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Alternative approaches to model transportation 

The extensive literature on transportation network modeling contains various alternative approaches to 

the one developed here. 

Important group of graph theoretic approaches to system robustness and resilience look at the cascading 

failures propagation in spatially-embedded interdependent networks. For example, Berezin et al. (38) 

look at the cascading failures in coupled diluted lattices and determine a critical radius of localized 

percolation, which leads to the system’s collapse. In work (39), the authors add recovery to probabilistic 

failure process in coupled spatial networks, and establish a phase space of probabilities, characterizing 

the up and down states of the two networks. Another study (40), which is particularly relevant to 

transportation, evaluates loads on nodes from their betweenness centralities. If after a localized removal 

of some nodes the betweenness of the surrounding nodes increases above a threshold proportional to 

their initial betweenness, an overload happens. This overload may then propagate across the network. 

Widespread queueing models (44) consider traffic behavior in the vicinity of a certain location or 

section where the demand exceeds the available capacity (for example, at intersections). We do not 

utilize these models in this work for a number of reasons: i) we do not have information on the 

controlled and not controlled intersections; ii) to robustly formulate a queueing model we would need to 

consider temporal distribution of arrival and departure rates; iii) computationally, such models are more 

complex to solve for large networks (we consider networks of up to 39 791 nodes and 88 797 links 

(New York)) as it is necessary to account for the finite capacity of links and spillover effects, when a 

link may cause delays at connected links and increase wait times for traffic, which will not enter that 

link. Another approach is to evaluate delays from historical data and direct measurement (e.g. Google 

Maps). This approach is very accurate but requires extensive datasets and is not easily applicable to 

hypothetical scenarios, such as disruptions. 

Gonzalez et al. (41) conducted a study on human mobility patterns and found that these patterns may be 

approximated by a random walk for which step size follows a truncated power law. Similar patterns 

were observed later by Cho et al. (42) and Calabrese et al. (43). In our work, however, we based our 

evaluation of the distance factor on the National Household Travel Survey as the scale of the mobility 

patterns reported is significantly different and covers travel of up to 104 kilometers (e.g., (42)). Mobility 

studies also have certain limitations. For example, among other characteristics, the first paper looks at 

distance distribution of travel and approximates it with a Lévy flight. We note, that in conditions of 

highly geometrically heterogeneous sources and destinations distributions, a random walk may be less 

accurate than models which account for this heterogeneity. 

  



Mapping from OSM Foundation shapefiles to network nodes and links 

The transportation topology is represented in Open Street Map (OSM) datasets as a table with rows 

defining segments of roads. Each row contains the following fields (fields marked as optional below 

may contain no data): 

1) SHAPE – characterizes the road segment as a polyline defined by an ordered list of points 

coordinates; 

2) NAME (optional) – contains the name of a road (e.g. street or highway name); 

3) TYPE – specifies values showing the importance of a road (e.g. highway, trunk, primary, secondary, 

tertiary and others); 

4) ONEWAY – represents whether a road segment is one way as a binary value (0 or 1); 

5) MAXSPEED (optional) – provides the speed limit information for a particular road segment. 

For simplicity and computational effectiveness, we do not consider minor residential streets and service 

roads in the analysis, thus limiting it to roads of 10 types, and assign a number of lanes to each type 

(table S1). Additionally, for each of the roads we calculate its length lij (using the shape of the polyline) 

and the free-flow speed (FFS). For non-ramps roads, the FFS is determined either as the value of the 

field MAXSPEED if it is non-zero, or as the average FFS across the whole network for roads of the 

same type and non-zero MAXSPEED. For ramps the FFS is determined as one third of the average FFS 

of the respective type roads. E.g., the FFS of highway ramps equals 1/3 of the average highway FFS. We 

analyze the effects it has on the results later in Supplementary Materials. 

 

table S1. Mapping original OSM types to network link types and assignment of the number of 

lanes. 

Link Type OSM Dataset Type Number of Lanes 

High-speed (HS) highways motorway 4 

Highways trunk 4 

Primary roads primary 3 

Secondary roads secondary 2 

Tertiary roads tertiary 1 

HS highways ramps motorway_link 2 

Highways ramps trunk _link 2 

Primary ramps primary _link 2 

Secondary ramps secondary_link 1 

Tertiary ramps tertiary_link 1 

In the beginning of the network topology generation we create a map with keys corresponding to GPS 

coordinates, and values corresponding to nodes. For each of the points comprising the road polylines we 

first check if it should be included in the network based on the boundary polygon. A point is included if 

it is either inside the boundary polygon or within a certain distance from the polygon’s border. In this 

study, the said distance was taken to be 25 miles (approximately 40 000 meters). If the point is included 

then we create a node and add it to the map using its coordinates (rounded to 10–5 decimal degrees) as 

the key, unless these coordinates are already in the map. Thus, all points of all road polylines have a 

corresponding node in the map. Finally, we connect all adjacent (as defined by the road polylines) nodes 

with either one directed link (if the road is one way) or two directed links (otherwise). 



It is worth noticing that when a transportation system is represented as a network some nodes may be 

excluded. In particular, the nodes with only one neighbor, while able to serve as sources or destinations, 

do not contribute to the traffic carrying capacity of the system. For this reason, we removed all such 

nodes from the transportation network to simplify the model. 

It is also possible to exclude the nodes with exactly two neighbors from the system. Such nodes typically 

appear for two reasons: i) due to our removal of residential and service roads from the network; ii) in the 

source datasets, as a way to differentiate between different road types or allowed speeds on the roads 

connected by such a node. To investigate the validity of removing nodes of degree 2 from our resulting 

network, in fig. S1 we present an analysis of characteristics of links, which are combined due to removal 

of such nodes. We look at differences in estimated speeds (fig. S1A) and numbers of lanes (fig. S1B). In 

total, across all 40 urban areas, 842 115 link pairs are combined. More than 97% pairs had speed 

differences between links less than 10 km/h and more than 99% had no differences in the estimated 

numbers of lanes. Thus, we conclude that the effect of the removal on the results is unlikely to be 

significant. We do the removal by connecting the two neighbors of 2-degree nodes directly as follows. 

Assume that node A has two neighbors: B1 and B2. Depending on the way the three nodes (B1, A, and B2) 

are connected we either disconnect nodes B1 and B2, or connect them with 1 or 2 directed links (in 

opposite directions). The links from B1 to B2 and from B2 to B1 are built in the same way so we only 

need to describe case B1–B2. The following two subcases are possible: i) there is a link from B1 to A and 

from A to B2; ii) there is no either or both of the links mentioned in i). In the first case, we can replace 

the two directed links B1–A–B2 with a single directed link B1–B2. The road length of the resulting link 

B1–B2 is set to the sum of the lengths of links B1–A and A–B2. The type of link B1–B2 is set to the worst 

of the types of the two original links (e.g., if the type of link B1–A is HS highway and the type of link A–

B2 is primary road then the type of link B1–B2 is assigned as primary road). The capacity of link B1–B2 is 

set to the smallest of the capacities of links B1–A and A–B2 and the FFS is found from the capacity and 

the road type of link B1–B2. In the second case the link between nodes B1 and B2 is not created. We do 

not apply the above mechanism and keep nodes of degree 2 in the network when either of their two links 

is a ramp and the other one is not. 

 

 
 

fig. S1. Effects of the removal of nodes of degree 2. Distribution of differences in estimated speeds (A) 

and numbers of lanes (B) between two roads connected to these nodes. Of 842 115 such link pairs in all 

40 urban areas, 819 106 (97%) pairs had speed differences between links of 10 km/h or less, and 835 

305 (99%) pairs had no differences in the estimated numbers of lanes. 

  



Population assignment algorithm 

In table S2 we describe the ESRI ArcMap tools we used to evaluate the number of people served by 

each of the intersections. 

table S2. The algorithm of the node population assignment. 

 

 ArcMap Tools Description 

1 Minimum Bounding 

Geometry 

Build the minimum convex bounding polygon enclosing all 

nodes in the network. 

2 Buffer Create the buffer polygon around the nodes bounding polygon. 

The resulting buffer polygon may be defined as the union of the 

boundary polygon and all points within a certain distance from 

this polygon. In our study, the buffer distance was taken to be 1 

mile. 

3 Create Thiessen 

Polygons 

Build Voronoi polygons for all nodes. Each Voronoi polygon 

contains only a single point input feature. Any location within a 

Voronoi polygon is closer to its associated point than to any other 

point input feature. 

4 Clip Clip Voronoi polygons with the buffer polygon. 

5 Calculate Field Calculate areas and population densities for all population 

distribution polygons. 

6 Tabulate Intersection Calculate the spatial composition of each of the Voronoi 

polygons in terms of population distribution polygons and 

calculate the population density of Voronoi polygons. 

7 Calculate Field Multiply the area of Voronoi polygons by their population 

density to evaluate the number of people. Assign this number as 

the population served by a node. 

 

  



Distance factor of the likelihood of travel between nodes 

To evaluate the trip distance factor P(xod) we rely on 2009 survey data provided by the National 

Household Travel Survey (NHTS) (55, 56). Overall, the resulting dataset contains data for all 150 147 

completed households. As part of the survey, the queried households were asked to record parameters of 

their daily trips, such as distance travelled, on a certain day of the year. 

We approximated the NHTS data with a piecewise continuous function. Let x be the distance between 

the origin and destination. The first two segments (for x ϵ (0; 0.5] and for x ϵ (0.5; 2.5]) were chosen to 

be linear. The first segment was chosen to be a straight line connecting the point (0, 0) and the first bin 

point. The second segment was chosen to be a straight line connecting the last point of the first segment 

and the first point of the third segment. 

For the third segment (x ϵ (2.5; 34.5]), we considered a polynomial model (P(x) = k3x
–b) and an 

exponential model (P(x) = k3e
–bx). As we observed a slightly better correlation between the model and 

the data with the exponential model, we used that model. 

In table S3 we provide the precise definition of the distance factor P(xod) of the likelihood of travel 

between nodes. 

table S3. Distance factor P(xod) of the likelihood of travel between nodes. 

 

Function 
Parameters Argument (xod) 

values (miles) k b 

0    0 

𝑘𝑑 + 𝑏 0.21995 0 0 0.5 

𝑘𝑑 + 𝑏 0.01188 0.10404 0.5 2.5 

𝑘𝑒−𝑏𝑑 0.21128 0.18296 2.5 34.5 

0   34.5  

 

  



Estimation of the traffic speed from the density of vehicles 

We employ a simple car following model to find the relationship between vehicles density and their 

macroscopic speeds. 

Consider a network link, representing a road segment of length l with m lanes. Let D be the density of 

vehicles per unit length per one lane of the link. We assume uniform distribution of vehicles across the 

road segment. Then, on the whole link, the total number of vehicles N is 

𝑁 =
𝑙𝑚

𝐷
 (S1) 

On the other hand, the density D equals the reciprocal average length of the road occupied by a single 

vehicle l1: D = 1 / l1. We assume that l1 is composed of two parts the distance the driver needs to keep 

between their vehicle and the vehicle directly ahead and the vehicle size correction lveh. We approximate 

the distance between two vehicles according to the two-second rule. This rule recommends that under 

normal road and weather conditions drivers keep the distance they cover in 2 seconds between their 

vehicle and the one they are following. Let tr equal 2 seconds and v be the current traffic speed. Then 

𝐷 = (𝑙𝑣𝑒ℎ + 𝑣𝑡𝑟)−1 (S2) 

We assume that v is limited from the top at the free-flow speed V, which equals the speed limit set on the 

link. Then 

𝑣 = {

 𝑉, if 𝐷 ≤ 𝐷𝑐

1

𝐷𝑡𝑟
− 𝑣𝑣𝑒ℎ,  if 𝐷𝑐 < 𝐷 ≤ 𝐷𝑗𝑎𝑚

0,  otherwise

 (S3) 

Above, vveh = lveh / tr. Dc = (lveh + Vtr)
–1, and Djam = 1 / lveh. The fundamental traffic relationship between 

flow q, speed v, and density D is 

𝑞 = 𝐷𝑣 (S4) 

Using the relationship, we may express the traffic flow in terms of density as follows 

𝑞 = {

𝐷𝑉,  if 0 < 𝐷 ≤  𝐷𝑐

1

𝑡𝑟
− 𝐷𝑣𝑣𝑒ℎ  if 𝐷𝑐 < 𝐷 ≤ 𝐷𝑗𝑎𝑚

0 otherwise

 (S5) 

If we set qc = 1 / tr, we obtain the dependency shown in fig. S2 which represents the Daganzo traffic 

model (59). 

 

 



 
fig. S2. Density-flow relationship in the Daganzo traffic model. 

Using equations (S1) and (S3) we find that for Dc < D ≤ Djam 

𝑣 =
𝑙𝑚

𝑁𝑡𝑟
− 𝑣𝑣𝑒ℎ (S6) 

For a link, we approximate the number of vehicles N to be linearly proportional to the load L with the 

proportionality coefficient α 

𝑁 =
𝐿

𝛼
 (S7) 

In addition, we assume that the minimum traffic speed is limited at a certain value vmin. This leads to Eq. 

(6) from the main text 

𝑣𝑖𝑗 = 𝛼
𝑙𝑖𝑗𝑚𝑖𝑗

𝐿𝑖𝑗
− 𝑣𝑣𝑒ℎ, subject to 𝑣𝑖𝑗 ∈ [𝑣𝑚𝑖𝑛, 𝑉𝑖𝑗] (S8) 

We assume lveh to be 5 meters, giving vveh = 9 km/h, while vmin is approximated to be the walking speed 

of 5 km/h. 

  



Model calibration procedure 

We calibrate the model to determine the value of α to match the real data on the annual average delay 

per peak-hour auto commuter provided by the Urban Mobility Scorecard (11). We use the delays data 

for 2010 as our census data are for that year. We search for parameter α maximizing the correlation 

between the modeled and actual delay times in representative 20 urban areas. To this end, we vary the 

value of the parameter α in the range of [200; 200,000] with the step of 200. We first divide the value of 

total delay ∆T (Eq. (5)) over the UA number of auto commuters (Urban Mobility Scorecard (11)). Then, 

we determine the proportionality coefficient β which minimizes the R-squared coefficient for the 

predicted and observed values assuming a simple linear dependency between these values passing 

through the point (0, 0). 

We have found that for the 20 urban areas used for calibration R-squared coefficient took values in the 

range [-0.01; 0.83] (fig. S3). This allowed us to set α = 4.30∙104 hour–1, which corresponds to β of 10.59, 

and the Pearson coefficient of 0.91 (p = 2.17∙10-8). 

 

 

 
 

fig. S3. Model calibration. Optimization landscape showing dependency of R-squared correlation 

coefficient model for efficiency on the parameter α in Eqs. (6) and (S9). 

  



Sensitivity of the model to ramp speeds 

As outlined in the first subsection of Supplementary Materials, when the exact value of ramp speed is 

not available from data, we evaluate this value as a fraction of the average speed of the respective 

roadways (e.g., motorway ramp speed is a fraction of the average motorway speed). Let us further refer 

to this fraction as the ramp speed coefficient. In this subsection, we describe the study of the effect this 

coefficient has on delays and the correlation between the observed and modeled values. 

All results and calculations presented in the manuscript were created using the ramp speed coefficient of 

1/3. To validate that the model is stable for different values of the coefficient we consider 5 additional 

cases with ramp coefficient taking values from 0.3 to 0.7 with the step of 0.1. Figure S4 compares the 

observed and modeled delays for two values of the ramp speed coefficient: 1/3 and 1/2. Overall, we 

observe, that changing the coefficient may both increase and decrease the modeled delay. Yet, we note, 

that in any case the change is not significant. In addition, from the inset of fig. S4 we conclude that the 

Pearson correlation coefficient R between the observed and predicted values of delays does not change 

noticeably. We report the optimal fitting parameters α and β and the Pearson correlation coefficient for 

all values of the ramp speed coefficient in table S4. 

 

 

 
 

fig. S4. Modeled delays for ramp speed coefficients of 1/3 and 1/2. Increased estimated speed along 

ramps may both increase and decrease the predicted delays. However, in all cases the changes are 

negligible. The inset implies that the Pearson correlation coefficient R does not change significantly with 

the ramp speed coefficient. 

 



 

 

table S4. Model sensitivity to ramp speed coefficient. The coefficient of 1/3 is used in the study. 

Pearson R is provided for all 40 areas used for calibration and validation. 

 

Ramp speed coefficient Parameter α Parameter β Pearson R 

0.3 42 600 10.5639 0.8311 

1/3 43 000 10.5898 0.8322 

0.4 44 800 10.7238 0.8334 

0.5 45 800 10.7567 0.8358 

0.6 46 600 10.7701 0.8375 

0.7 47 200 10.7697 0.8382 

 

  



Additional delay as a function of the severity of link disruption 

We present the results of delay times in all 40 urban areas for the full spectrum of adverse event 

severities, r ⋲ [0; 1] in fig. S5 (compare to Fig. 5 in the main text which shows the results for only 6 

representative urban areas). 

 

 

fig. S5. Dependency of the additional delay on the severity of the link disruption for all 40 urban 

areas. Error bars show mean values ± standard deviation. Cities are ordered by the observed delays. 


