Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehponline@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Ambient Coarse Particulate Matter and the Right Ventricle:

The Multi-Ethnic Study of Atherosclerosis

Jennifer D'Souza, Steven Kawut, Laura R. Elkayam, Lianne Sheppard, Peter S. Thorne, David R. Jacobs, Jr, David A. Bluemke, Joao A. Lima, Joel D. Kaufman, Timothy V. Larson, and Sara D. Adar

Table of Contents

Figure S1. Study Population

Table S1. Comparison of Full Cohort with Included and Excluded samples

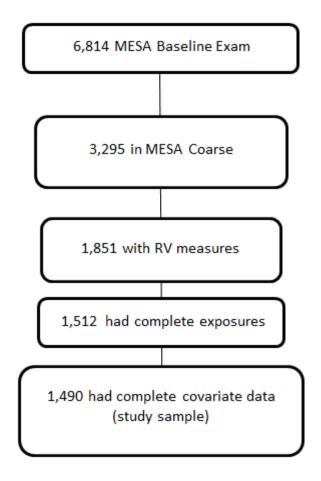

Table S2. Pearson Correlation Coefficients between different pollutants: overall and within study site

Figure S2. Associations Between Air Pollutant Concentrations and Right Ventricular End-Diastolic Mass in Single and Multi-Pollutant Models (g per IQR of Pollutant, 95% CI)

Figure S3. Sensitivity of Results to Adjustment for Various Covariates Including Potential Intermediates

Figure S4. Effect Modification of Associations Between PM_{10-2.5} Concentrations and Right Ventricular End-Diastolic Volume and Ejection Fraction, After Control for PM_{2.5} and NO₂ (g per IQR of Pollutant, 95% CI)

Figure S1. Study Population

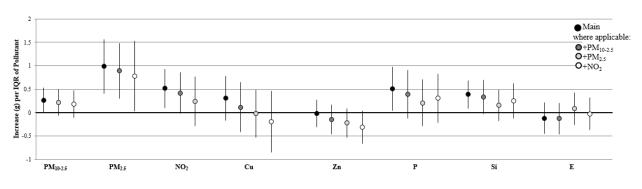
	Full	Included	Excluded
N	3295	1490	1805
Age (years)	61.8±10.2	61.1±10.0	62.3±10.3
Female	1726 (52%)	795 (53%)	931 (52%)
Race/Ethnicity			
White	1731 (53%)	828 (56%)	903 (50%)
Chinese	304 (9%)	158 (11%)	146 (8%)
Black	801 (24%)	293 (20%)	508 (28%)
Hispanic	459 (14%)	211 (14%)	248 (14%)
Education			
<high school<="" td=""><td>922 (28%)</td><td>400 (27%)</td><td>522 (29%)</td></high>	922 (28%)	400 (27%)	522 (29%)
High School/Some College	992 (30%)	440 (30%)	552 (31%)
≥College	1377 (42%)	650 (44%)	727 (40%)
Smoking Status			
Never	1543 (47%)	744 (50%)	799 (44%)
Former	1302 (40%)	556 (37%)	746 (41%)
Current	446 (14%)	190 (13%)	256 (14%)
\geq 10 years in neighborhood	2115 (64%)	1033 (69%)	1082 (60%)
Health			
BMI (kg/m ²)	28.3±5.4	27.7±5.0	28.8±5.6
Cholesterol (mg/dl)	194.3±35.4	195.3±36.0	193.5±34.9
Hypertension	1407 (43%)	584 (39%)	823 (46%)
Diabetic	347 (11%)	143 (10%)	204 (11%)
Pollutants, mean (SD)			
$PM_{10-2.5} (\mu g/m^3)$	5.0±1.7	4.9±1.6	5.1±1.7
Copper (ng/m ³)	4.6±2.7	4.4±2.5	4.8 ± 2.8
Zinc (ng/m3)	10.0±10.7	9.0±9.6	11.0±11.6
Silicon (µg/m3)	0.4±0.1	0.4±0.1	0.4±0.1
Phosphorous (ng/m3)	16.2±3.7	15.9±3.6	16.5±3.8
Endotoxin (EU/m3)	0.1±0.1	0.1±0.1	0.1±0.1
PM _{2.5} (µg/m3)	14.7±2.2	14.6±2.1	14.8±2.2
NO_2 (ppb)	15.0±5.4	14.7±5.1	15.2±5.6

Table S1. Comparison of Full Cohort with Included and Excluded samples

Excluded refers to those who were in the MESA Coarse study but were missing exposure, outcome and/or covariates used in the main model

Table S2. Pearson Correlation Coefficients between different pollutants: overall and within study site

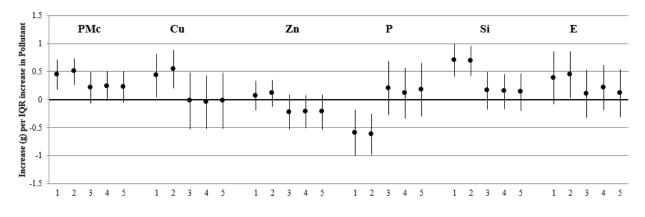
(p values are printed below Pearson Correlation Coefficients)


	Overall									
	PM ₁₀ .	Cu	Zn	Ph	Si	Endo	PM _{2.5}	NO ₂		
	2.5									
PM10-	1									
2.5										
Cu	0.53	1								
	<.0001									
Zn	0.45	0.79	1							
	<.0001	<.0001								
Ph	-0.09	0.04	0.10	1						
	0.0003	0.09	<.0001							
Si	0.53	0.16	0.08	-0.13	1					
	<.0001	<.0001	0.00	<.0001						
Endo	0.16	-0.30	-0.27	-0.46	0.27	1				
	<.0001	<.0001	<.0001	<.0001	<.0001					
PM2.5	0.02	0.46	0.42	0.57	-0.28	-0.61	1			
	0.38	<.0001	<.0001	<.0001	<.0001	<.0001				
NO ₂	0.52	0.89	0.76	-0.07	0.19	-0.24	0.46	1		
	<.0001	<.0001	<.0001	0.01	<.0001	<.0001	<.0001			

	Chicago										
	PM10-	Cu	Zn	Ph	Si	Endo	PM2.5	NO ₂			
	2.5										
PM10-	1										
2.5											
Cu	0.80	1									
Cu	<.0001	-									
Zn	0.74	0.56	1								
	<.0001	<.0001									
Ph	0.78	0.73	0.65	1							
	<.0001	<.0001	<.0001								
Si	0.84	0.77	0.57	0.79	1						
	<.0001	<.0001	<.0001	<.0001							
Endo	-0.14	-0.21	-0.08	-0.30	-0.31	1					
	0.00	<.0001	0.07	<.0001	<.0001						
PM _{2.5}	0.58	0.51	0.38	0.60	0.59	-0.26	1				
	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001					
NO ₂	0.79	0.75	0.57	0.65	0.75	-0.16	0.62	1			
	<.0001	<.0001	<.0001	<.0001	<.0001	0.00	<.0001				

Winston-Salem									
	PM ₁₀ . Cu Zn Ph Si Endo PM _{2.5}								
	2.5								
PM10-	1								
2.5									
Cu	0.05	1							
	0.31								
Zn	-0.29	0.25	1						
	<.0001	<.0001							
Ph	0.32	0.24	0.08	1					
	<.0001	<.0001	0.10						
Si	0.51	0.57	0.13	0.31	1				
	<.0001	<.0001	0.01	<.0001					
Endo	0.36	-0.37	-0.53	-0.17	-0.12	1			
	<.0001	<.0001	<.0001	0.00	0.01				
PM _{2.5}	-0.36	0.41	0.30	-0.03	0.05	-0.36	1		
	<.0001	<.0001	<.0001	0.51	0.30	<.0001			
NO ₂	-0.15	0.64	0.52	0.04	0.35	-0.33	0.60	1	
-	0.00	<.0001	<.0001	0.40	<.0001	<.0001	<.0001	l	

	St.Paul							
	PM10-	Cu	Zn	Ph	Si	Endo	PM2.5	NO ₂
	2.5							
PM10-	1							
2.5								
Cu	0.56	1						
	<.0001							
Zn	0.28	0.51	1					
	<.0001	<.0001						
Ph	0.18	0.36	0.38	1				
	<.0001	<.0001	<.0001					
Si	0.45	0.41	0.36	0.46	1			
	<.0001	<.0001	<.0001	<.0001				
Endo	0.13	0.03	0.20	0.11	-0.20	1		
	0.00	0.54	<.0001	0.01	<.0001			
PM2.5	0.23	0.40	0.25	0.28	0.46	-0.02	1	
	<.0001	<.0001	<.0001	<.0001	<.0001	0.60		
NO ₂	0.41	0.63	0.46	0.35	0.49	0.01	0.81	
	<.0001	<.0001	<.0001	<.0001	<.0001	0.76	<.0001	


Figure S2. Associations Between Air Pollutant Concentrations and Right Ventricular End-

Diastolic Mass in Single and Multi-Pollutant Models (g per IQR of Pollutant, 95% CI)

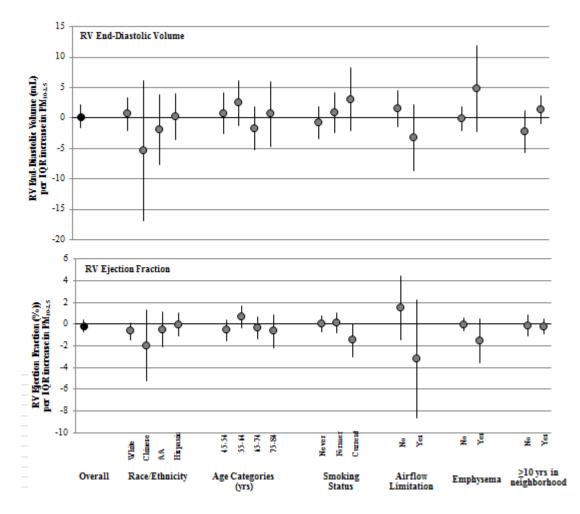
All models adjusted for age, race, gender, height, NSES, education, smoking status, pack-years, second-hand smoke exposure, hypertension, diabetes, total cholesterol, study site, and site by NSES interaction. Associations scaled to IQR of pollutant: PM_{10-2.5} (2.2 µg/m³), PM_{2.5} (3.8 µg/m³), NO₂ (7.0 ppb), Cu (4 ng/m³), Zn (11 ng/m³), P (6 ng/m³), Si (0.13 µg/m³), Endotoxin (0.08 EU/m³).

Figure S3. Sensitivity of Results to Adjustment for Various Covariates Including Potential

Intermediates

Above models are presented with increasing levels of adjustment in the following order:

1: Age, race, gender, NSES, education, PM_{2.5}


2: Model 1 + height, weight, smoking status, pack-years, second-hand smoke exposure, hypertension, diabetes, total

cholesterol

- 3: Model 2 + study site, and site by NSES interaction
- 4: Model 3 + left ventricular mass
- 5: Model 3 + %emphysema

Associations scaled to IQR of pollutant: $PM_{10-2.5}$ (2.2 µg/m³), Cu (4 ng/m³), Zn (11ng/m³), P (6ng/m³), Si (0.13 µg/m³), Endotoxin (0.1 EU/m³).

Figure S4. Effect Modification of Associations Between PM_{10-2.5} Concentrations and Right Ventricular End-Diastolic Volume and Ejection Fraction, After Control for PM_{2.5} and NO₂ (g per IQR of Pollutant, 95% CI)

All models adjusted for age, race, gender, height, weight, NSES, education, smoking status, pack-years, secondhand smoke exposure, hypertension, diabetes, total cholesterol, study site, site by NSES interaction, $PM_{2.5}$ and NO_2 and their effect modifier interaction. Associations scaled to IQR of pollutant: $PM_{10-2.5}$ (2.2 µg/m³).