATCAA TTAAATTTCATTGATCAA TTAAATTTCATTGATCAA TTAAATTTCATTGATCAA	AAAACACCCAATGC AAAACACCCCAATGC AAAACACCCCAATGC AAAACACCCCAATGC AAAACACCCCATGC AAAACACCCCTATGC	ICAATCGAATTTAT ICAATCGAATTTAT ICAATCGAATTTAT ICAATCGAATTTAT GCAATCGAATTTAT ***********	TTCGGGGGTCACTC TTCGGGGGTCACTC TTCGGGGGTCACTC TTCGGGGGTCACTC TTCGGGGGTCACTC	479 479 479 479 480
4Rx13 HRO-C48 3Re4-18 S13	G 480 G TGGAAGAA 488 479 G TGGAAGAA 488				

Figure S2: Analysis of the 5'-UTR in the sodorifen producer strains *Serratia plymuthica*. 4Rx13, HRO-C48, **3Re4-18, S13 and V4.** Alignment was performed with the Clustal Omega online software (Sievers et. al. 2011). Red letters indicate differences in the sodorifen producing strains in comparison to *S. p.* 4Rx13. Asterisks represent matches between all sequences and dashes deletions.

Figure S3: Expression of the sodorifen cluster depending on the carbon source. Expression status of the sodorifen cluster genes was assessed in *Serratia plymuthica* 4Rx13 after 24 h cultivation in minimal medium supplemented with either 55 mM succinate or glucose. RT-PCR was performed with primers specific for the terpene cyclase (lane 2), methyltransferase (lane 3), DOXP synthase (lane 4) and IPP isomerase (lane 5) of the sodorifen cluster. Lane 1: negative control (without reverse transcriptase), lane 6: positive control (GAPDH). For each cultivation condition, 1 µg of RNA was used as a template. M = marker (GeneRuler® 1kb).

D)

Figure S4: Characterization of the cya::Km and crp::Km insertion mutants of Serratia plymuthica **4Rx13.** A)-C) Characterization of *cya*::Km. A) Verification of correct insertion of the functional cassette by PCR. In lanes 1-4 results for the S. p. 4Rx13 wildtype are shown and in lanes 5-8 for the cya mutant. Lanes 1 & 5 represent amplification products with gene-specific primers for the cya gene (1.1 kb for the WT; 2.7 kb for cya::Km). Lanes 4 & 8 depict amplification products of primers specific for the functional cassette (1.4 kb). Lanes 2 & 6 show PCR products after amplification with gene- and cassette-specific primers (1.6 kb; left border), as well as lanes 3 & 7 (right border; 2.5 kb). M = marker (GeneRuler® 1 kb). B) Growth comparison of S. p. 4Rx13 WT and cya::Km in complex medium (NB). The living cell number (CFU/ml) was determined periodically for up to 72 h. Error bars represent standard deviation (n=3). C) Stability of the mutation of cya in S. p. 4Rx13 was determined in 24 h intervals for up to 72 h of cultivation in complex medium (LB) using PCR. D)-F) Characterization of crp::Km. D) Verification of correct insertion of the functional cassette by PCR. In lanes 1-4 results for the S. p. 4Rx13 wildtype are shown and in lanes 5-8 for the crp mutant. Lanes 1 & 5 represent amplification products with gene-specific primers for the crp gene (537 bp for the WT; 2.15 kb for crp::Km). Lanes 4 & 8 depict amplification products of primers specific for the functional cassette (1.4 kb). Lanes 2 & 6 show PCR products after amplification with gene- and cassette-specific primers (1.68 kb; left border), as well as lanes 3 & 7 (right border; 1.89 kb). M = marker (GeneRuler® 1 kb). E) Growth comparison of S. p. 4Rx13 WT and crp::Km in complex medium (NB). The living cell number (CFU/ml) was determined periodically for up to 72 h. Error bars represent standard deviation (n=3). F) Stability of the mutation of crp in S. ply. 4Rx13 was determined in 24 h intervals for up to 72 h of cultivation in complex medium (NB) using PCR. G) Expression of the terpene cyclase in S. p. 4Rx13 cya::Km and crp::Km in comparison to the wild type. Northern blot of S. p. 4Rx13 wild type, cya::Km and crp::Km was performed after 24 h cultivation in complex medium (NB). Detection of the terpene cyclase mRNA (upper panel) was conducted using hybridization with a DIG-labelled probe followed by fluorescence measurement for 1 min. 16 S rRNA detection (lower panel) was performed on the same blot as a positive control.

Figure S5: Characterization of the CRE1::Km and CRE2::Km deletion mutants of Serratia plymuthica 4Rx13. A)-C) Characterization of CRE1::Km. A) Verification of correct insertion of the functional cassette by PCR. In lanes 1-4 results for the S. p. 4Rx13 wildtype are shown and in lanes 5-8 for the CRE1 mutant. Lanes 1 & 5 represent amplification products with specific primers for the 5'-UTR of the sodorifen cluster (434 bp for the WT; 2.1 kb for CRE1::Km). Lanes 4 & 8 depict amplification products of primers specific for the functional cassette (1.4 kb). Lanes 2 & 6 show PCR products after amplification with 5'-UTR- and cassette-specific primers (1.68 kb; left border), as well as lanes 3 & 7 (right border; 1.8 kb). M = marker (GeneRuler® 1 kb). B) Growth comparison of S. p. 4Rx13 WT and CRE1::Km in complex medium (NB). The living cell number (CFU/ml) was determined periodically for up to 72 h. Error bars represent standard deviation (n=3). C) Stability of the deletion of CRE1 in S. p. 4Rx13 was determined in 24 h intervals for up to 72 h of cultivation in complex medium (NB) using PCR. D)-E) Characterization of CRE2::Km. D) Verification of correct insertion of the functional cassette by PCR. In lanes 1-4 results for the S. p. 4Rx13 wildtype are shown and in lanes 5-8 for the CRE2 mutant. Lanes 1 & 5 represent amplification products with specific primers for the 5'- UTR of the sodorifen cluster (434 bp for the WT; 2.1 kb for CRE2::Km). Lanes 4 & 8 depict amplification products of primers specific for the functional cassette (1.4 kb). Lanes 2 & 6 show PCR products after amplification with 5'-UTR- and cassette-specific primers (1.8 kb; left border), as well as lanes 3 & 7 (right border; 1.66 kb). M = marker (GeneRuler® 1 kb). E) Growth comparison of S. p. 4Rx13 WT and CRE2::Km in complex medium (NB). The living cell number (CFU/ml) was determined periodically for up to 72 h. Error bars depict standard deviation (n=3).

Figure S6: Relative sodorifen emission of *S. ply.* CRE1::Km in complex medium. Sodorifen emission of *S. ply.* 4Rx13 wild type and CRE1::Km during cultivation in complex medium (NBII) was determined using the closed VOC collection system (modified after Kai et. al. 2010) with subsequent GC/MS analysis. Relative sodorifen emission was calculated by correlating the living cell number (CFU/ml) to the sodorifen amount measured. As a reference, wild type emission until 24 h cultivation was used (100 %). Error bars indicate standard deviation (n=3). *p < 0.05

Gene	Direction	Tm (°C)	Sequence $(5' \longrightarrow 3')$	function	
	sense	65	GAGACTGGATGCGATCAACC	gene specific	
	antisense	67	CCCGTTCGATCTTCCAGTTG	primers	
SOD_c01380 (cya)	sense	62	CCCGCGTTTCAACGGGTATACAGTCTGCTGCCT ACCTTACTGCACTACCA <u>AATTAACCCTCACTAA</u> <u>AGGGCGG</u>	primers for	
	antisense	62	CAGGCGTGTAAAGGCAAACGCCGTGGGGAAC GTTACCGTTCAGATAGCCC <u>TAATACGACTCACT</u> <u>ATAGGGCTC</u>	mutagenesis	
	sense	71	TCTCGGCAAACCGCAAACAG	gene specific	
	antisense	67	CGTGAACAACCGACGATCTG	primers	
SOD_c43810 (<i>crp</i>)	sense	62	GCTCCGTCGCGGTGCTGATTAAAGATGAAGAG GGTAAAGAGATGATCCTG <u>AATTAACCCTCACT</u> <u>AAAGGGCGG</u>	primers for	
-	antisense	62	CTGCGCTCCTGGCCTTCTTCAAACAATCCAAGC TCGCCGATGAAATCCCC <u>TAATACGACTCACTAT</u> <u>AGGGCTC</u>	mutagenesis	
711 //PD	sense	64.5	GATCCATCCGATTTGACACC	5'-UTR specific	
5'01K	antisense	65	ATTCGATTGAGCATTGGGTG	primers	
CRE1::Km	sense	62	GGGTATCGGTGAGCACGTAATATCATTGGGCT AGCCGACCCCTTTGTTTC <u>AATTAACCCTCACTA</u> <u>AAGGGCGG</u>	primers for	
	antisense	62	TGGGAGTTTTGCTAGGGTGCAACTATTTTTTGT TAAAGCCAGGCGATGGA <u>TAATACGACTCACTA</u> <u>TAGGGCTC</u>	mutagenesis	
	sense	62	ATTAAGTTAAACCATAAGTTAAAAATATATCA CTCGCTGATACTTCATCA <u>AATTAACCCTCACTA</u> AAGGGCGG	primers for	
CRE2::Km	antisense	62	TGTCAAATTTTATTTAATGACGGTTTTTAAGAA AAATAAATTAATCATGA <u>TAATACGACTCACTA</u> <u>TAGGGCTC</u>	mutagenesis	
SOD_c20750	sense	65.5	ATCCCTTCAACCGGCAGTAC	gene specific	
(terpene cyclase)	antisense	64	CTGAAGCGGTATAAGCCAGC	primers	
16 S "DNA	sense	62	AGAGTTTGATCATGGCTCAGA	gene specific	
10 S FKINA	antisense	70	AGGTGATCCAACCGCAGGTTC	primers	
SOD_c38830	sense	62	ACCTGTTGGACGCAGAGTAC	gene specific	
(GAPDH)	antisense	64	GAGCGATCAGATCCAGAACC	primers	
Primer name					
Qo	sense	61.5	CCAGTGAGCAGAGTGACG		
QI	sense	61	GAGGACTCGAGCTCAAGC		
0	00000	10	CCAGTGAGCAGAGTGACGAGGACTCGAGCTCA	primers for	

AGCTTTTTTTTTTTTTTTTTTTT

CTTCCTGTAAACGCCGCTGG

ATGGCCGCAGCAACTGTTGG

ACTACTCGATGAGTTTTCGG

TGAGGTGGTTAGCATAGTTC

5⁻-RACE-PCR

Primers for

sequencing (provided by

GATC)

48

69

73

59

57.5

sense

antisense

antisense

sense

antisense

Qt

GSP1

GSP2

pJet1-FP

pJet1-RP

Table S1: Primer sequences and annealing temperatures. Underlined parts of primers represent the part binding

Table S2: Protocol for Reverse Transcriptase PCR.

Component	Volume
RNA (DNaseI-digested)	10 µ1
antisense Primer (10 pmol/µl)	2 µ1
dNTPs (10 mM each)	1 µl
DEPC-H ₂ O	1.5 µl
5 min, 65 °C, 1 min on ice	
5x RT-buffer (Thermo Fisher Scientific, Waltham, USA)	4 µ1
Ribolock (Thermo Fisher Scientific, Waltham, USA)	0.5 µl
Maxima Reverse Transcriptase (Thermo Fisher Scientific, Waltham, USA) or	0.41
DEPC- H_2O (negative control)	0.4 µ1
DEPC-H ₂ O	0.6 µ1

Amplification conditions

30 min, 50 °C	
5 min 85 °C	
1 min on ice	

Table S3: Protocol for DIG-labelling of Northern blot probes. X = annealing temperature specific for the primers used.

Component	Volume
10x Taq buffer	5 µl
sense Primer	2 µl
antisense Primer	2 µl
dATP, dCTP, dGTP (10 mM each)	each 1 µl
dTTP (1 mM)	6.5 µl
DIG-dUTP (Roche Diagnostics Deutschland GmbH, Mannheim, Germany)	1 µl
Taq polymerase	1 µl
DNA template	1 µ1

Amplification conditions

|--|