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fig. S1. Comparison of dimensionless rupture arrest area calculated from numerical simula-

o

tions with grid spacing &~ = 50 m (circles) and A~ = 100 m (squares) with our theoretical

estimates (bold lines) for varying o™ (indicated by color). To facilitate the comparison, theo-
retical curves for 0™ = 0.75 and 0.8 were shifted to match the transition to runaway ruptures
for numerical results (the original position is depicted by bold dashed lines). The comparison
reveals that finer grid sampling leads to better agreement between numerical simulations and
our theoretical estimates. Ly.;. = p - D./(Ts0 — T40) is a characteristic length scale introduced

by the slip-weakening process (39).
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fig. S2. Comparison of stress drop distributions as functions of dimensionless crack radius at

the time of A!%* for situations from Fig. 6. a) for a step-like distribution of stress drop with
varying strength parameter S b) for a Gaussian distribution of stress drop with varying normal

stress. Filled symbols indicate R,,q;. Lfric = ft - D/ (750 — Tao) 18 a characteristic length scale

introduced by the slip-weakening process (39).
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fig. S3. Scaling of mean static and dynamic stress drops in results of numerical simulations.
Ruptured area (color-coded) indicate that our assumption (67, = d7y) is valid for arrested rup-
tures (shades of blue). The runaway ruptures (dark red) in numerical simulations have to be
eventually arrested by an artificial barrier, which leads to deviations from the ideal scaling, as

expected (r.r. stands for runaway rupture).
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fig. S4. Comparison of various approaches to estimate M, from ruptured area A,,... Empirical
scaling relations are denoted as follows: WC1994 (40), MB2000 (41), L2010 (35). SS stands
for strike-slip, R for reverse, N for normal, DS for dip-slip events and SCR for events in stable
continental regions. Note: The overlapping points for M~7 correspond to runaway ruptures

while the rest of the points correspond to arrested ruptures.
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fig. S5. Distributions of reservoir-fault parameters for all ~4250 configurations used for verifi-

cation of M™** (point-load approximation) against M (finite-reservoir approach). Viscosity,
permeability, compressibility, porosity, height of reservoir, well radius, flow rate, static coeffi-
cient of friction, and depth of a fault were sampled from uniform probability density functions
(PDFs). Radius of reservoir, strength parameter S and slip-weakening distance D, were ini-
tially also sampled from uniform PDFs. However, to increase density of points with lower mag-

nitudes in fig. §7, we increased the number of configurations presumably leading to smaller



magnitudes based on the correlations between parameters and magnitudes in fig. $6. Conse-
quently, the resulting histograms are right-skewed. The remaining non-uniform distributions
of dynamic coefficient of friction, initial shear stress and background stress drop are results of
constraints used to compute self-consistent sets of fault-related parameters. For example, initial

stress was computed such that it produces the selected S value for selected normal stress and

coefficients of friction.
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fig. S6. Distributions of reservoir-fault parameters for all ~4250 configurations used for veri-

fication of M™** (point-load approximation) against M (finite-reservoir approach). The red
line in “reservoir radius” panel indicates M,, corresponding to the area of a reservoir assuming
average background stress drop for all configurations. Therefore, the few points lying to the left

of the line do not indicate transition to runaway rupture within a reservoir, but configurations



with higher than average stress drop. Orthogonal residuals are color-coded, revealing a weak
correlation of compressibility and porosity with the residuals (this problem is further discussed
in the main text). We observe correlation between parameters and magnitude only for strength
parameter S, characteristic slip distance D, and reservoir radius, for which the correlation is

caused by the fact that the transition to runaway ruptures happens outside of a reservoir.
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fig. S7. Comparison of M**~*" (derived for a point-load approximation of a reservoir) with
M¢r (derived for a finite reservoir) and corresponding orthogonal residuals. Density of points
in the plots is emphasized using a color scale. The plots reveal that M'**~%" scales very well
with M¢, as indicated by residuals with mean (green) and median (red) very close to zero,

although the distribution of residuals is slightly non-symmetric, as seen in the histogram.
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fig. S8. Evaluation of the probability of occurrence rank of the largest event within a sequence.

a) Histogram of the unbiased data set by (/2). b) Comparison of three tested probability den-
sity functions (PDFs). c) The data were tested against the three PDFs using the two-sample
Anderson-Darling test (38). The null hypothesis - data are sampled from the corresponding
PDF - is accepted if the statistic A 4p is lower than the critical value 2.492 (see text for further

details).



table S1. Reservoir and fault parameters used to prepare Fig. 2. Though the parameter values are
chosen from intervals reported for general reservoir (36,37), they do not represent end-members.
Instead, we chose parameters such that they illustrate the behavior of the system. i, - viscosity,
k - permeability, ¢ - porosity, ¢; - compressibility, / - height of reservoir, r. - radius of reservoir,
q - injection rate (negative and positive sign indicates injection or extraction, respectively), ftg
dynamic coefficient of friction, u - static coefficient of friction, 7y - background shear stress, o
- background normal stress, D, - characteristic slip-weakening distance, S - strength parameter,
Tso - background static stress, 7y - background dynamic stress, A7y - stress drop, A7g - strength

excess. The gray values are identical with the reference case.
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