Supplemental Information

Conformational dynamics of the TTD-PHD histone reader module of UHRF1 reveals multiple histone binding states, allosteric regulation and druggability

R. Scott Houliston, Alexander Lemak, Aman Iqbal, Danton Ivanochko, Shili Duan, Lilia Kaustov, Michelle S. Ong, Lixin Fan, Guillermo Senisterra, Peter J. Brown, Yun-Xing Wang, Cheryl H. Arrowsmith

Figure S1 (related to Fig. 1 and Table 1)

(**A)** Comparison of experimental Kratky plots of TTD-PHD with and without a His tag (HTG). (**B**) Calculated normalized pair-distance distribution function P(r) for TTD-PHD and HTG-TTD-PHD. (**C**) Distributions of R_g for different ensembles of HTG-TTD-PHD. RBP_{IN/OUT} was generated by assuming that the entire linker (UHRF1₂₈₂₋₃₀₁) is disordered, while RBP_{IN} was generated assuming only the 5-residue hinge region of the linker (UHRF1₂₉₇₋₃₀₁) is disordered. The SES method (1) was used to generate the SAXS-fitted OEs, OE_{IN} (SAXS) and OE_{IN/OUT}(SAXS), from the pools, RBP_{IN} and $RBP_{IN/OUT}$, respectively. R_g distributions of RBP_{IN} (magenta) and RBP_{INOUT} (green, and violet) are shown by dashed lines, while R_g distributions of the optimal ensembles $OE_{IN}(SAXS)$ (violet) and $OE_{IN/OUT}(SAXS)$ (green) are shown by solid lines. (**D**) Comparison of Rg distributions for different ensembles of HTG-TTD-PHD. (**E**) Comparison of Rg distributions for different ensembles of TTD-PHD. The R_g distributions for $OE_{IN/OUT}(SAXS_{SIM})$, RBP_{IN} , and $RBP_{IN/OUT}$ ensembles are shown by solid, dotted, and dashed lines, respectively. (**F**) Flow-chart for generating OE_{IN/OUT}(SAXS_{SIM}) that is selected from RBP_{IN/OUT} with the SES method using SAXS profile $I_{sim}(q)$ simulated from RBP_{IN}.

Figure S2 (related to Fig. 2 and Table 2)

NMR data for TTD-PHD and combined NMR and SAXS fitting. (A) Portion of a labeled (¹H-¹⁵N) TROSY spectrum of TTD-PHD (UHRF1₁₂₆₋₃₆₆). We assigned 203 amide resonances (134 in the TTD, 11 in the linker and 58 in the PHD). (**B**) ${}^{1}H^{-15}N$ Heteronuclear NOE, (**C**) ${}^{15}N$ T1, and (**D**) ${}^{15}N$ T2 values as a function of sequence. The shaded area corresponds to the linker and the top bars indicate secondary structure elements. (**E**) Minimized residual χ^2 (Eq. 1) as function of α .

Figure S3 (related to Fig. 3 and Table 3)

Comparison of OEIN/OUT(SAXS) and OEIN/OUT(SAXS/NMR) (**A**) The position of PHD centers-of-mass in the most populated conformers (based on weighted %) from $OE_{INOUT}(SAXS)$ (black spheres) superimposed with the TTD (as a surface representation). Residues that bind to the H3 peptide are displayed in cyan. The red sphere shows the PHD center-of-mass in H3-bound TTD-PHD (PDB:3ASK) (2), and the yellow sphere shows the PHD center-of-mass in apo TTD-PHD of UHRF2 (PDB:4TVR) (**B**) R_g-distributions of OE_{IN/OUT} (SAXS/NMR) and OE_{IN/OUT}(SAXS). (C) d_{RM} distributions of OE_{IN/OUT}(SAXS/NMR) and OE_{IN/OUT}(SAXS). Distribution of the HYCUD-predicted (3, 4) correlation times of the TTD (**D**) and PHD (**E**) from structures in $OE_{IN/OUT}(SAXS)$ and $OE_{IN/OUT}(SAXS/NMR)$.

Figure S4 (related to Fig. 4)

Comparison of SAXS data for TTD-PHD and BPC-bound TTD-PHD. (**A**) Experimental Rg-based Kratky plots for apo (black) and BPC-bound TTD-PHD (at 2 mM BPC, 4% DMSO - blue; and 4 mM BPC, 4% DMSO, red). (**B**) Comparison of average *ab initio* SAXS-predicted molecular envelopes of apo (black) and BPC-bound TTD-PHD (red).

Figure S5 (related to Fig. 4)

Binding of BPC in the groove of TTD. TTD binding to BPC as seen by (A) FP displacement of a FITC-labeled (at the N-terminus) H3K9me3₍₁₋₂₅₎ peptide, (**B**) ITC, and (**C**) DSF. (**D**) K_D estimates of BPC binding based on I211 and Y239 amide peak movement (where $\Delta(ppm) = ((\Delta \delta H N)^2 + (\Delta \delta N/6.5)^2)^{1/2})$ in (¹H-¹⁵N) HSQC spectra when the TTD is titrated with BPC. (**E**) A histogram shows peak movement in HSQC spectra as a function of TTD sequence resulting from BPC (blue) or PBR peptide (red) binding. (**F**) HSQC overlays shows amide peak movement of TTD resonances at increasing BPC (top spectrum - from 1:1 to 7:1 fragment:protein), and PBR peptide ratios (bottom spectrum - from 1:1 to 5:1 peptide:protein). The protein concentration was \sim 250 μ M for all NMR experiments, and the DMSO concentration was 5% for NMR titrations with BPC.

Figure S6 (related to Fig. 4)

Histogram showing side-by-side comparison of peak movement/broadening in $(^1H^{-15}N)$ TROSY spectra when TTD-PHD is titrated with BPC (blue) or PBR peptide (red). Broadened resonances are assigned a value of 0.23. The protein concentration was \sim 250 μ M, and the DMSO concentration was kept at 5% for BPC titrations.

Figure S7

Overlay of an $(^1H^{-15}N)$ HSQC spectrum of UHRF1 PHD (blue), with a TROSY spectrum of TTD-PHD (yellow). Only slight deviations in peak positions are observed for this domain in isolation *vs*. its presence within the reader module, indicating that there are minimal (if any) contacts between the PHD and the linker and/or TTD.

Figure S8

(A-C) BPC and linker peptide (corresponding to UHRF1₂₈₆₋₃₀₀) compete directly for the TTD groove as illustrated by the perturbation of I211, I212 and E281 resonances in HSQC spectra of the TTD in a competition assay. Movement of TTD resonances in the presence of (**A**) BPC (2.4 mM, 5% DMSO) and (**B**) linker peptide (3.0 mM, 5% DMSO). (**C**) At increasing peptide:BPC ratios, the peaks transition from a BPC-bound pattern to a linker-bound pattern, demonstrating direct competition for binding to the groove. (**D**) PHD resonances are unaffected by the presence of BPC (3 mM, 5% DMSO).

Figure S9

ITC curves showing TTD-PHD binding to methylated (red) and unmethylated (black) H3 peptide. Methylated peptide binding is mediated by the TTD and PHD in a cooperative manner (2). Only the PHD can interact with unmethylated H3 peptide. BPC or PBR binding in the TTD groove similarly disrupts cooperative H3 binding by the histone reader.

Table S1 (related to Fig. 1, S1, S4): SAXS parameters for the TTD-PHD module

^a UHRF1₁₂₆₋₃₆₆ with a His tag (18 aa)

^b UHRF1₁₂₆₋₃₆₆ in complex with BPC (2 mM, 4% DMSO)

 \degree Intensity at q=0

 ${}^{d}R_{g}$ calculated using Guinier fit

 $e^{\text{e}}R_{\text{g}}$ calculated using GNOM (5)

f Maximum distance between atoms from GNOM

 \textdegree Volume of correlation (6)

 $h_{\text{M}_{\text{w}}}$ estimated from SAXS data using V_c (6). The M_w expected from sequence is shown in parentheses ⁱNormalized spatial discrepancy. The values are the average and standard deviation from fifteen runs of DAMMIF (7)

	$T_1^b(s)$	$T_2^b(s)$	$NOEc$	T_1/T_2^b
TTD	2.01 ± 0.20	0.028 ± 0.004	0.73 ± 0.06	73.3 ± 12.6
PHD	1.37 ± 0.15	0.034 ± 0.005	0.75 ± 0.06	40.8 ± 7.9
TTD-PHD	1.75 ± 0.37	0.031 ± 0.005	0.73 ± 0.06	60.0 ± 19.4

Table S2 (related to Fig. 3): Average ${}^{15}N$ relaxation parameters for TTD-PHD at 800MHz^a.

^a Averaging is performed over residues in the regular secondary structural elements **b** Errors are propagated fitting errors

^c Errors are standard deviations of averaging

Table S3 (related to Fig. 3): Rotational correlation time τ_c (*ns*) of the TTD and PHD predicted from different TTD-PHD models.

^aResults of hydrodynamic calculations for the TTD and PHD (both individually and rigidly attached) were estimated using the crystal structure of TTD-PHD (PDB:3ASK)² and the program HYDRONMR (8) with parameter 'a' set to 2.9

^b The average τ_c values of the TTD and PHD predicted from MDP_{IN/OUT} using the HYCUD method (4)

^cThe average τ_c values of the TTD and PHD predicted from MDP_{IN} using the HYCUD method (4)

References

- 1. Berlin, K., Castañeda, C. A., Schneidman-Duhovny, D., Sali, A., Nava-Tudela, A., and Fushman, D. (2013) Recovering a representative conformational ensemble from underdetermined macromolecular structural data. *J. Am. Chem. Soc.* **135**, 16595–16609
- 2. Arita, K., Isogai, S., Oda, T., Unoki, M., Sugita, K., Sekiyama, N., Kuwata, K., Hamamoto, R., Tochio, H., Sato, M., Ariyoshi, M., and Shirakawa, M. (2012) Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 12950–12955
- 3. Rezaei-Ghaleh, N., Klama, F., Munari, F., and Zweckstetter, M. (2013) Predicting the rotational tumbling of dynamic multidomain proteins and supramolecular complexes. *Angew. Chem. Int. Ed Engl.* **52**, 11410–11414
- 4. Rezaei-Ghaleh, N., Klama, F., Munari, F., and Zweckstetter, M. (2015) HYCUD: a computational tool for prediction of effective rotational correlation time in flexible proteins. *Bioinforma. Oxf. Engl.* **31**, 1319–1321
- 5. Feigin, L. A., and Svergun, D. I. (1987) Structure analysis by small-angle X-ray and neutron scattering, Plenum Press
- 6. Rambo, R. P., and Tainer, J. A. (2013) Accurate assessment of mass, models and resolution by small-angle scattering. *Nature*. **496**, 477–481
- 7. Franke, D., and Svergun, D. I. (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. *J. Appl. Crystallogr.* **42**, 342–346
- 8. García de la Torre, J., Huertas, M. L., and Carrasco, B. (2000) HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. *J. Magn. Reson.* **147**, 138–146