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Supplementary Figure 1: Four RNA-seq sample outliers (cell lines koun_2, iakz_1, 
yuze_1_1, yuze_1_2) seen in (a) heatmap of sample-sample correlations and in (b) principal 
components plot (blue dots). The samples are outliers in the heatmap and in PC4, and 
moderate outliers in PC1. 
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Supplementary Figure 2: Ca2+ response of IPSDSN cell cultures to veratridine and 
tetrodotoxin (TTX). 
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Supplementary Figure 3: Rheobase correlates with resting membrane potential in 
individual cells (r = -0.44, p < 2x10-16). Points represent the rheobase and resting membrane 
potential measurements recorded by patch clamp from 615 individual cells across 31 
donors. 
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Supplementary Figure 4: Recordings from three different cells showing different rheobase 
thresholds: A) medium-high (180 pA), B) very high (270 pA), and C) low (40 pA). Rows show 
2-4 current injection steps previous to the one that produced the action potential. 
 

 
Supplementary Figure 5: The distribution of rheobase values for the 31 samples with 
electrophysiology recordings, as well as literature values for DRG (leftmost bar).  
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A Consensus matrix k = 2 

 
 
B Clustering scores 

 k=2 k=3 k=4 k=5 

Cluster 1 1.00* 0.98* 0.95* 0.99* 

Cluster 2 0.89 0.90 0.93 0.86 

Cluster 3  0.56 0.59 0.57 

Cluster 4   0.54* 0.82 

Cluster 5    0.53* 

 
Supplementary Figure 6: SC3 clustering of single IPSDSN cells. We ran SC3 with gene 
expression counts from 177 single cells, specifying either k=2, 3, 4, or 5 clusters. Examining 
the consensus matrices (A) and clustering scores (B) for each of these cases suggests that 
the data are well described by 2 clusters of cells, as k=2 gives the highest average clustering 
score. For each value of k we looked at the differentially expressed genes for the clusters, as 
reported by SC3. These genes appeared to fall into two groups - neuronal genes (ion 
channels, neural developmental regulators) or fibroblast-like genes (collagens, extracellular 
matrix). Neuron-like clusters are marked by *. 
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Supplementary Figure 7: Neuron and fibroblast-like IPSDSN cells form separate clusters in 
a PCA plot. Single cell counts were quantile-normal transformed per sample, and principal 
components were calculated and cells plotted showing principal components 1 and 2. Cells 
are colored based on their categorization by SC3, labeled by us as fibroblast or neuron. 
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Supplementary Figure 8: Correlation of genome-wide gene expression in different tissues 
and cell cultures. Gene expression for IPSDSN single cells was averaged within a cluster 
(sc.neuron, sc.fibroblast). For each gene the mean expression (FPKM) in the group of 
samples was computed, and these values were correlated genome-wide across groups. 
Spearman correlation values are shown in each square. P1 and P2 protocol samples are 
highly similar to each other, and compare similarly to other tissues. Both single cell neurons 
and single cell fibroblast-like cells have similarity to DRG, although single fibroblast-like cells 
have greater similarity with GTEx fibroblasts. 
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Supplementary Figure 9: Plot of estimated fibroblast percentage for bulk RNA-seq samples 
versus gene expression principal component 1, after excluding 5 outlier samples. Note that 
although many samples have estimated fibroblast percentage close to 100%, these samples 
visually contained a significant fraction of neuronal cells. The estimates represent the 
estimated fraction of RNA coming from fibroblast-like cells, not the number of cells. 
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Supplementary Figure 10: Images of four cell lines, taken 4 weeks post induction of 
differentiation, with their estimated fibroblast-like content shown. 
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Supplementary Figure 11: a) Density plot of the number of reads per cell for neurons and 
fibroblast-like cells, based on 2-group clustering by SC2. b) Density plot of the number of 
genes with nonzero counts (“expressed”) for single cells. 
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Supplementary Figure 12: Expression of sensory neuronal and fibroblast marker genes 
across IPSDSN samples, in comparison with DRG (N=28) and selected GTEx tissues (N=50 
each). The overall similarity with DRG is high for neuronal markers, but less so for fibroblast 
markers. Gene expression determined as log10(FPKM +0.1), and then was mean-centered 
and Z-score normalized across samples for each gene, and plotted with pheatmap in R. 
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Supplementary Figure 13: Histogram of pairwise spearman correlation coefficients of gene 
expression among RNA extraction replicates (N=7), differentiation replicates from the same 
donor (n=6 donors, 3 replicates each), or across donors (n=94). RNA extraction replicates 
were highly repeatable (spearman ρ of 0.97 - 0.98). Differentiation replicates within a donor 
cell line were more variable (median ρ=0.96, range 0.93 - 0.98), but were more highly 
correlated than differentiations across donors (median ρ=0.93, range 0.80 - 0.98). 
  

12 



 
 

 
 
Supplementary Figure 14: Clustered heatmap of gene expression correlations between 
samples having biological (differentiation) replicates. Differentiation replicates for a given 
donor do not consistently cluster together, suggesting that variability induced during 
differentiation is greater variability across lines due to donor genetic background, clonal 
selection or cell culture conditions during reprogramming. 
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Supplementary Figure 15: Distribution of expression levels for selected sensory neuronal 
marker genes in IPSDSN, DRG, GTEx tibial nerve, GTEx brain, and all other GTEx tissues. 
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Supplementary Figure 16: (a) Sample size does not appear to affect the global distribution 
of gene coefficient of variation (CV). We used the GTEx tissue Skeletal Muscle (N=430), and 
selected random subsets corresponding to N/2, N/4, N/10, N/20 samples. We computed CV 
for all genes separately for each subsample. The legend indicates the fraction of samples 
subsampled. (b) The distribution of genes’ coefficient of variation (CV) is equivalent when 
considering only 10 DRG samples from unique donors (DRG_10) or when including all 28 
DRG samples (DRG_all), some of which come from different vertebrae of the same 
individuals. 
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Supplementary Figure 17: Median variability of genes in specific GO terms is compared to 
median variability for all genes, separately for IPSDSNs, iPSCs, DRG, and GTEx cerebellum 
and tibial nerve. Genes categories related to neuronal function and differentiation have 
increased median variability in IPSDSNs relative to all genes, but this is much less the case 
for iPSCs or nervous tissue samples, and for other gene categories such as immune 
response or cell cycle genes. 
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Supplementary Figure 18: Genes upregulated at least 5-fold upon differentiation from iPSC 
to IPSDSN (FDR < 1%, N=4246 genes) have increased variability relative to the remaining 
genes, despite similar levels of expression in the two groups (median/mean FPKM of 
upregulated genes: 4.1 / 15.6; remaining genes: 4.6 / 11.8). 
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Supplementary Figure 19: Variance components analyses of IPSDSN gene expression. (a) 
Variance partitioning for 119 samples (13 P1 protocol, 106 P2 protocol). (b) Variance 
partitioning for 18 samples, from 6 iPSC lines differentiated 3 times each. All 18 samples 
were from E8-medium iPSC lines derived from females, and were differentiated with the P2 
protocol. 
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Supplementary Figure 20: Neural fraction in IPSDSN samples varies with date and iPSC 
culture condition. Only P2 protocol samples are shown, and each dot represents the 
estimated neural fraction for one sample. We used linear models in R to estimate the effects 
of culture conditions or differentiation date on neural fraction. We either used date as a 
continuous variable, or split differentiation date into 2 bins (red line) or 3 bins (black and red 
lines). In all models including both factors, culture conditions were more strongly associated 
with neural fraction than was date, and the association of culture conditions remained 
significant. In contrast, the association of date with was not significant with date as a 
continuous variable or split into 2 bins (p > 0.3), and was marginally significant with date split 
into 3 bins (p = 0.038). 
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Supplementary Figure 21: The natural log of the coefficient of variation across samples is 
plotted for different subgroups of samples. (a) Samples from feeder-iPSCs (N=27) have 
slightly higher variability than those from E8-iPSCs (N=79), but samples from E8-iPSCs still 
have much higher variability than iPSC or DRG. (b) Comparing DRG and P2 protocol 
IPSDSN samples from E8-iPSCs only, separated based on fibroblast-like content: low 
(estimated < 20%, N=24), medium (20-50%, N=31), and high (> 50%, N=24). High 
fibroblast-like samples have slightly higher CV across all genes, but this accounts for only a 
fraction of the increased variability seen relative to primary DRG.  
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Supplementary Figure 22: (a) Number of eGenes discovered for IPSDSNs using either 
RASQUAL (Neuron_Rasqual) or FastQTL (Neuron_fastQTL), in relation to sample size, with 
other GTEx tissues also plotted. (b) The proportion of all tested genes called as eGenes. 
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Supplementary Figure 23: (a) Number of eGenes discovered by RASQUAL and FastQTL 
across quartiles of gene expression variability. The bottom 25% of eGenes ranked by 
sample-to-sample expression variability are at the left, while the top 25% are at the right. Bar 
colors show the number of eQTLs that overlap with a GTEx eQTL (“known”) or where no 
GTEx tissue has p < 0.01 for our lead eQTL SNP (“novel”). As support for the claim that 
RASQUAL power gains do not come at the expense of an increased false positive rate, we 
see that the rate of novel eQTLs increases only slightly from the least to the most highly 
variable genes, and the trend is similar for FastQTL and for RASQUAL. (b) Restricting to 
known eQTLs discovered by either method, the ratio of the number of eGenes discovered by 
RASQUAL to FastQTL is highest in the highest quartile of gene expression variability, 
although power gains from RASQUAL are high across the board. (c) The fraction of novel 
eQTLs increases for both fastQTL and RASQUAL as gene variability increases, with 
RASQUAL overall finding a higher fraction of novel eQTLs. Although one explanation would 
be a higher false positive rate for RASQUAL, various properties of the novel eQTLs do not 
differ significantly from known eQTLs (expression levels, allele frequency, hardy-weinberg 
equilibrium, mapping bias, number of feature SNPs). It is possible that because GTEx used 
a linear model, RASQUAL finds true eQTLs that are more difficult to discover without 
examining allele-specific expression.  
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Supplementary Figure 24: Clustering of tissues based on eQTL effect sizes. IPSDSNs 
cluster most closely with GTEx brain tissues, although they also show elevated similarity in 
effect sizes with GTEx fibroblasts (second to last column). eQTL effect sizes were correlated 
pairwise between tissues. As expected, due to technical differences between GTEx and our 
project, IPSDSNs had globally lower similarity with GTEx than GTEx tissues did among 
themselves. We therefore Z-scaled the rows of the correlation matrix, which puts the 
similarities between tissues on the same scale. Intuitively, what we are thus asking is where 
IPSDSNs cluster based on their relative similarity with other GTEx tissues (clustering of 
rows). As can be seen in the highlighted row, IPSDSNs have higher relative similarity with 
GTEx brain (redder colour) than with other tissues. Clustering of columns, which contain 
unscaled pairwise correlations, shows that IPSDSNs are outliers in that they have globally 
lower similarity (bluer colour) with all GTEx tissues. 
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Supplementary Figure 25: The number of overlaps at LD R2 > 0.8 between eQTLs in 
IPSDSNs and GWAS catalog SNPs is within the range seen for similarly powered tissues in 
GTEx. The number of eQTL-GWAS overlaps is heavily dependent on the number of eQTLs 
discovered, which is reflected in the tight linear relationship with the number of eGenes. 
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RNA sequencing 
Cells growing in T25 flasks were washed twice with PBS followed by addition of 600 mL of 
RLTPlus buffer. Cells were gently lifted from the flask, lysed, and transferred to 1.5 ml tubes. 
RNA and gDNA were isolated using AllPrep DNA/RNA Minikit (Qiagen). RNA was eluted in 
33 uL of DNAse-free water and DNA eluted in 53 uL EB buffer. RNA libraries were prepared 
using the Illumina TruSeq strand-specific protocol, and were sequenced with paired-end 
reads (2x75) on Illumina Hiseq with V4 chemistry.  

ATAC library preparation and sequencing 
Nuclei isolation 
Media was removed from T25 flasks and washed twice with 10 mL of room temperature 
D-PBS without calcium and magnesium. The adherent neuronal cultures were lifted by 
treating with 3 mL of Accutase (Millipore – SCR005) at room temperature for four minutes. 
The Accutase was quenched by adding 6 mL of 2% foetal bovine serum in D-PBS. The cells 
were transferred to a 15 mL conical tube and centrifuged at 300 g for 5 minutes at 4 °C. The 
cell pellet was resuspended in 1 mL of ice-cold sucrose buffer (10 mM tris-Cl pH 7.5, 3 mM 
CaCl2, 2 mM MgCl2 and 320 mM sucrose) and pipetted briefly to break up the large clumps 
before incubating on ice for 12 minutes. 50 µL of 10% Triton-X 100 was added to the 
sucrose-treated cells and mixed briefly before incubating on ice for a further 6 minutes. 
Nuclei were released by performing 30 strokes with a tight dounce homogeniser on ice. 
Approximately 1 x 105 nuclei were transferred to a 1.5 mL microfuge tube and centrifuged at 
300 g for 5 minutes at 4 °C. All traces of the lysis buffer were removed from the nuclei pellet. 
  
Tagmentation, PCR amplification and size selection 
The tagmentation and PCR methods used here are in principle the same as that described 
in (Buenrostro et al. 2013), but with some modifications as described in (Kumasaka, Knights, 
and Gaffney 2016). The nuclei pellet was resuspended in 50 µL of Nextera tagmentation 
master mix (Illumina FC-121-1030) (25 µL 2x Tagment DNA buffer, 20 µL nuclease-free 
water and 5 µL Tagment DNA Enzyme 1) and incubated at 37 °C for 30 minutes. The 
tagmentation reaction was stopped by the addition of 500 µL Buffer PB (Qiagen) and purified 
using the MinElute PCR purification kit (Qiagen 28004), according to the manufacturer’s 
instructions and eluting in 10 µL of Buffer EB (Qiagen). 10 µL of the tagmented chromatin 
was mixed with 2.5 µL Nextera PCR primer cocktail and 7.5 µL Nextera PCR mastermix 
(Illumina FC-121-1030) in a 0.2 mL low-bind PCR tube. The indexing primers used for 
amplification were from the Nextera Index kit (Illumina FC-121-1011), using 2.5 µL of an i5 
primer and 2.5 µL of an i7 primer per PCR, totalling 25 µL. PCR amplification was performed 
as follows: 72 °C for 3 minutes and 98 °C for 30 seconds, followed by 12 cycles of 98 °C for 
10 seconds, 63 °C for 30 seconds and 72 °C for 3 minutes.  To remove the excess of 
unincorporated primers, dNTPS and primer dimers, Agencourt AMPure XP magnetic beads 
(Beckman Coulter A63880) were used at a ratio of 1.2 AMPure beads:1 PCR sample (v/v), 
according the manufacturer’s instructions, eluting in 20 µL of Buffer EB (Qiagen). Finally, 
size selection was performed by 1 % agarose TAE gel electrophoresis, selecting library 
fragments from 120 bp to 1 kb. Gel slices were extracted with the MinElute Gel Extraction kit 
(Qiagen 28604), eluting in 20 µL of Buffer EB. 
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Illumina sequencing 
A total of 31 ATAC-seq libraries each prepared with a unique Nextera i5 and i7 tag 
combination were pooled. Index tag ratios were assessed by a single MiSeq run and were 
balanced before being sequenced at two per lane with paired-end reads (2x75) on a HiSeq 
with V4 chemistry. However, rebalancing did not appear to work correctly, as the number of 
reads varied from a minimum of 17 million to a maximum of 987 million. However, 22 
samples had over 100 million reads, and 30 samples had over 40 million reads. Across 
samples, a median of 56% of reads mapped to mitochondrial DNA. 
 
Read alignment 
We aligned reads to GRCh38 human reference genome using bwa mem v0.7.12. Reads 
mapping to the mitochondrial genome and alternative contigs were excluded. As for 
RNA-seq data, we used VerifyBamID v1.1.2 (Jun et al. 2012) to detect sample swaps. This 
revealed one mislabeled sample, which we then corrected. We used Picard v1.134 
MarkDuplicates (https://broadinstitute.github.io/picard/) to mark duplicate fragments. 
 
Peak calling 
We used MACS2 v2.1.1 (Zhang et al. 2008) to call ATAC-seq peaks for individual samples 
with parameters ‘--nomodel --shift -25 --extsize 50 -q 0.01’. We defined a consensus set of 
peaks as regions in which peaks overlapped in at least 3 samples. At regions of overlap, the 
consensus peak was defined as the union of overlapping peaks. This resulted in 381,323 
peaks, with 98% of peaks ranging from 82 - 1191 base pairs.  

PCA plot clustering samples with GTEx tissues 
We downloaded the GTEx v6 gene RPKM file 
(GTEx_Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_rpkm.gct.gz) as well asand sample 
metadata (GTEx_Data_V6_Annotations_SampleAttributesDS.txt) from the GTEx web portal 
(http://www.gtexportal.org/home/datasets). We computed gene RPKMs for all genes for the 
28 DRG samples, the 119 sensory neuron samples (5 outliers removed), and 239 HIPSCI 
IPS samples. We used genes that were quantified in all of these sample sets, and where at 
least 50 GTEx samples had RPKM > 0.1. We passed log2(RPKM + 1) for 8553 GTEx 
samples to the bigpca R package to compute the first 5 PCs using the SVD method. We 
then determined sample loadings for each PC using the PC weights and log2(RPKM + 1) 
values for GTEx samples as well asand for our in-house samples, and plotted sample PC1 
vs. PC2 values as Figure 1b. 

Single-cell RNA sequencing 
Blood-derived iPSCs from a single individual, who was not a HIPSCI donor, were 
differentiated to IPSDSNs in 3 batches using the P2 protocol, and were matured for 8 weeks. 
Dissociated cells were loaded onto a Fluidigm C1 for automatic cell separation, reverse 
transcription and amplification.  Libraries were prepared from C1 chambers containing single 
cells using the Illumina Nextera XT kit.  These were quantified with the Qubit dsDNA HS 
assay (Thermo Fisher) and KAPA Library Quantification Kit (KAPA Biosystems) and 
size-checked with Agilent Bioanalyser DNA 1000.  Libraries were 96-way multiplexed and 
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sequenced by Illumina Nextseq500 (2x75bp). Reads were aligned to GRCh38 and Ensembl 
80 transcript annotations using STAR v2.4.0d with default parameters. We excluded 9 cells 
expressing fewer than 20% of the ~56,000 quantified genes, and then used SC314 to cluster 
the remaining 177 cells based on expression counts. We examined alternative numbers of 
clusters from k=2 to 5 (Supplementary Figure 6). With two clusters, marker genes clearly 
identified one cluster (111 cells) as neuronal, whereas the other cluster (66 cells) had high 
expression of extracellular matrix genes reminiscent of fibroblasts. With 3 and 4 clusters, the 
sensory-neuronal cell cluster remained unchanged, and the fibroblast-like cluster became 
further subdivided. This suggests that a majority of the cells in this sample were terminally 
differentiated into sensory neurons, whereas the remaining cells were more heterogeneous 
in their gene expression. 
  
To display marker gene expression (Figure 2a), we used DESeq2’s variance stabilizing 
transformation, and then R’s “scale” function to mean-center and normalize expression 
values across cells, and plotted the result using the pheatmap R package. To compare gene 
expression between single-cell clusters and bulk RNA-seq samples (Supplementary Figure 
8), we computed the mean FPKM for each gene separately in single neurons and 
fibroblast-like cells. We subsetted to genes with nonzero expression in at least one GTEx 
tissue and in at least one of our tissues (iPSC, DRG, IPSDSN bulk, IPSDSN single cells), 
and computed the Spearman correlation between each pair of tissues. 

QTL calling 
Expression QTLs 
To call cis-eQTLs we used RASQUAL (Kumasaka, Knights, and Gaffney 2016), which 
leverages allele-specific reads in heterozygous individuals to improve power for QTL 
discovery, while accounting for reference mapping bias and a number of other potential 
artifacts. With RASQUAL a feature is defined by a set of start and end coordinates; for 
calling a gene eQTL these are the start and end coordinates for exons, whereas for an 
ATAC-seq peak these are the peak coordinates. RASQUAL requires as input the 
allele-specific read counts at each SNP within a feature. We used the Genome Analysis 
Toolkit (GATK) program ASEReadCounter (Castel et al. 2015) with options ‘-U 
ALLOW_N_CIGAR_READS -dt NONE --minMappingQuality 10 -rf MateSameStrand’ to 
count allele-specific reads at SNPs (and not indels). We then annotated the AS read counts 
in the INFO field of the VCF used as input for RASQUAL. We used custom scripts to 
determine the number of feature SNPs in gene exons. 
  
We used RASQUAL’s makeCovariates.R script to determine principal components (PCs) to 
use as covariates, which determined 12 PCs as appropriate from the expression count data. 
We ran RASQUAL separately for each of 35,033 genes (19,796 protein-coding genes and 
15,237 noncoding RNAs), passing in VCF lines for all SNPs and indels (MAF > 0.05, INFO > 
0.8) within 500 kb of the gene transcription start site. We used the --no-posterior-update 
option in RASQUAL, as we found that not doing so led to some genes having miniscule p 
values, even with permuted data. To correct for multiple testing we used permutations; 
however, because RASQUAL is computationally intensive, it would not be possible to run a 
thousand or more permutations for every gene. Therefore we used an approach to balance 
power and computational time. To correct for the number of SNPs tested per gene, we used 
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EigenMT(Davis et al. 2016) to estimate the number of independent tests per gene, and then 
performed Bonferroni correction on a gene-by-gene basis. To estimate the false discovery 
rate (FDR) across genes, we used the --random-permutation option of RASQUAL and re-ran 
it once for every gene, saving the minimum p value (after eigenMT correction) of the SNPs 
tested for each gene. This gave a distribution of minimum p values across genes for the 
permuted data. To determine the FDR for eQTL discovery at a given gene, we use R to 
compute (#permuted data min pvalues < p) / (#real data min p values < p), where p is the 
minimum p value among SNPs for the gene in question. With this procedure we obtained 
3,586 genes with a cis-eQTL at FDR 10% (2,628 at FDR 5%). 
 
For QTL calling with FastQTL, we first computed principal components from the 
CQN-transformed gene expression matrix (cqn v5.0.2 (Hansen, Irizarry, and Wu 2012)). We 
ran FastQTL with permutations 31 separate times, in each run including the first N principal 
components (N=0...30) as covariates. For each run we used a cis-window of 500 kb, and 
included SNPs and indels with MAF > 0.05, INFO > 0.8, as we did for RASQUAL. We plotted 
the number of eGenes found in each of these runs, which plateaued and remained relatively 
stable at ~1,400 eGenes (FDR 10%) when anywhere from 16 to 30 PCs were used. We 
arbitrarily chose to use the FastQTL run with 20 PCs in downstream analyses. 
 
ATAC QTLs 
As we did for gene expression, we used featureCounts v1.5.0 to count fragments 
overlapping consensus ATAC-seq peaks and ASEReadCounter to count allele-specific 
reads at SNPs (and not indels) within peaks. We ran RASQUAL separately for each of 
381,323 peaks, passing in VCF lines for SNPs and indels (MAF > 0.05, INFO > 0.8) within 1 
kb of the center of the peak. Since >99.9% of peaks were less than 2 kb in size, this meant 
that we tested effectively all SNPs within peaks. As we did when calling eQTLs, we ran 
RASQUAL with the --random-permutation option for every gene, and determined FDR as 
described above. Note that in this case we used Bonferroni correction based on the number 
of SNPs tested, without using EigenMT, due to the small size of the windows tested. With 
this procedure we obtained 6,318 ATAC peaks with a cis-QTL at FDR 10%. 
 
Splice QTLs 
We downloaded LeafCutter from Github (https://github.com/davidaknowles/leafcutter) on 
April 17, 2016. We used the LeafCutter bam2junc.sh script to determine junction counts for 
each sample, followed by leafcutter_cluster.py. This resulted in 254,057 junctions in 59,736 
clusters. To focus on splicing events likely to be significant, we applied a number of filters, 
including: (a) removing junctions accounting for less than 2% of the cluster reads, (b) 
removing introns used (i.e. having at least 1 supporting read) in fewer than 5 samples, (c) 
retaining only clusters where at least 10 samples had 20 or more reads in the cluster. This 
yielded a filtered set of 95,786 junctions in 30,591 clusters. We first determined the read 
proportions for all junctions within alternatively excised clusters. We then Z-score 
standardised each junction read proportion across samples, and then quantile-normalised 
across introns. We used this as our phenotype matrix for input to FastQTL to test for 
associations between intron usage and variants within 15 kb of the center of each intron. We 
chose a cis-window size of 30 kb (2 x 15 kb) because >91% of introns are < 30 kb in size, 
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and so this tests variants near exon/intron boundaries for the great majority of introns, while 
maximising power. 
  
We ran FastQTL in nominal pass mode 31 times specifying the first 0 to 30 principal 
components as covariates, and examined the number of intron QTLs with minimum SNP p 
value < 10-5. This showed that the number of QTLs plateaued when 5 PCs were used, and 
so we used 5 PCs in subsequent runs. We next ran FastQTL with 10,000 permutations to 
determine empirical p values for each alternatively excised intron. To correct for the number 
of introns tested per cluster, we used Bonferroni correction on the most significant intron p 
value per cluster. We then used the Benjamini-Hochberg method to estimate FDR across 
tested clusters. This yielded 2,079 significant SNP associations for intron usage (sQTLs) at 
FDR 10%. 
  
For significant sQTLs we used bedtools closest with GRCh38 release 84 to annotate the 
gene(s) nearest the lead SNP for the association. To ensure we had relevant genes, we 
filtered the annotation to include only genes where one of the exon boundaries matched the 
intron boundary for the sQTL. 

Electrophysiological recordings 
Six coverslips per line were placed singularly into a 12-well plate and washed 1x with 1 ml 
DPBS (+/+).  The coverslips were then coated with 1 ml of 0.33 mg/ml growth factor reduced 
matrigel for > 3 hr at room temperature. D14 cells were prepared at 1.6e6/ml in 15 ml media, 
then diluted in NB media to create a 0.3e6/ml suspension. The coverslips were transferred 
into a 12-well plate and 1 ml cell suspension was added. Plates were incubated at 37°C (5% 
CO2) for 24hr, after which the coverslips were transferred to a 12-well plate with 2 ml media. 
Cells were treated with Mitomycin C (0.001 mg/ml for 2hr hours at 37°C) post-plating on 
days 4 and 10. Media was changed twice weekly. 
  
Patch-clamp experiments were performed in whole-cell configuration using a patch-clamp 
amplifier 200B for voltage clamp and Multiclamp 700A or 700B for current clamp controlled 
by Pclamp 10 software (Molecular Devices). Experiments were performed at 35°C or 40°C 
controlled by an in-line solution heating system (CL-100, Warner Instruments). Temperature 
was calibrated at the outlet of the in-line heater daily before the experiments. Patch pipettes 
had resistances between 1.5 and 2 MΩ. Basic extracellular solution contained (mM) 135 
NaCl, 4.7 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES and 10 glucose; pH was adjusted to 7.4 with 
NaOH. The intracellular (pipette) solution for voltage clamp contained (mM) 100 CsF, 45 
CsCl, 10 NaCl, 1 MgCl2, 10 HEPES, and 5 EGTA; pH was adjusted to 7.3 with CsOH. For 
current clamp the intracellular (pipette) solution contained (mM) 130 KCl, 1 MgCl2, 5 MgATP, 
10 HEPES, and 5 EGTA; pH was adjusted to 7.3 with KOH. The osmolarity of solutions was 
maintained at 320 mOsm/L for extracellular solution and 300 mOsm/L for intracellular 
solutions. All chemicals were purchased from Sigma. Currents were sampled at 20 kHz and 
filtered at 5 kHz. Between 80% and 90% of the series resistance was compensated to 
reduce voltage errors. Rheobase was measured in current clamp mode by injecting 
increasing 30 milliseconds current steps until a single action potential was evoked. 
Intersweep intervals were 2 seconds. Current clamp data was analyzed using Spike2 
software (Cambridge Electronic Device, UK) and Origin 9.1 software (Originlab). 
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Identifying tissue-specific eQTLs 
We determined the set of tissue-specific eQTLs using the same procedure and code as in 
the HIPSCI project (Kilpinen et al. 2017). Briefly, we considered the full cis eQTL output of 
sensory neuron eQTLs and 44 tissues analyzed by the GTEx Project (Consortium et al. 
2015). To enable comparison, lead SNP positions for sensory neuron eQTLs were first lifted 
back from GRCh38 to GRCh37 using Crossmap (Zhao et al. 2014). For each discovery 
tissue (including sensory neurons), we tested for the replication of all lead eQTL - target 
eGene pairs reported at FDR 5%. If the lead eQTL variant was not reported in the 
comparison tissue, then the best high-LD proxy of the lead variant (r2 > 0.8 in the UK10k 
European reference panel) was used as the query variant. Replication was defined as the 
query variant having a nominal eQTL p < 2.2x10-4 (corresponding to p = 0.01 / 45, where 45 
refers to the total number of tissues tested) for the same eGene. We then extracted eGenes 
for which the lead eQTL did not show evidence of replication in any other tissue (p > 
2.2x10-4) or could not be tested (i.e. was not measured or reported as expressed in any other 
tissue). 
  
This analysis gave 954 eGenes where the eQTL is specific to sensory neurons 
(Supplementary Table 15). We note that some of these “tissue-specific” eGenes could be 
due to the difference in QTL-calling methods used, notably that we used RASQUAL, a 
method incorporating both allele-specific and population-level expression variation. 
Therefore, some of the tissue-specific eGenes we report may actually be present more 
broadly in GTEx tissues but missed by the linear QTL model used in GTEx. Among the 1403 
eGenes called by FastQTL, 208 were tissue-specific to IPSDSNs. 

QTL overlap with GWAS catalog 
The GWAS catalog was downloaded from https://www.ebi.ac.uk/gwas/ on 2016-5-08. To 
determine overlap between variants in the GWAS catalog and our lead QTLs, we first 
extracted all lead variants (both QTLs and GWAS catalog variants) from the full VCF file. We 
used vcftools v0.1.14 (Danecek and Seriani 2008) to compute the correlation R2 between all 
lead variants within 500 kb of each other among our samples. We determined overlap 
separately for eQTLs, sQTLs, and ATAC QTLs, and retained only overlaps with R2 > 0.8 
between lead variants. Note that a given GWAS variant may be in LD with an eQTL for more 
than one gene, and vice versa, an eQTL for a single gene may be in LD with more than one 
GWAS catalog entry. 
  
We used QTL-GWAS overlap for two purposes: first, to find individual cases where a QTL is 
a strong candidate as a causal association for the GWAS trait, and second, to determine 
whether any GWAS catalog traits are enriched overall for overlap with sensory neuron QTLs. 
For the first goal, we considered all overlaps with GWAS catalog associations having p < 
5x10-8, i.e. did not filter any redundant overlaps. These overlaps are reported in 
Supplementary Tables 20 (for eQTLs), 21 (for sQTLs), and 22 (for ATAC QTLs). 
  
To determine whether our QTL overlaps were enriched in any specific GWAS catalog traits 
relative to other traits, we computed overlap with all GWAS catalog SNPs (p < 5x10-8) but 
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sought to eliminate redundant overlaps. For traits that were reported with differing names 
(e.g. “Alzheimer's disease (cognitive decline)” and “Alzheimer's disease in APOE e4- 
carriers”), we grouped these into a single trait name (e.g. “Alzheimer's disease”). We then 
sorted overlaps by decreasing LD R2, and kept the single overlapping QTL with the highest 
R2 for each GWAS catalog entry. Similarly, we removed duplicates with the same reported 
GWAS catalog SNP and trait, such as when successive GWAS of the same trait report the 
same SNP association. We counted the number of such unique GWAS-QTL overlaps 
separately for eQTLs, sQTLs, and caQTLs, and we report these in Table 1. To avoid bias 
due to correlation between GWAS power and LD patterns, we restricted our analysis to the 
41 traits with at least 40 GWAS catalog associations. We then considered the binomial 
probability of the observed overlap with each trait, with the expected overlap frequency being 
the proportion of QTL overlaps among all trait associations (6.2%). After correcting for 
multiple testing, no traits showed significantly greater overlap with our QTL catalog than 
other traits. 
  
To test for overall enrichment of QTL overlapping with GWAS catalog SNPs, we downloaded 
the 1000 genomes VCF files (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) 
and subsetted these to the EUR samples. We used vcftools to identify all SNPs in LD R2 > 
0.8 with a GWAS catalog SNP and removed duplicate SNPs. We used our IPSDSN eQTL 
lead SNPs as input to SNPsnap (https://data.broadinstitute.org/mpg/snpsnap/), and 
computed 1000 random sets of SNPs using default parameters to match for LD partners, 
MAF, gene density, and distance to nearest gene. We determined the number of 
occurrences of eQTL lead SNPs in the GWAS catalog SNP + LD partners, and did the same 
for the 1000 matched SNP sets. The IPSDSN eQTL lead SNPs had more overlaps (92) than 
any of the matched sets (median: 58, range 37-87). Note that this number of overlaps is 
fewer than the number we report in Supplementary Table 20; this is because we detect more 
overlaps when using LD from our own samples than when using 1000 genomes LD patterns, 
which is expected since 1000 genomes EUR LD does not perfectly reflect LD in our data. 
We performed the same overlapping process for lead eQTL SNPs from each GTEx tissue, 
and plotted the number of overlaps per tissue in Supplementary Figure 25. 
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