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Figure S1 (related to Fig. 1 and Table 1)

(A) Comparison of experimental Kratky plots of TTD-PHD with and without a His tag (HTG). (B) Calculat-
ed normalized pair-distance distribution function P(r) for TTD-PHD and HTG-TTD-PHD. (C) Distributions
of R, for different ensembles of HTG-TTD-PHD. RBPour was generated by assuming that the entire link-
er (UHRF1,8,.301) 1s disordered, while RBPy was generated assuming only the 5-residue hinge region of the
linker (UHRF1,97.301) is disordered. The SES method (1) was used to generate the SAXS-fitted OEs, OE
(SAXS) and OEnout(SAXS), from the pools, RBP and RBPyout, respectively. R, distributions of RBPy
(magenta) and RBPyout (green, and violet) are shown by dashed lines, while R, distributions of the optimal
ensembles OEN(SAXS) (violet) and OEnour(SAXS) (green) are shown by solid lines. (D) Comparison of
R, distributions for different ensembles of HTG-TTD-PHD. (E) Comparison of R, distributions for different
ensembles of TTD-PHD. The R, distributions for OEnout(SAXSsiv), RBPiy, and RBPyour ensembles are
shown by solid, dotted, and dashed lines, respectively. (F) Flow-chart for generating OEn,0ut(SAXSsp) that
is selected from RBP oyt with the SES method using SAXS profile /;,(g) simulated from RBP .
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Figure S2 (related to Fig. 2 and Table 2)

NMR data for TTD-PHD and combined NMR and SAXS fitting. (A) Portion of a labeled ("H-'"N) TROSY
spectrum of TTD-PHD (UHRF1,56.366). We assigned 203 amide resonances (134 in the TTD, 11 in the linker
and 58 in the PHD). (B) 'H-"°N Heteronuclear NOE, (C) '°N T1, and (D) "°N T2 values as a function of se-
quence. The shaded area corresponds to the linker and the top bars indicate secondary structure elements. (E)
Minimized residual y* (Eq. 1) as function of a.
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Figure S3 (related to Fig. 3 and Table 3)

Density

Comparison of OFnour(SAXS) and OE nour(SAXS/NMR)
most populated conformers (based on weighted %) from OEnout(SAXS) (black spheres) superimposed with

the TTD (as a surface representation). Residues that bind to the H3 peptide are displayed in cyan. The red
sphere shows the PHD center-of-mass in H3-bound TTD-PHD (PDB:3ASK) (2), and the yellow sphere
shows the PHD center-of-mass in apo TTD-PHD of UHRF2 (PDB:4TVR) (B) R,-distributions of OEour
(SAXS/NMR) and OEn0ut(SAXS). (C) drm distributions of OEwout(SAXS/NMR) and OEout(SAXS).
Distribution of the HY CUD-predicted (3, 4) correlation times of the TTD (D) and PHD (E) from structures in
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(A) The position of PHD centers-of-mass in the
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Figure S4 (related to Fig. 4)

Comparison of SAXS data for TTD-PHD and BPC-bound TTD-PHD. (A) Experimental R,-based Kratky
plots for apo (black) and BPC-bound TTD-PHD (at 2 mM BPC, 4% DMSO - blue; and 4 mM BPC, 4%
DMSO, red). (B) Comparison of average ab initio SAXS-predicted molecular envelopes of apo (black) and
BPC-bound TTD-PHD (red).
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Figure S5 (related to Fig. 4)

Binding of BPC in the groove of TTD. TTD binding to BPC as seen by (A) FP displacement of a FITC-
labeled (at the N-terminus) H3K9me3,.,5) peptide, (B) ITC, and (C) DSF. (D) Kp estimates of BPC bind-
ing based on 1211 and Y239 amide peak movement (where A(ppm) = ((ASHN)? + (ASN/6.5)* )"?) in (‘H-"°N)
HSQC spectra when the TTD is titrated with BPC. (E) A histogram shows peak movement in HSQC spectra
as a function of TTD sequence resulting from BPC (blue) or PBR peptide (red) binding. (F) HSQC overlays
shows amide peak movement of TTD resonances at increasing BPC (top spectrum - from 1:1 to 7:1 frag-
ment:protein), and PBR peptide ratios (bottom spectrum - from 1:1 to 5:1 peptide:protein). The protein con-
centration was ~250 uM for all NMR experiments, and the DMSO concentration was 5% for NMR titrations

with BPC.
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Figure S6 (related to Fig. 4)

Histogram showing side-by-side comparison of peak movement/broadening in (‘H-'’N) TROSY spectra
when TTD-PHD is titrated with BPC (blue) or PBR peptide (red). Broadened resonances are assigned a val-
ue of 0.23. The protein concentration was ~ 250 uM, and the DMSO concentration was kept at 5% for BPC
titrations.
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Figure S7

Overlay of an ("H-""N) HSQC spectrum of UHRF1 PHD (blue), with a TROSY spectrum of TTD-PHD
(yellow). Only slight deviations in peak positions are observed for this domain in isolation vs. its presence
within the reader module, indicating that there are minimal (if any) contacts between the PHD and the linker

and/or TTD.



®; - >N (ppm)

®; - >N (ppm)

®; - N (ppm)

122
1244

126+

132
122+
124+

126+

1321
1225
1245
1265

128+

130

L
=@ control

: @ BPC-bound :

1= @ control

: @ linker-bound *

TTD |

1= @ BPC-bound
| @ linker-bound

I linker:BPC (1:1)
E < linker:BPC (2:1)
1324

TTD |




. E
........................ -
D : @ control : L =
: @ PHD + BPC (12:1) : o
Iessssssssnnnennnnnnnn ]
©
g 0 i
(] | w©
.‘9 @ o
@ 8 a% -
: ’ -
— N
f ¢ R
0o ¢ -
o'¢ € -
|
é -
o )
é é @ B
6 PHD &
'] Ea
T T T | T T T | T T | T T ] T |
9 8 7 F2 [ppm]
Figure S8

(A-C) BPC and linker peptide (corresponding to UHRF1,46.309) compete directly for the TTD groove as illus-
trated by the perturbation of 1211, 1212 and E281 resonances in HSQC spectra of the TTD in a competition
assay. Movement of TTD resonances in the presence of (A) BPC (2.4 mM, 5% DMSO) and (B) linker pep-
tide (3.0 mM, 5% DMSO). (C) At increasing peptide:BPC ratios, the peaks transition from a BPC-bound
pattern to a linker-bound pattern, demonstrating direct competition for binding to the groove. (D) PHD reso-
nances are unaffected by the presence of BPC (3 mM, 5% DMSO).
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Figure S9

ITC curves showing TTD-PHD binding to methylated (red) and unmethylated (black) H3 peptide. Methyl-
ated peptide binding is mediated by the TTD and PHD in a cooperative manner (2). Only the PHD can inter-
act with unmethylated H3 peptide. BPC or PBR binding in the TTD groove similarly disrupts cooperative
H3 binding by the histone reader.



Table S1 (related to Fig. 1, S1, S4): SAXS parameters for the TTD-PHD module

SAXS HTG-TTD-PHD* |TTD-PHD/BPC®
1(0)° 0.0908 0.0237

Rg (A) reale 289 271

Dmaxf (A) 100 94

Ve 319.7 280.5

ML 29.9 (30.0) 23.6 (28.1)
NSD 0.67 + 0.04 0.80 % 0.03

*UHRF1 26366 with a His tag (18 aa)

®UHRF1 126.366 in complex with BPC (2 mM, 4% DMSO)

¢ Intensity at =0

d R, calculated using Guinier fit

‘R, calculated using GNOM (5)

"Maximum distance between atoms from GNOM

£Volume of correlation (6)

"M, estimated from SAXS data using V. (6). The M,, expected from sequence is shown in parentheses
"Normalized spatial discrepancy. The values are the average and standard deviation from fifteen runs

of DAMMIF (7)



Table S2 (related to Fig. 3): Average "°N relaxation parameters for TTD-PHD at 800MHZ".

T," (s) T," (s) NOE* T, /T,
TTD 2014020 [ 0.028+0.004 | 0.73+0.06 | 73.3+12.6
PHD 1.37+0.15 | 0.034+0.005 | 0.75+0.06 | 40.8+7.9

TTD-PHD 1.75+0.37 | 0.031 £0.005 0.73+0.06 | 60.0+19.4

* Averaging is performed over residues in the regular secondary structural elements
®Errors are propagated fitting errors
¢ Errors are standard deviations of averaging



Table S3 (related to Fig. 3): Rotational correlation time 1. (ns) of the TTD and PHD predicted from different
TTD-PHD models.

Model TTD PHD
Individual® 15.6 55
Rigidly attached® 26.6 26.6

MDPnour’ 22.0+4.7 11.9+49

MDPpE 206+1.9 9.7+1.0

*Results of hydrodynamic calculations for the TTD and PHD (both individually and rigidly attached) were es-
timated using the crystal structure of TTD-PHD (PDB:3ASK)? and the program HYDRONMR (8) with pa-
rameter ‘a’ set to 2.9

®The average T, values of the TTD and PHD predicted from MDPy,out using the HY CUD method (4)

“The average 1. values of the TTD and PHD predicted from MDPy using the HYCUD method (4)
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