Supporting Information

An Interlaboratory Evaluation of Drift Tube Ion Mobility - Mass Spectrometry Collision Cross Section Measurements

Sarah M. Stow¹, Tim J. Causon², Xueyun Zheng³, Ruwan T. Kurulugama⁴, Teresa Mairinger², Jody C. May¹, Emma E. Rennie⁴, Erin S. Baker³, Richard D. Smith³, John A. McLean¹, Stephan Hann² and John C. Fjeldsted^{4*}

¹Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, United States

²Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU, Vienna), Vienna 1190, Austria

³Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States

⁴Agilent Technologies, Santa Clara, California 95051, United States

*Corresponding Author: Agilent Technologies, Santa Clara, CA 95051 Email: john_fjeldsted@agilent.com

Abstract

Collision cross section (CCS) measurements resulting from ion mobility – mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values ($^{DT}CCS_{N2}$) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these $^{DT}CCS_{N2}$ values are evaluated across three additional laboratories on a commercially-available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field $^{DT}CCS_{N2}$ values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.

Table of Contents

Sample Information and Detailed Instrument Settings	Pages 3-5
Correction approach for Instrument Improvements	Pages 6-9
Detailed Tune Mix CCS Values	Pages 10-13
Detailed Biological Standards Stepped Field Results	Pages 14-19
Detailed Biological Standards Single Field Results	Pages 20-28
Detailed Theoretical Modeling Results	Pages 29-45

Interlaboratory Study Stepped field Agilent Reference Method DB.xlsx

This excel data file contains m/z, CCS, and other descriptors of the biological standards analyzed in this study in a database format.

Compound	Sigma-Aldrich p/n	Agilent p/n
Lipids		
C12:0	61609-5G	
C15:0	91446-5G	
C16:1	76169-1G	
C16:0	76119-5G	
C17:0	H3500-1G	
C18:3	L2376-500MG	
C18:2	L1376-500MG	
C18:1	O1008-1G	
C18:0	85679-500MG	
C20:4	A3611-100MG	
C20:3	E4504-10MG	
C20:2	E3127-25MG	
C20:1	44878-100MG	
C20:0	A3631-500MG	
C24:0	L6641-100MG	
Metabolites	5	
Creatinine	C4255-10G	
L-proline		AA Standard 5061-3330
L-leucine		AA Standard 5061-3330
L-isoleucine		AA Standard 5061-3330
L-aspartic acid		AA Standard 5061-3330
Homocysteine	44925-25MG	
L-glutamic acid		AA Standard 5061-3330
L-lysine		AA Standard 5061-3330
L-methionine		AA Standard 5061-3330
L-histidine		AA Standard 5061-3330
L-phenylalanine		AA Standard 5061-3330
Uric acid	U0881-10G	
L-arginine		AA Standard 5061-3330
L-tyrosine		AA Standard 5061-3330
Glucose	G8270-100G	
L-cystine		AA Standard 5061-3330
Pyridoxal 5'-phosphate	P9255-1G	
Cortisol	H4001-1G	
Levomefolic acid	M0132-5MG	
Peptides		
Angiotensin I	A9650-1MG	
Angiotensin II	A9525-1MG	
Bradykinin	B3259-1MG	
Renin	R8129-1MG	
Substance P	S6883-1MG	
Neurotensin	N6383-1MG	
Melittin	M2272-1MG	

 Table S1. Chemical standards information for lipids and metabolites.

Tune Mix Ions				
Betaine	G1969-85000			
Trifluoroaceitc acid ammonium salt	G1969-85000			
Hexamethoxyphosphazine	G1969-85000			
Hexakis(1H, 1H, 3H-tetrafluoropropoxy) phosphazine	G1969-85000			
Hexakis(1H, 1H, 5H-octafluoropentoxy) phosphazine	G1969-85000			
Hexakis(1H, 1H, 7H-dodecafluoroheptoxy) phosphazine	G1969-85000			
Hexakis(1H, 1H, 9H-perfluorononyloxy) phosphazine	G1969-85000			
Hexakis(1H, 1H, 4H-hexafluorobutyloxy) phosphazine	G1969-85000			
Hexakis(1H, 1H, 6H-decafluorohexyloxy) phosphazine	G1969-85000			
Hexakis(1H, 1H, 8H-tetradecafluorooctyloxy) phosphazine	G1969-85000			
Tris(trifluoromethyl)-1,3,5-triazine	G1969-85000			
Tris(heptafluoropropyl)-1,3,5-triazine	G1969-85000			

Table S2. Chemical Standards Information for peptides and proteins

Compound	Sigma-Aldrich p/n	Agilent p/n				
Proteins						
Ubiquitin	U6253-5MG					
Cytochrome c	C2506-50MG					
Digest Peptie	les from Cytochrome	c				
GITWK						
IFVQK						
YIPGTK						
MIFAGIK						
EDLIAYLK						
TGPNLHGLFGR						
TGQAPGFTYTDANK						
EETLMEYLENPK						

Time	Time (min)	Drift Tube	Drift Tube	Rear Funnel	Rear Funnel
Sequence		Entrance (V)	Exit (V)	Entrance (V)	Exit (V)
1	0.0 - 0.5	1074	224	217.5	45
2	0.5 - 1.0	1174	224	217.5	45
3	1.0 - 1.5	1274	224	217.5	45
4	1.5 - 2.0	1374	224	217.5	45
5	2.0 - 2.5	1474	224	217.5	45
6	2.5 - 3.0	1574	224	217.5	45
7	3.0 - 3.5	1674	224	217.5	45

Table S3. Drift Tube Settings for Stepped Field Experiments

Table S4. Drift Tube Settings for Stepped Field Experiments – Fragile Ion Tune

	6			0	
Time	Time (min)	Drift Tube	Drift Tube	Rear Funnel	Rear Funnel
Sequence		Entrance (V)	Exit (V)	Entrance (V)	Exit (V)
1	0.0 - 0.5	1067	217	210.5	38
2	0.5 - 1.0	1167	217	210.5	38
3	1.0 - 1.5	1267	217	210.5	38
4	1.5 - 2.0	1367	217	210.5	38
5	2.0 - 2.5	1467	217	210.5	38
6	2.5 - 3.0	1567	217	210.5	38
7	3.0 - 3.5	1667	217	210.5	38

Table S5. Drift Tube Settings for Single Field Experiments

Time	Time (min)	Drift Tube	Drift Tube	Rear Funnel	Rear Funnel
Sequence		Entrance (V)	Exit (V)	Entrance (V)	Exit (V)
1	0.0 - 0.5	1574	224	217.5	45

Single Field Experiment

The tune mix CCS values obtained in this study on the Reference System are used for the single field experiments as they represent the lowest measurement uncertainty to date due to thorough error analysis of the experimental parameters that influence CCS measurements. In a single field experiment, the calibrant tune mix ions are first run in a single field experiment and their drift times are measured and aligned with the stepped field CCS values mentioned above. The slope (β) and intercept (t_{fix}) (mentioned in the manuscript for Eqn (3)) are determined from the regression of these measured drift times and standard CCS values. The sample is then run at the exact same single field settings as the tune ions and according to Eqn 3 the drift times of the analytes present are converted into CCS values.

	<i>This is a 0.5%</i>	<i>This is a 0.2%</i>	This is 0.2% factor	
	factor	factor		
Original	Update Measured	Apply	Apply Temperature	New Agilent
CCS	Length	Voltage Slope	Correction	Value
	$=(78.12/78.302)^2$			
	0.9954	1.00284 (+)	1.0019	
		1.0013 (-)		
622 Example				
203.20	202.26	202.83	203.22	203.22
1633 Example				
320.60	319.11	319.53	320.13	320.13

Table S6. Correcting CCS Data for Instrument Improvements on Agilent Reference System

Figure S1. To account for the instrument updates on the Agilent Reference System as well as end effects due to front and rear funnels on both ends of the drift cell an effective length was determined for the other three labs in this study (BOKU, green; PNNL, orange; and Vanderbilt, yellow). An effective length was determined for each tune mix CCS measurement obtained on each of the three instruments, on three different days, and at four different tune settings. This resulted in 1,413 effective lengths which average to 78.24 ± 0.16 cm. This precision across the three different labs, different tune settings, and over the mass range gives us confidence in using 78.24 cm as the new drift tube length. The metrology measured drift cell length for the gridded Agilent Reference System is also noted as 78.302 cm and the previously accepted production length of 78.12 cm is shown for reference.

Table S7.	Converting	CCS	Values	with	Effective	Length
-----------	------------	-----	--------	------	-----------	--------

	U U U U U U U U U U U U U U U U U U U	Ŭ		
	This is the 3 day, 4 tune		This is the consensus	
	settings Agilent CCS		Effective Length of	
	Reference Value		78.24 cm	
Original	Compare to Agilent	Determine	Use Effective Length	New
$CCS(Å^2)$	Reference System Value	Effective	to Obtain New CCS	CCS
		Length (cm)		(\AA^2)
622				
Example				
203.30	$\sqrt{(203.30/202.96)} =$	1.000849 *	$203.3 * (78.12/78.24)^2$	202.69
	1.000849	78.12 = 78.19		
1633				
Example				
321.30	$\sqrt{(321.30/319.03)} =$	1.003552 *	321.30 *	320.35
	1.003552	78.12 = 78.40	$(78.12/78.24)^2$	

	Tune Mix Ior	ns – Positive	Mode	
m/z	$CCS (Å^2)$	%RSD	n	Bias
		(interlab.)		
118	121.51 ± 0.21	0.17%	81	0.17%
322	153.67 ± 0.20	0.13%	108	-0.04%
622	202.67 ± 0.24	0.12%	108	-0.14%
922	243.05 ± 0.34	0.14%	108	-0.24%
1222	281.25 ± 0.55	0.20%	108	-0.34%
1522	315.79 ± 0.81	0.26%	99	-0.37%
1822	350.43 ± 1.76	0.50%	27	-0.23%
2122	381.40 ± 1.54	0.40%	27	-0.43%
2422	410.28 ± 1.49	0.36%	27	-0.65%
2722	437.94 ± 1.39	0.32%	27	-0.74%
	Tune Mix Ion	s – Negative	Mode	
<i>m/z</i> ,	$CCS (Å^2)$	%RSD	n	Bias
		(interlab.)		
113	108.93 ± 0.25	0.23%	45	0.65%
302	140.66 ± 0.32	0.23%	108	0.44%
602	180.94 ± 0.31	0.17%	108	0.09%
1034	255.59 ± 0.53	0.21%	108	0.10%
1334	285.29 ± 0.78	0.27%	108	0.19%
1634	319.53 ± 1.34	0.42%	108	0.16%
1934	354.32 ± 0.64	0.18%	27	0.50%
2234	382.39 ± 0.79	0.21%	27	0.43%
2534	413.67 ± 1.03	0.25%	27	0.16%
2834	$43\overline{1.98} \pm 1.12$	0.26%	27	-0.15%

Table S8. Average CCS Values from BOKU, PNNL and VU for Tune Mix Ions

Lab	Collision Cross Section Data				
	250 Fragile	250 Stable	1700	3200	Summary
		1	18 Tune Mix Ion		¥
Agilent	121.41 ± 0.22	121.37 ± 0.14	121.13 ± 0.22		121.30 ± 0.20
_					(0.17%)
BOKU	121.57 ± 0.17	121.56 ± 0.17	121.69 ± 0.17		121.51 ± 0.21
PNNL	121.69 ± 0.12	121.53 ± 0.14	121.60 ± 0.09		(0.17%)
VU	121.27 ± 0.25	121.36 ± 0.12	121.33 ± 0.09		
		3	22 Tune Mix Ion		
Agilent	153.79 ± 0.22	153.71 ± 0.13	153.52 ± 0.21	153.89 ± 0.22	153.73 ± 0.23
					(0.15%)
BOKU	153.80 ± 0.19	153.76 ± 0.16	153.66 ± 0.13	153.43 ± 0.19	153.67 ± 0.20
PNNL	154.02 ± 0.21	153.80 ± 0.14	153.71 ± 0.17	153.43 ± 0.36	(0.13%)
VU	153.52 ± 0.13	153.72 ± 0.08	153.57 ± 0.13	153.60 ± 0.22	
		6	22 Tune Mix Ions	5	
Agilent	203.06 ± 0.18	203.66 ± 0.22	202.77 ± 0.25	202.93 ± 0.35	202.96 ± 0.27
_					(0.14%)
BOKU	202.61 ± 0.22	202.56 ± 0.23	202.53 ± 0.23	202.27 ± 0.26	202.67 ± 0.24
PNNL	202.94 ± 0.24	202.87 ± 0.19	202.69 ± 0.14	202.68 ± 0.33	(0.12%)
VU	202.52 ± 0.20	202.87 ± 0.13	202.83 ± 0.14	202.70 ± 0.16	
-		9	22 Tune Mix Ions	5	
Agilent	243.71 ± 0.19	243.70 ± 0.20	243.48 ± 0.28	243.68 ± 0.45	243.64 ± 0.30
0					(0.12%)
BOKU	242.67 ± 0.38	242.66 ± 0.29	242.69 ± 0.33	243.06 ± 0.31	243.05 ± 0.34
PNNL	243.09 ± 0.37	243.21 ± 0.21	243.29 ± 0.19	243.89 ± 0.39	(0.14%)
VU	242.81 ± 0.15	243.14 ± 0.20	243.06 ± 0.12	243.01 ± 0.17	
-		12	21 Tune Mix Ion	S	
Agilent	282.29 ± 0.20	282.14 ± 0.32	281.87 ± 0.29	282.49 ± 0.71	282.20 ± 0.47
0					(0.17%)
BOKU	280.45 ± 0.31	280.46 ± 0.32	280.47 ± 0.40	281.86 ± 0.38	281.25 ± 0.55
PNNL	280.88 ± 0.41	281.34 ± 0.24	281.88 ± 0.20	283.16 ± 0.47	(0.20%)
VU	280.95 ± 0.44	281.14 ± 0.34	281.18 ± 0.15	281.21 ± 0.23	× ,
		15	521 Tune Mix Ion	S	
Agilent	316.96 ± 0.21	316.75 ± 0.37	316.53 ± 0.32	317.63 ± 0.73	316.96 ± 0.60
0					(0.19%)
BOKU	314.31 ± 0.31	314.51 ± 0.40	314.58 ± 0.51	317.01 ± 0.49	315.79 ± 0.81
PNNL	315.09 ± 0.52	315.55 ± 0.26	316.47 ± 0.20	319.17 ± 0.61	(0.26%)
VU		315.94 ± 0.63	315.42 ± 0.24	315.62 ± 0.17	
		18	321 Tune Mix Ion	S	
Agilent				351.25 ± 0.62	351.25 ± 0.62
					(0.18%)
BOKU				350.27 ± 0.56	350.43 + 1.76
PNNL				352.53 ± 0.60	(0.50%)
VU				348.48 ± 0.24	()
				5 101 10 ± 0.2 F	

 Table S9. Positive Mode Tune Mix Values (Å²)

	2	121 Tune Mix Ior	1	
Agilent			383.03 ± 0.64	383.03 ± 0.64
				(0.17%)
BOKU			381.03 ± 0.54	381.40 ± 1.54
PNNL			383.30 ± 0.63	(0.40%)
VU			379.86 ± 0.35	
	24	421 Tune Mix Ior	1	
Agilent			412.96 ± 0.58	412.96 ± 0.58
				(0.14%)
BOKU			409.90 ± 0.55	410.28 ± 1.49
PNNL			412.10 ± 0.66	(0.36%)
VU			408.84 ± 0.47	
	2	721 Tune Mix Ior	1	
Agilent			441.21 ± 0.59	441.21 ± 0.59
				(0.13%)
BOKU			437.29 ± 0.64	437.94 ± 1.39
PNNL			439.69 ± 0.64	(0.32%)
VU			436.84 ± 0.46	

Lab	Collision Cross Section Data									
	250 Fragile	250 Stable	1700	3200	Summary					
	6	1	12 Tune Mix Ior	n	2					
Agilent	108.23 ± 0.20				108.23 ± 0.20					
6					(0.19%)					
BOKU	109.15 ± 0.19				108.93 ± 0.25					
PNNL	108.80 ± 0.16	108.80 ± 0.19			(0.23%)					
VU	108.92 ± 0.33	108.98 ± 0.22								
	10002 - 0.00	100000 10000	301 Tune Mix Io	n						
Agilent	140.37 ± 0.18	140.15 ± 0.07	139.93 ± 0.15	139.70 ± 0.18	140.04 ± 0.29					
8	1.0007 = 0.10	1 10110 = 0107	10,000 - 0000	10,11,0 = 0.110	(0.21%)					
BOKU	141.09 ± 0.18	140.95 ± 0.29	140.86 ± 0.13	140.57 ± 0.14	140.66 ± 0.32					
PNNL	140.77 ± 0.09	140.77 ± 0.12	140.55 ± 0.10	140.10 ± 0.16	(0.23%)					
VII	140.74 ± 0.10	140.74 ± 0.05	140.61 ± 0.15	140.12 ± 0.07	(0.2070)					
	110.71 ± 0.10	$\frac{140.74 \pm 0.10}{140.14 \pm 0.03} \frac{140.01 \pm 0.13}{140.12 \pm 0.07}$ 601 Tune Mix Lons								
Agilent	180.83 ± 0.19	180.75 ± 0.11	180.60 ± 0.13	180.89 ± 0.29	180.77 ± 0.21					
Agnent	100.05 ± 0.17	100.75 ± 0.11	100.00 ± 0.15	100.07 ± 0.27	(0.12%)					
BOKU	181.01 ± 0.27	180.96 ± 0.40	180.82 ± 0.25	180.73 ± 0.22	(0.1270) 180.94 + 0.31					
	181.01 ± 0.27 180.70 ± 0.10	180.90 ± 0.40 180.80 ± 0.10	180.52 ± 0.23	180.75 ± 0.22	(0.17%)					
	180.79 ± 0.19	180.80 ± 0.10 181.20 ± 0.14	180.33 ± 0.14	180.73 ± 0.14	(0.1770)					
V U	101.23 ± 0.23	101.20 ± 0.14	101.20 ± 0.30	101.22 ± 0.07						
Agilant	255 52 + 0.25	10	255.16 ± 0.21	11S 255 00 ± 0.25	255.24 ± 0.22					
Agnent	233.32 ± 0.23	233.39 ± 0.14	233.10 ± 0.21	233.09 ± 0.33	233.34 ± 0.32					
DOVU	255 59 1 0 29	255.00 ± 0.24	255.92 + 0.22	25/ 91 + 0.16	(0.15%)					
	255.38 ± 0.28	255.99 ± 0.34	255.83 ± 0.23	254.81 ± 0.10	233.39 ± 0.33					
	255.52 ± 0.20	250.00 ± 0.14	255.42 ± 0.25	234.94 ± 0.23	(0.21%)					
VU	230.02 ± 0.28	230.00 ± 0.09	230.15 ± 0.47	254.99 ± 0.28						
A = 11 = m4	294 40 + 0.27		333 Tune Mix Io	$\frac{1}{29476 \pm 0.21}$	294.76 ± 0.21					
Agilent	284.49 ± 0.27	282.75 ± 0.18	285.03 ± 0.22	284.76 ± 0.31	284.76 ± 0.31					
DOVU	294 42 + 0.24	205 50 - 0 60	225.00 . 0.46	005 17 - 0.16	(0.11%)					
BOKU	284.42 ± 0.24	285.59 ± 0.69	285.99 ± 0.46	285.17 ± 0.16	285.29 ± 0.78					
PNNL	284.16 ± 0.24	285.45 ± 0.19	285.85 ± 0.50	284.94 ± 0.27	(0.27%)					
VU	284.93 ± 0.48	285.01 ± 0.21	286.46 ± 1.15	285.49 ± 0.16						
	210.24		533 Tune Mix Io	ns	210.02 0.70					
Agilent	318.26 ± 0.34	319.55 ± 0.15	319.83 ± 0.26	319.48 ± 0.28	319.03 ± 0.70					
					(0.22%)					
BOKU	317.73 ± 0.34	319.39 ± 1.22	320.30 ± 0.79	320.52 ± 0.17	319.53 ± 1.34					
PNNL	317.40 ± 0.26	318.90 ± 0.29	320.90 ± 0.70	319.79 ± 0.32	(0.42%)					
VU	318.88 ± 1.00	318.87 ± 0.39	320.95 ± 1.28	320.76 ± 0.38						
		19	933 Tune Mix Io	ns						
Agilent				352.55 ± 0.27	352.55 ± 0.27					
					(0.08%)					
BOKU				355.10 ± 0.21	354.32 ± 0.64					
PNNL				354.10 ± 0.37	(0.18%)					
VU				353.76 ± 0.23						

Table S10. Negative Tune Mix CCS Values (Å²)

	223:	3 Tune Mix Io	n	
Agilent			380.74 ± 0.31	380.74 ± 0.31
				(0.08%)
BOKU			382.81 ± 0.26	382.39 ± 0.79
PNNL			382.97 ± 0.30	(0.21%)
VU			381.40 ± 0.47	
	2533	3 Tune Mix Io	n	
Agilent			412.99 ± 0.31	412.99 ± 0.31
				(0.07%)
BOKU			413.30 ± 0.35	413.67 ± 1.03
PNNL			414.67 ± 0.47	(0.25%)
VU			413.03 ± 1.16	
	2833	3 Tune Mix Io	n	
Agilent			432.62 ± 0.35	432.62 ± 0.35
				(0.08%)
BOKU			431.51 ± 0.44	431.98 ± 1.12
PNNL			432.83 ± 0.46	(0.26%)
VU			431.60 ± 1.56	

Compound	m/z	Ion	BOKU	PNNL	VU	Average	% RSD	Agilent	% Error
-				Lipids	1				
C12:0	100 1704	IM HI-	155.89	154.96	155.53	155.46	0.28	154.82	0.4104
C12.0	199.1704		± 0.15	± 0.15	± 0.27	± 0.44	%	± 0.10	0.41%
C15·0	241 2173	[M-H]	166.16	165.59	166.05	165.93	0.21	165.34	0.36%
015.0	211.2175		± 0.12	± 0.17	± 0.41	± 0.35	%	± 0.06	0.5070
C16:1	253.2173	[M-H] ⁻	168.45	167.86	168.57	168.29	0.20	167.95	0.20%
			± 0.06	± 0.12	± 0.15	± 0.34	%	± 0.06	
C16:0	255.233	$[M-H]^{-}$	169.78	169.17	169.57	169.51	0.18	169.12	0.23%
			± 0.00	± 0.00	± 0.25	± 0.30	% 0.22	± 0.00	
C17:0	269.2486	$[M-H]^{-}$	1/4.13 + 0.21	1/3.49 + 0.12	1/4.00 + 0.41	+0.38	0.22	1/3.41 + 0.10	0.28%
			175.06	17453	$\frac{1}{174.63}$	17474	0.15	174.88	
C18:3	277.2173	$[M-H]^{-}$	+0.00	+0.10	+0.17	+0.26	%	+0.06	0.08%
			176.19	175.37	176.14	175.90	0.27	175.69	
C18:2	279.233	$[M-H]^{-}$	± 0.15	± 0.15	± 0.46	± 0.47	%	± 0.06	0.12%
C10.1	201 2406	D (10-	176.62	176.07	176.74	176.48	0.18	176.46	0.010/
C18:1	281.2486	[M-H]	± 0.06	± 0.06	± 0.10	± 0.32	%	± 0.15	0.01%
C19.0	282 2642		178.22	177.95	177.62	177.93	0.17	177.66	0.150/
C18:0	283.2045	[M-H]	± 0.06	± 0.27	± 0.12	± 0.30	%	± 0.06	0.15%
C20:4	303 233	IM HI-	183.30	182.21	182.91	182.81	0.30	183.66	0.46%
0.20.4	303.233	[1v1-11]	± 0.15	± 0.06	± 0.51	± 0.55	%	± 0.17	0.40%
C20·3	305 2486	[M-H]	183.20	182.64	182.21	182.68	0.27	183.02	0.18%
	505.2400		± 0.06	± 0.21	± 0.45	± 0.50	%	± 0.06	0.1070
C20:2	307.2643	[M-H] ⁻	183.44	182.38	183.01	182.94	0.26	183.32	0.21%
		[]	± 0.10	± 0.17	± 0.12	± 0.48	%	± 0.12	
C20:1	309.2799	$[M-H]^{-}$	185.23	183.95	184.79	184.66	0.34	184.29	0.20%
			$\pm 0.1/$	± 0.21	± 0.52	± 0.64	%	± 0.06	
C20:0	311.2956	$[M-H]^{-}$	180.30 ± 0.06	180.30 ± 0.23	180.20 ± 0.26	180.37	0.14	180.17	0.11%
			± 0.00	± 0.23	± 0.30	± 0.27	⁷⁰	± 0.10 201 11	
C24:0	367.3582	$[M-H]^{-}$	± 0.06	± 0.10	± 0.35	+0.72	0.30	± 0.06	0.07%
			1 ± 0.00	etabolite	<u> </u>	± 0.72	70	- 0.00	
			121 43	120.65	121 25	121.11	0.31	120 70	
Creatinine	112.0516	$[M-H]^{-}$	± 0.17	± 0.20	± 0.00	± 0.38	%	± 0.15	0.34%
Q (* *	114.0662	$\mathbf{D}\mathbf{U}$	124.35	123.93	123.83	124.04	0.21	123.87	0.140/
Creatinine	114.0662	[M+H]	± 0.06	± 0.21	± 0.06	± 0.26	%	± 0.00	0.14%
I proling	116.0706	$\mathbf{D}\mathbf{M}$ + $\mathbf{D}\mathbf{D}^+$	126.38	126.48	125.87	126.24	0.30	126.22	0.020/
L-pronne	110.0700	[IVI+II]	± 0.27	± 0.27	± 0.36	± 0.38	%	± 0.21	0.02%
I -leucine	130 0874	[M_H] ⁻	132.72	133.89	134.31	133.64	0.54	132.51	0.85%
L-icucilic	130.0074		± 0.21	± 0.14	± 0.13	± 0.72	%	± 0.01	0.0570
L-	130 0874	[M-H] ⁻	131.58	132.62	132.84	132.34	0.45	131.29	0.81%
isoleucine	1001007.1	[]	± 0.19	± 0.10	± 0.18	± 0.60	%	± 0.06	010170
L-aspartic	132.0302	$[M-H]^{-}$	120.95	120.71	120.51	120.72	0.27	120.39	0.28%
acid			± 0.00	± 0.50	± 0.15	± 0.32	%	± 0.40	
L-leucine	132.1019	$[M+H]^+$	135.3/ ± 0.11	130.54 ± 0.16	137.03 ± 0.41	130.31 ± 0.77	0.57	135.56 ± 0.07	0.56%
I_			± 0.11	± 0.10	± 0.41	± 0.77	70	± 0.07	
isoleucine	132 1019	$[M+H]^+$	133.71	134.80	135.06	134.52	0.49	133.81	0.53%
issiedenie	152.1017	[111 (11]	± 0.09	± 0.19	± 0.38	± 0.66	%	± 0.04	0.0570

 Table S11. Stepped Field CCS Values for Biological Standards (Å²)

Compound	m/z	Ion	BOKU	PNNL	VU	Average	% RSD	Agilent	% Error
Homocystei	136.0427	$[M+H]^+$	131.40 + 0.20	130.53 + 0.25	130.73 + 0.15	130.89 + 0.43	0.33	130.78 + 0.06	0.08%
Creatinine	136.0481	[M+Na] ⁺	133.49 + 0.17	133.41 + 0.17	133.11 + 0.35	133.34 + 0.27	0.21	132.99 + 0.35	0.26%
L-glutamic	146.0459	[M-H] ⁻	126.01	125.64	125.87 + 0.10	125.84	0.14	125.65 + 0.15	0.15%
L-lysine	147.1128	$[M+H]^+$	132.01	131.80	131.40	131.74	0.26	131.62	0.09%
L-	150.0583	$[M+H]^+$	± 0.20 133.88	± 0.33 133.65	± 0.10 133.61	± 0.34 133.71	0.34	± 0.33 134.08	0.27%
L-histidine	154.0622	[M-H] ⁻	± 0.38 130.50	± 0.78 130.13	± 0.10 130.33	± 0.46 130.32	% 0.13	± 0.40 130.01	0.24%
L-histidine	156.0768	[M+H] ⁺	± 0.00 132.71	± 0.06 132.41	± 0.12 132.31	± 0.17 132.47	0.15	± 0.10 132.74	0.20%
L-phenyl-	164 0717	[M-H]	± 0.10 141.59	± 0.10 140.95	± 0.10 141.49	± 0.20 141.34	% 0.27	± 0.12 141.29	0.04%
alanine L-phenyl-	166 0962		± 0.06 141.59	± 0.27 141.02	± 0.41 141.26	$\begin{array}{r} \pm 0.38 \\ 141.29 \end{array}$	% 0.23	± 0.20 141.28	0.01%
alanine	100.0803		± 0.32 127.71	± 0.21 127.08	± 0.10 127.41	$\begin{array}{r} \pm 0.32\\ 127.40\end{array}$	% 0.22	± 0.06 126.93	0.01%
	167.0211		± 0.10 138.47	± 0.00 138.24	± 0.06 138.41	± 0.28 138.37	% 0.15	± 0.06 138.03	0.37%
L-arginine	173.1044	[M-H]	± 0.15 136.87	± 0.27	± 0.21 136.43	± 0.21 136.64	%	± 0.06 136.84	0.25%
L-arginine	175.119	$[M+H]^+$	± 0.15	± 0.00	± 0.00	± 0.20	%	± 0.06	0.15%
L-histidine	178.0587	[M+Na] ⁺	± 0.00	± 0.20	± 0.68	± 0.47	0.33	± 0.50	0.22%
L-tyrosine	180.0666	[M-H] ⁻	± 0.15	145.75 ± 0.12	146.11 ± 0.35	± 0.27	0.19 %	± 0.35	0.28%
L-tyrosine	182.0812	$[M+H]^+$	146.68 ± 0.20	146.42 ± 0.31	146.55 ± 0.42	146.55 ± 0.30	0.21 %	146.45 ± 0.21	0.07%
Glucose	203.0526	$[M+Na]^+$	147.68 ± 0.06	147.72 ± 0.15	147.32 ± 0.12	147.57 ± 0.22	0.15 %	147.35 ± 0.29	0.15%
L-cystine	239.0166	$[M-H]^{-}$	144.64 ± 0.15	144.47 ± 0.10	144.47 ± 0.27	144.53 ± 0.18	0.13 %	144.39 ± 0.10	0.10%
L-cystine	241.0311	$[M+H]^+$	149.97 ± 0.12	149.57 ± 0.06	149.73 ± 0.06	149.76 ± 0.19	0.13 %	150.08 ± 0.06	0.21%
Pyridoxal Phosphate	246.0173	[M-H] ⁻	150.97 + 0.12	150.54 + 0.15	150.94 + 0.15	150.82 + 0.24	0.16	150.80 + 0.10	0.01%
Pyridoxal Phosphate	248.0319	$[M+H]^+$	151.73 + 0.17	151.38 + 0.25	151.81 + 0.00	151.64 + 0.25	0.17	151.94 + 0.10	0.20%
L-cystine	263.0131	[M+Na] ⁺	152.05	151.34	151.81	151.73	0.22	151.81	0.05%
Pyridoxal	270.0138	[M+Na] ⁺	± 0.13 162.04	± 0.00 162.03	± 0.17 162.03	± 0.33 162.03	0.08	± 0.10 161.40	0.39%
Cortisol	363.2166	$[M+H]^+$	± 0.06 189.68	± 0.21 188.88	± 0.15 189.45	± 0.13 189.34	0.20	± 0.20 189.27	0.03%
Cortisol	385 1985	[M+Nal ⁺	± 0.12 213.49	± 0.15 213.91	± 0.06 214.78	± 0.37 214.06	% 0.27	± 0.10 213.72	0.16%
Levome-	458 1708		± 0.15 200.75	± 0.15 199.57	± 0.12 200.37	$\begin{array}{r} \pm 0.58 \\ 200.23 \end{array}$	% 0.27	$\begin{array}{r} \pm 0.00\\ 200.57\end{array}$	0.17%
folic acid	+20.1/70	[171-11]	± 0.15	± 0.00	± 0.10	± 0.53	%	± 0.12	0.17%

Compound	m/z	Ion	BOKU	PNNL	VU	Average	% RSD	Agilent	% Error
Levome- folic acid	460.1939	$\left[\mathrm{M+H}\right]^{+}$	197.92 ± 0.23	196.85 ± 0.27	197.12 ± 0.06	197.30 ± 0.52	0.26 %	197.52 ± 0.27	0.11%
				Peptides					
GITWK	302.6763	[M+2H] ²⁺	275.31 ± 1.65	276.85 ± 0.65	272.22 ± 0.38	274.79 ± 2.23	0.81 %	273.43 ± 0.21	0.50%
IFVQK	317.6998	[M+2H] ²⁺	285.07 ± 0.04	289.88 ±1.92	284.96 ± 0.36	286.64 ± 2.62	0.91 %	285.50 ± 0.25	0.40%
Angiotensin I	324.93	[M+4H] ⁴⁺	546.49 + 0.32	548.67 + 0.38	552.75 + 0.41	549.30 + 2.77	0.50	549.24 + 0.06	0.01%
YIPGTK	339.6947	[M+2H] ²⁺	291.90 + 0.16	293.54 + 0.38	291.56 + 0.05	292.34 + 0.94	0.32	292.28 + 0.38	0.02%
Angiotensin	349.52	[M+3H] ³⁺	433.38 + 0.12	435.63 + 0.56	437.91 + 0.06	435.64	0.45	436.24 + 0.21	0.14%
Bradykinin	354.19	[M+3H] ³⁺	445.98	448.16	447.29	447.15	0.22	± 0.21 447.61 ± 0.12	0.10%
MIFAGIK	390.2278	[M+2H] ²⁺	305.00	307.12	304.74	305.62	0.40	305.66	0.01%
Angiotensin	432.90	[M+3H] ³⁺	± 0.13 474.60	± 1.00 476.05	± 0.06 475.71	± 1.24 475.45	% 0.15	± 0.06 474.71	0.16%
Renin	440.49	[M+4H] ⁴⁺	± 0.15 634.53	± 0.36 636.34	± 0.21 637.34	± 0.69 636.07	0.21	± 0.15 634.60	0.23%
Substance P	449.92	[M+3H] ³⁺	± 0.38 493.97	± 0.99 497.36	± 0.35 497.83	± 1.36 496.39	% 0.39	± 0.35 495.74	0.13%
EDLIAYL	482 7711	$[M+2H]^{2+}$	± 0.52 340.62	± 1.13 345.04	± 0.55 340.02	± 1.94 341.89	% 0.71	± 1.29 340.98	0.27%
K Angiotensin	522.79		± 0.88 354.86	± 0.27 354.43	± 0.10 355.97	± 2.42 355.09	% 0.22	± 0.06 353.79	0.27%
II	525.78		± 0.06 343.20	± 0.65 343.47	± 0.31 344.24	± 0.78 343.64	% 0.17	± 0.17 343.33	0.37%
Bradykinin	530.79	[M+2H] ²¹	± 0.12 526.11	± 0.65	± 0.36 527.92	± 0.60 526.53	%	± 0.10 525.02	0.09%
Neurotensin	558.31	[M+3H] ³⁺	± 0.00	± 1.01	± 0.46	± 1.21	% 0.10	± 0.23	0.29%
Melittin	569.96	[M+5H] ⁵⁺	± 0.25	± 0.61	± 0.98	± 1.50 ± 52.00	0.19 %	± 0.60	0.33%
Melittin	569.96	[M+5H] ⁵⁺	850.35 ± 0.46	853.16 ± 1.93	852.56 ± 0.52	852.02 ± 1.64	0.19 %	844.40 ± 0.25	0.90%
TGPNLH- GLFGR	584.8147	[M+2H] ²⁺	367.46 ± 0.53	372.56 ± 0.32	367.77 ± 0.17	369.26 ± 2.50	0.68 %	369.09 ± 0.10	0.05%
Renin	586.98	[M+3H] ³⁺	520.99 ± 0.20	519.58 ± 0.82	521.76 ± 0.45	520.77 ± 1.07	0.21 %	518.81 ± 0.36	0.38%
GITWK	604.3453	$[M+H]^+$	237.30 ± 0.55	238.31 ± 0.15	236.80 ± 0.06	237.47 ± 0.72	0.31 %	236.33 ± 0.12	0.48%
IFVQK	634.3922	$[M+H]^+$	250.00 ± 0.41	250.71 ± 0.23	249.06 ± 0.12	249.93 ± 0.75	0.30 %	248.88 ± 0.15	0.42%
Angiotensin I	648.85	[M+2H] ²⁺	387.37 ± 0.20	386.13 ±1.12	388.41 ± 0.15	387.30 ± 1.14	0.30	387.30 ± 0.20	0.00%
Substance P	674.37	[M+2H] ²⁺	399.77 +0.06	398.87 + 0.46	400.88 + 0.41	399.84 + 0.93	0.23	399.88 + 0.20	0.01%
YIPGTK	678.3821	$[M+H]^+$	255.94 ± 0.73	256.30 ± 0.15	254.93 ± 0.12	255.72 ± 0.72	0.28 %	254.75 ± 0.15	0.38%

Compound	m/z	Ion	BOKU	PNNL	VU	Average	% RSD	Agilent	% Error
Melittin	712.20	[M+4H] ⁴⁺	760.16 ± 0.20	757.08 ± 0.06	760.03 ± 0.51	759.09 ± 1.53	0.20 %	756.79 ± 0.53	0.30%
TGQAPGF TYTDANK	735.8466	[M+2H] ²⁺	399.13 ± 0.44	402.95 ± 0.27	398.10 ± 0.06	400.06 ± 2.23	0.56 %	399.01 ± 0.21	0.26%
EETLME- YLENPK	748.3529	[M+2H] ²⁺	413.21 + 0.36	418.20 + 0.32	414.32 + 0.10	415.24 + 2.28	0.55	414.23 + 0.21	0.24%
MIFAGIK	779.4484	$[M+H]^+$	276.71 + 0.45	277.01 + 0.21	275.74 + 0.06	276.49 + 0.63	0.23	275.34 + 0.06	0.42%
Neurotensin	836.96	[M+2H] ²⁺	435.96 + 0.21	434.89 + 0.50	434.89 + 0.32	435.25 + 0.62	0.14	434.32 + 0.21	0.21%
Renin	879.97	[M+2H] ²⁺	461.37 + 0.17	461.10 + 0.55	462.27 + 0.40	461.58 + 0.64	0.14	460.39 + 0.41	0.26%
Melittin	949.26	[M+3H] ³⁺	724.17	720.95	723.47	722.86	0.21	$\frac{1}{721.07}$	0.25%
EDLIAYL	964.5349	$[M+H]^+$	310.63	308.68	308.15	309.15	0.54	307.47	0.55%
Angiotensin	1046.54	$[M+H]^+$	± 2.41 313.48	± 0.00 314.20	± 0.17 313.95	± 1.00 313.87	0.13	± 0.12 314.38	0.16%
II Bradykinin	1060.57	[M+H] ⁺	± 0.10 314.35	± 0.46 312.97	± 0.23 314.88	± 0.41 314.07	0.32	± 0.15 315.25	0.38%
TGPNLH-	1168.622	[M+H] ⁺	± 0.38 331.20	± 0.76 331.37	± 0.70 331.94	± 1.02 331.51	% 0.15	± 0.30 331.08	0.13%
Angiotensin	1296.69	[M+H] ⁺	± 0.32 356.01	± 0.60 355.90	± 0.12 356.50	± 0.48 356.14	% 0.73	± 0.06 357.31	0.33%
I Substance P	1347.74	$[M+H]^+$	± 0.13 361.00	± 5.19 359.66	± 0.11 360.96	± 2.61 360.54	% 0.19	± 0.27 362.51	0.54%
Melittin	1423.38	[M+2H] ²⁺	± 0.23 612.01	± 0.23 610.23	± 0.31 614.12	± 0.70 612.12	0.30	± 0.21 613.37	0.20%
TGQAPGF	1470.687	[M+H] ⁺	± 0.21 365.59	± 0.91 366.96	± 0.91 365.69	± 1.81 366.08	0.49	± 0.12 365.46	0.17%
EETLME-	3 1495.698	[M+H] ⁺	± 3.27 383.65	± 0.46 387.44	± 0.25 386.20	± 1.78 385.76	% 0.47	± 0.36 386.80	0.27%
YLENPK	5		± 1.14	± 0.45 Proteins	± 0.45	± 1.80	%	± 0.27	
Ubiquitin	612.414	$[M+14H]^{14+}$	2715.62 ± 2.44	2734.60 ± 10.02	2720.21 ± 5.17	2723.48 ± 10.34	0.38%	2727.44 ± 4.95	0.15%
Cytochrome c	618.9162	[M+20H] ²⁰⁺	3826.99 ± 4.87	3852.06 ± 1.51	3818.88 ± 5.23	3832.65 ± 15.42	0.40%	3816.11 ± 0.79	0.43%
Cytochrome c	651.438	[M+19H] ¹⁹⁺	3757.49 ± 3.48	3767.68 ± 3.48	3746.63 ± 4.74	3757.27 ±9.73	0.26%	3741.89 ± 0.82	0.41%
Ubiquitin	659.446	[M+13H] ¹³⁺	2578.85 ± 1.63	2591.90 ± 2.23	2588.57 ± 5.55	2586.44 ± 6.64	0.26%	2577.71 ± 0.64	0.34%
Cytochrome c	687.5725	[M+18H] ¹⁸⁺	3668.95 ± 0.67	3641.74 ± 1.66	3651.62 ± 0.66	3654.10 ± 11.97	0.33%	3566.34 ± 1.57	0.03%
Ubiquitin	714.316	[M+12H] ¹²⁺	2427.98 ± 2.96	2433.11 ± 5.36	2410.61 ± 8.20	2423.90 ±11.42	0.47%	2424.69 ± 0.88	0.03%
Cytochrome c	727.9594	[M+17H] ¹⁷⁺	3560.97 ± 2.41	3519.89 ± 3.84	3547.40 ± 3.42	3542.75 ± 18.35	0.52%	3538.14 ± 0.28	0.13%
Cytochrome c	773.3916	[M+16H] ¹⁶⁺	3435.20 ± 4.33	3436.11 ± 33.57	3423.98 ± 2.56	3431.76 ± 17.95	0.52%	3403.30 ± 2.10	0.84%

Compound	m/z	Ion	BOKU	PNNL	VU	Average	% RSD	Agilent	% Error
Ubiquitin	779.161	[M+11H] ¹¹⁺	2360.15 ± 0.67	2357.44 ± 3.40	2367.36 ± 4.52	2361.65 ± 5.27	0.22%	2349.14 ± 0.78	0.53%
Ubiquitin	856.978	[M+10H] ¹⁰⁺	2201.57 ± 0.86	2205.63 ± 1.30	2215.95 ± 6.15	2207.71 ± 7.16	0.32%	2192.31 ± 0.61	0.70%
Ubiquitin	952.081	[M+9H] ⁹⁺	2073.39 ± 1.04	2066.92 ± 2.63	2066.28 ± 5.75	2068.86 ± 4.68	0.23%	2052.43 ± 0.65	0.80%
Ubiquitin	1070.964	[M+8H] ⁸⁺	1962.83 ± 0.85	1964.24 ± 3.32	1963.20 ± 4.37	1963.42 ± 2.85	0.15%	1950.96 ± 0.24	0.64%
Ubiquitin	1223.8	$[M+7H]^{7+}$	1783.44 ± 0.80	1784.88 ± 2.89	1771.76 ± 9.85	1780.02 ± 8.08	0.45%	1773.24 ± 1.27	0.38%
Ubiquitin	1223.8	$[M+7H]^{7+}$	1880.69 ± 1.54	1885.82 ± 2.89	1894.20 ± 3.66	1886.90 ± 6.40	0.34%	1875.77 ± 1.03	0.59%

Precision Across 3 Labs		Percent Error to Agilent Refere	ence System
Biological Standard	%RSD	Biological Standard	%Error
Angiotensin I [M+4H] ⁴⁺	0.50%	GITWK [M+2H] ²⁺	0.50%
Cytochrome c [M+17H] ¹⁷⁺	0.52%	L-isoleucine [M+H] ⁺	0.53%
Cytochrome c [M+16H] ¹⁶⁺	0.52%	Ubiquitin [M+11H]11 ⁺	0.53%
EDLIAYLK [M+H] ⁺	0.54%	Substance P $[M+H]^+$	0.54%
L-leucine [M-H]	0.54%	EDLIAYLK [M+H] ⁺	0.55%
EETLMEYLENPK [M+2H] ²⁺	0.55%	L-leucine [M+H] ⁺	0.56%
TGQAPGFTYTDANK [M+2H] ²⁺	0.56%	Ubiquitin [M+7H] ⁷⁺	0.59%
L-leucine [M+H] ⁺	0.57%	Ubiquitin [M+8H] ⁸⁺	0.64%
TGPNLHGLFGR [M+2H] ²⁺	0.68%	Ubiquitin [M+10H] ¹⁰⁺	0.70%
EDLIAYLK [M+2H] ²⁺	0.71%	Ubiquitin [M+9H] ⁹⁺	0.80%
Angiotensin I [M+H] ⁺	0.73%	L-leucine [M-H] ⁻	0.81%
GITWK [M+2H] ²⁺	0.81%	Cytochrome c [M+16H] ¹⁶⁺	0.84%
IFVQK [M+2H] ²⁺	0.91%	L-leucine [M-H]	0.95%
		Melittin [M+5H] ⁵⁺	0.90%

Figure S2. Bar graphs showing the %RSD across the three labs and the %error of the average of the three labs to the Agilent Reference System. The average %RSD and %error is shown in green and an arbitrary threshold of 0.50% is shown in red. The biological standards that fall above the 0.50% threshold are listed in the table with their corresponding %RSD or %error. Reasons why these fall above the 0.50% threshold are discussed in the manuscript.

	2 2	`
Table S12. Single Field CUS Values for Biological Standards (A _)

Compound	m/z	Ion	BOKU	PNNL	VU	Average	%	Agilent
							RSD	
C12:0	199.1704	[M-H]	154.39	155.60	154.85	154.95	0.40	154.28
<u> </u>	0.11.01.50		± 0.02	± 0.07	± 0.06	± 0.61	%	± 0.02
C15:0	241.2173	$[M-H]^{\circ}$	165.11	166.13	165.68	165.64	0.31	164.86
~			± 0.01	± 0.06	± 0.11	± 0.51	%	± 0.02
C16:1	253.2173	$[M-H]^{\circ}$	167.64	168.51	167.79	167.98	0.28	167.74
~ ~ ~ ~ ~			± 0.02	± 0.07	± 0.08	$\pm 0.4'/$	%	± 0.05
C16:0	255.233	[M-H]	169.11	170.05	169.53	169.56	0.28	168.86
G17 0	260.2406	0.005	± 0.01	± 0.03	± 0.03	± 0.47	%	± 0.08
C17:0	269.2486	[M-H]	173.34	173.99	173.52	1/3.62	0.19	172.89
C10.2	077.0170	DA ID-	± 0.02	± 0.24	± 0.04	± 0.34	%	± 0.17
C18:3	277.2173	[M-H]	1/4.54	1/4.92	1/4.39	1/4.62	0.16	1/4.28
C10.2	270.222	DA ID-	± 0.02	± 0.13	± 0.03	± 0.28	%	± 0.15
C18:2	279.233	[M-H]	1/5.52	1/5.96	1/5.09	1/5.52	0.25	1/5.10
C10.1	291 2496	DA ID-	± 0.01	± 0.18	± 0.00	± 0.44	%	± 0.01
C18:1	281.2486	[M-H]	1/5.92	1/0.68	1/5.95	1/0.18	0.24	1/5.98
C19.0	202 2642	IN III-	± 0.01	± 0.13	± 0.00	± 0.43	% 0.22	± 0.02
C18:0	283.2043	[M-H]	1//.4/	1/8.10	177.50	1//./1	0.22	177.00
C20:4	202 222	IM III-	± 0.01	± 0.13	± 0.03	± 0.39	% 0.50	± 0.09
C20.4	505.255	[]11-11]	102.52 + 0.01	104.12 ± 0.08	+ 0.20	102.00 ± 1.08	0.39	102.51 ± 0.22
C20.2	205 2486	IM HI-	± 0.01	± 0.00	± 0.20	± 1.00	70	± 0.23
C20.3	303.2480		102.40 ± 0.01	± 0.03	+0.06	± 0.30	0.21	± 0.04
C20·2	307 2643	[M H]	182.44	183.22	± 0.00 182.40	182.60	0.25	182.61
C20.2	307.2043		+0.03	+0.67	+0.05	+0.46	0.25	+0.00
C20·1	309 2799	[M_H]	184.60	184.83	183.86	184.43	0.27	183.98
020.1	509.2199		+0.01	+0.05	+0.09	+0.51	%	+0.01
C20:0	311.2956	[M-H] ⁻	186.01	186.63	185.68	186.11	0.26	185.45
		[]	± 0.03	± 0.10	± 0.16	± 0.48	%	± 0.06
C24:0	367.3582	$[M-H]^{-}$	201.21	201.33	200.50	201.01	0.22	200.66
			± 0.02	± 0.16	± 0.01	± 0.45	%	± 0.05
Creatinine	112.0516	$[M-H]^{-}$	119.02	119.58	119.08	119.23	0.26	118.84
			± 0.62	± 0.09	± 0.05	± 0.31	%	± 0.08
Creatinine	114.0662	$[M+H]^+$	122.81	123.69	122.92	123.14	0.39	122.98
			± 0.01	± 0.06	± 0.13	± 0.48	%	± 0.03
L-proline	116.0706	$[M+H]^+$	125.08	126.25	125.09	125.48	0.54	125.38
			± 0.04	± 0.10	± 0.17	± 0.67	%	± 0.09
L-leucine	130.0874	$[M-H]^{-}$	131.00	131.70	132.56	131.75	0.59	131.15
			± 0.04	± 0.06	± 0.02	± 0.78	%	± 0.01
L-	130.0874	$[M-H]^{-}$	129.62	130.28	130.95	130.28	0.51	129.83
isoleucine			± 0.03	± 0.03	± 0.02	± 0.66	%	± 0.01
L-aspartic	132.0302	$[M-H]^{-}$	118.97	119.43	119.35	119.25	0.21	119.16
acid			± 0.07	± 0.15	± 0.06	± 0.25	%	± 0.04
L-leucine	132.1019	$[M+H]^+$	134.59	134.84	135.59	135.01	0.39	134.58
			± 0.07	± 0.06	± 0.03	± 0.52	%	± 0.03
L-	132.1019	$[M+H]^+$	132.82	133.08	133.83	133.24	0.40	132.88
isoleucine			± 0.02	± 0.08	± 0.01	± 0.53	%	± 0.04

Compound	m/z	Ion	BOKU	PNNL	VU	Average	% RSD	Agilent
Homocystei	136.0427	$[M+H]^+$	130.00	130.85	130.73	130.53	0.35	129.59
ne			± 0.08	± 0.12	± 0.05	± 0.46	%	± 0.63
Creatinine	136.0481	$[M+Na]^+$	132.45	134.05	133.05	133.18	0.61	132.61
			± 0.04	± 0.05	± 0.06	± 0.81	%	± 0.36
L-glutamic	146.0459	$[M-H]^{-}$	124.29	124.96	124.55	124.60	0.27	124.48
acid			± 0.02	± 0.19	± 0.11	± 0.34	%	± 0.01
L-lysine	147.1128	$[M+H]^+$	130.90	130.95	130.45	130.77	0.21	131.22
			± 0.19	± 0.11	± 0.62	± 0.27	%	± 0.14
L-	150.0583	$[M+H]^+$	133.00	132.91	132.89	132.93	0.04	133.03
methionine			± 0.13	± 0.25	± 0.11	± 0.06	%	± 0.48
L-histidine	154.0622	$[M-H]^{-}$	128.69	129.51	128.87	129.02	0.33	128.83
			± 0.03	± 0.04	± 0.02	± 0.43	%	± 0.01
L-histidine	156.0768	$[M+H]^+$	131.80	132.78	131.83	132.14	0.42	131.94
			± 0.02	± 0.06	± 0.01	± 0.56	%	± 0.03
L-phenyl-	164.0717	[M-H]	139.93	140.09	139.91	139.98	0.07	139.94
alanine	166.0062		± 0.21	± 0.57	± 0.05	± 0.10	%	± 0.04
L-phenyl-	166.0863	[M+H]	140.39	141.27	140.21	140.62	0.41	140.30
alanine	167.0011	DA ID-	± 0.05	± 0.02	± 0.03	± 0.57	%	± 0.13
Uric acid	167.0211	[M-H]	125.59	126.53	125.66	125.93	0.41	125.55
I anainina	172 1044	INCID-	± 0.02	± 0.09	± 0.00	± 0.52	%	± 0.07
L-arginine	1/5.1044	[]/1-11]	137.04	15/.//	13/.10	157.52	0.29	137.08
I anainina	175 110		± 0.02	± 0.14	± 0.03	± 0.39	% 0.42	± 0.02
L-arginine	175.119	[M+H]	130.32 ± 0.01	137.37 ± 0.01	130.30 ± 0.03	130.08 ± 0.50	0.45	130.43 ± 0.01
L histidine	178.0587	$[\mathbf{M} \mid \mathbf{N}_{2}]^{+}$	± 0.01	± 0.01	± 0.03	± 0.39	70	± 0.01
L-mstiame	1/0.0307	[IVI+INA]	+ 0.10	+ 0.14	+0.25	+0.66	0.49	+0.44
I_tyrosine	180.0666	[M_H] ⁻	144.40	145.12	± 0.23 1AAAA	144.65	0.28	144 42
L-tyrosine	100.0000	[141-11]	+0.06	+0.51	+0.09	+0.41	%	+0.08
L-tyrosine	182,0812	$[M+H]^+$	145.72	146.66	145 51	145.96	0.42	145 58
	102.0012		± 0.06	± 0.20	± 0.08	± 0.61	%	± 0.13
Glucose	203.0526	[M+Na] ⁺	146.88	147.67	146.73	147.09	0.34	146.94
	20010020	[[]]]	± 0.00	± 0.06	± 0.01	± 0.50	%	± 0.08
L-cvstine	239.0166	[M-H]	143.45	144.19	143.63	143.76	0.27	143.58
		[]	± 0.03	± 0.07	± 0.06	± 0.38	%	± 0.02
L-cystine	241.0311	$[M+H]^+$	149.43	150.52	149.48	149.81	0.41	149.48
5			± 0.02	± 0.01	± 0.01	± 0.62	%	± 0.03
Pyridoxal	246.0173	[M-H] ⁻	149.49	150.44	149.52	149.82	0.36	149.36
Phosphate			± 0.03	± 0.03	± 0.02	± 0.54	%	± 0.04
Pyridoxal	248.0319	$[M+H]^+$	151.25	152.42	151.44	151.70	0.41	151.37
Phosphate			± 0.01	± 0.03	± 0.02	± 0.63	%	± 0.03
L-cystine	263.0131	$[M+Na]^+$	151.33	152.30	151.35	151.66	0.37	151.26
			± 0.04	± 0.01	± 0.03	± 0.56	%	± 0.13
Pyridoxal	270.0138	$[M+Na]^+$	161.50	162.64	161.56	161.90	0.40	161.47
Phosphate			± 0.07	± 0.03	± 0.02	± 0.64	%	± 0.21
Cortisol	363.2166	$[M+H]^+$	189.08	190.30	188.92	189.44	0.40	188.34
		-	± 0.04	± 0.03	± 0.19	± 0.76	%	± 0.01
Cortisol	385.1985	$[M+Na]^+$	213.62	215.03	213.22	213.96	0.44	212.80
			± 0.08	± 0.06	± 0.08	± 0.95	%	± 0.08
Levome-	458.1798	$[M-H]^{-}$	199.48	200.15	199.35	199.66	0.22	199.00
folic acid			± 0.00	± 0.06	± 0.12	± 0.43	%	± 0.01

Compound	m/z	Ion	BOKU	PNNL	VU	Average	%	Agilent
							RSD	
Levome-	460.1939	$[M+H]^+$	197.72	198.23	197.39	197.78	0.21	197.17
folic acid		2	± 0.02	± 0.59	± 0.02	± 0.42	%	± 0.04
GITWK	302.6763	$[M+2H]^{2+}$	273.46	274.44	273.64	273.85	0.19	274.51
			± 0.09	± 0.33	± 0.14	± 0.52	%	± 1.02
IFVQK	317.6998	$[M+2H]^{2+}$	285.90	287.44	286.09	286.47	0.30	286.78
	224.02	5 4 4 1 4 +	± 0.04	± 0.41	± 0.02	± 0.85	%	± 0.08
Angiotensin	324.93	[M+4H]	548.31	555.47	551.96	551.91	0.65	550.99
	220 (0.47	$D(\cdot 2)$	± 0.03	± 0.15	± 0.15	± 3.38	%	± 0.07
YIPGIK	339.6947	[M+2H]	292.80	293.03	292.96	292.92	0.04	293.76
Angiotongin	240.52	$[M + 2II]^{3+}$	± 0.04	± 0.11	± 0.04	± 0.13	%	± 0.13
Angiotensin	549.52	[M+3H]	+0.06	± 0.12	+0.21	437.91	0.05	+0.12
II Drodukinin	254 10	[M+2H] ³⁺	± 0.00	± 0.13	± 0.31	± 2.00	70	± 0.13
Diadykiiiii	554.19	[101+311]	+0.29	+0.41	+40.27 + 0.14	+49.02 + 3.02	0.07	+0.39
MIFAGIK	390 2278	$[M+2H]^{2+}$	306 50	$\frac{1}{20730}$	306 34	306.70	0.17	305 56
WIII MOIIX	370.2270	[141 211]	+0.04	+0.55	+0.03	+0.52	%	+0.42
Angiotensin	432.90	$[M+3H]^{3+}$	477.40	481.98	477.30	478.89	0.56	477.05
I	152.90		+0.06	+0.10	+0.06	+2.68	%	+0.04
Renin	440.49	$[M+4H]^{4+}$	638.02	644.69	638.11	640.27	0.60	637.65
		[]	± 0.41	± 0.16	± 0.10	± 3.82	%	± 0.24
Substance P	449.92	$[M+3H]^{3+}$	496.17	502.78	496.57	498.51	0.74	496.51
		[]	± 0.11	± 0.34	± 0.26	± 3.71	%	± 0.38
EDLIAYL	482.7711	$[M+2H]^{2+}$	341.82	343.80	342.43	342.68	0.30	342.46
K			± 0.09	± 0.17	± 0.01	± 1.01	%	± 0.07
Angiotensin	523.78	$[M+2H]^{2+}$	357.15	358.51	355.33	357.00	0.45	355.10
II			± 0.03	± 0.07	± 0.05	± 1.60	%	± 0.03
Bradykinin	530.79	$[M+2H]^{2+}$	345.64	347.81	345.07	346.17	0.42	344.99
			± 0.03	± 0.05	± 0.06	± 1.44	%	± 0.04
Neurotensin	558.31	$[M+3H]^{3+}$	530.42	533.22	528.55	530.73	0.44	528.29
		5.	± 0.07	± 0.08	± 0.10	± 2.35	%	± 0.03
Melittin	569.96	$[M+5H]^{5+}$	815.60	824.14	816.16	818.63	0.58	815.39
			± 0.12	± 0.41	± 0.05	± 4.78	%	± 0.10
Melittin	569.96	$[M+5H]^{5+}$	858.72	867.13	852.47	859.44	0.86	854.38
		5) (avv ²⁺	± 0.15	± 0.56	± 2.60	± 7.36	%	± 0.15
TGPNLH-	584.8147	$[M+2H]^{2}$	369.20	370.94	370.02	370.04	0.24	369.62
GLFGR	506.00	D (. 200 ³⁺	± 0.03	± 0.11	± 0.02	± 0.89	%	± 0.10
Renin	586.98	[M+3H]	527.10	528.44	524.43	526.66	0.39	524.12
CITWR	(04.2452	$\mathbf{D}\mathbf{A}$, $\mathbf{D}\mathbf{D}^+$	± 0.04	± 0.11	± 0.13	± 2.04	%	± 0.07
GIIWK	604.3453	[M+H]	238.30	230.28	237.19	237.24	0.42	235.80
IEVOK	624 2022	$[\mathbf{M} \mid \mathbf{U}]^+$	± 0.03	± 0.23	± 0.01	± 0.99	^{%0}	± 0.01
IIVQK	034.3922	[wi+n]	± 0.11	± 0.22	± 0.01	249.52 ± 1.17	0.47	240.00 ± 0.02
Angiotensin	6/8 85	[M±2H] ²⁺	380.70	300.60	388.00	380 70	0.21	388 /1
I	0+0.05	[1VIT211]	+0.02	+0.10	+0.04	+0.81	0.21	+ 0.10
Substance P	674 37	$[M+2H]^{2+}$	400.99	402.87	400.58	401.48	0.30	400.10
Substance I	017.31	[171 211]	+0.05	+0.11	+0.04	+1.40	%	+0.10
YIPGTK	678.3821	$[M+H]^+$	256.30	254 21	255 33	255 29	0.41	254.03
	3, 3, 3 , 3 , 3 , 1	[± 0.00	± 0.15	± 0.02	± 1.06	%	± 0.02
			_ 0.00	_ 0.10	_ 0.02	_ 1.00	,0	_ 0.02

Compound	m/z	Ion	BOKU	PNNL	VU	Average	% RSD	Agilent
Melittin	712.20	$[M+4H]^{4+}$	764.81	765.89	761.71	764.14	0.28	760.82
			± 0.06	± 0.23	± 0.07	± 2.17	%	± 0.13
TGQAPGF	735.8466	$[M+2H]^{2+}$	400.90	401.40	400.85	401.03	0.08	399.97
TYTDANK			± 0.06	± 0.13	± 0.04	± 0.32	%	± 0.13
EETLME-	748.3529	$[M+2H]^{2+}$	415.70	415.98	416.73	416.15	0.13	414.73
YLENPK			± 0.03	± 0.41	± 0.07	± 0.52	%	± 0.09
MIFAGIK	779.4484	$[M+H]^+$	277.10	274.37	276.03	275.81	0.49	274.49
			± 0.03	± 0.18	± 0.01	± 1.35	%	± 0.02
Neurotensin	836.96	$[M+2H]^{2+}$	437.38	438.85	435.13	437.12	0.43	435.43
			± 0.04	± 0.07	± 0.03	± 1.87	%	± 0.07
Renin	879.97	$[M+2H]^{2+}$	462.46	465.36	461.25	463.02	0.46	461.12
			± 0.08	± 0.10	± 0.06	± 2.12	%	± 0.04
Melittin	949.26	$[M+3H]^{3+}$	725.02	728.30	721.95	725.09	0.44	722.45
			± 0.04	± 0.07	± 0.06	± 3.18	%	± 0.02
EDLIAYL	964.5349	$[M+H]^+$	308.42	305.96	308.52	307.63	0.47	306.57
K			± 0.55	± 0.18	± 0.02	± 1.45	%	± 0.03
Angiotensin	1046.54	$[M+H]^+$	313.21	315.67	313.33	314.07	0.44	313.66
II			± 0.11	± 0.56	± 0.03	± 1.39	%	± 0.03
Bradykinin	1060.57	$[M+H]^+$	313.53	316.25	313.63	314.47	0.49	314.00
			± 0.05	± 0.70	± 0.12	± 1.54	%	± 0.12
TGPNLH-	1168.622	$[M+H]^+$	331.53	329.44	332.09	331.02	0.42	330.07
GLFGR	1		± 0.26	± 0.61	± 0.03	± 1.39	%	± 0.02
Angiotensin	1296.69	$[M+H]^+$	354.77	358.49	355.11	356.12	0.58	355.62
Ι			± 0.12	± 0.48	± 0.10	± 2.06	%	± 0.41
Substance P	1347.74	$[M+H]^+$	360.09	363.37	360.49	361.32	0.50	361.44
			± 0.07	± 0.30	± 0.07	± 1.79	%	± 0.04
Melittin	1423.38	$[M+2H]^{2+}$	613.42	618.59	613.64	615.22	0.48	614.26
			± 0.13	± 0.37	± 0.08	± 2.92	%	± 0.03
TGQAPGF	1470.687	$[M+H]^+$	365.37	363.50	366.08	364.98	0.37	364.37
TYTDANK	3		± 0.60	± 0.47	± 0.26	± 1.33	%	± 0.18
EETLME-	1495.698	$[M+H]^+$	385.83	384.62	386.77	385.74	0.28	384.84
YLENPK	5		± 1.33	± 0.64	± 0.11	± 1.08	%	± 1.32
Ubiquitin	612.414	$[M+14H]^{14}$	2728.47	2725.64	2731.76	2728.62	0.11	2728.87
		+	± 1.57	± 6.73	± 0.59	± 3.06	%	± 1.74
Cytochrome	618.9162	$[M+20H]^{20}$	3842.93	3851.74	3829.88	3841.52	0.29	3832.36
с		+	± 0.84	± 0.00	± 0.00	±11.00	%	± 0.00
Cytochrome	651.438	$[M+19H]^{19}$	3768.76	3760.52	3759.95	3763.08	0.13	3757.99
С		+	± 1.60	± 4.36	± 0.79	± 4.93	%	± 0.00
Ubiquitin	659.446	$[M+13H]^{15}$	2592.02	2595.43	2604.75	2597.40	0.25	2594.38
		+	± 0.00	± 1.43	± 0.54	± 6.59	%	± 0.54
Cytochrome	687.5725	$[M+18H]^{18}$	3680.42	3656.05	3670.27	3668.91	0.33	3670.41
С		+	± 0.76	± 15.24	± 1.99	± 12.24	%	± 0.75
Ubiquitin	714.316	$[M+12H]^{12}$	2443.35	2441.14	2460.31	2448.27	0.43	2444.26
		+ 17	± 0.51	± 1.32	± 0.00	± 10.49	%	± 0.00
Cytochrome	727.9594	$[M+17H]^{17}$	3572.41	3520.95	3560.36	3551.24	0.76	3554.73
С		+	± 1.24	± 3.90	± 0./1	± 20.91	%	± 0.70
Cytochrome	773.3916	[M+16H] ¹⁰	3445.64	3391.96	3439.01	3425.54	0.85	3420.25
с		÷	± 1.55	± 2.38	± 0.67	± 29.21	%	± 2.39
	<u> </u>							

Compound	m/z	Ion	BOKU	PNNL	VU	Average	%	Agilent
							RSD	
Ubiquitin	779.161	$[M+11H]^{11}$	2362.82	2359.54	2378.26	2366.87	0.42	2362.34
_		+	± 0.47	± 0.00	± 0.46	± 10.00	%	± 0.00
Ubiquitin	856.978	$[M+10H]^{10}$	2212.27	2203.54	2223.39	2213.07	0.45	2204.84
1		+	± 0.73	± 0.72	± 0.00	± 9.95	%	± 0.41
Ubiquitin	952.081	$[M+9H]^{9+}$	2077.68	2067.26	2076.24	2073.73	0.27	2063.50
-			± 0.38	± 0.38	± 0.38	± 5.64	%	± 0.00
Ubiquitin	1070.964	$[M+8H]^{8+}$	1969.37	1963.92	1972.07	1968.45	0.21	1960.53
-			± 0.34	± 0.00	± 0.33	± 4.15	%	± 0.33
Ubiquitin	1223.8	$[M+7H]^{7+}$	1789.38	1784.66	1789.80	1787.95	0.16	1785.41
_			± 0.30	± 0.51	± 0.59	± 2.85	%	± 0.29
Ubiquitin	1223.8	$[M+7H]^{7+}$	1885.66	1886.96	1843.71	1872.11	1.31	1884.36
1		_ •	± 0.51	± 0.29	± 0.29	± 24.60	%	± 0.29

Agilent		BOKU			
Biological Standard	%RSD	Biological Standard	%Error		
Renin [M+3H] ³⁺	1.02%	Uric acid	1.00%		
L-aspartic acid	1.03%	Ubiquitin [M+13H] ¹³⁺	1.05%		
L-leucine	1.03%	Cytochrome c [M+16H] ¹⁶⁺	1.05%		
Uric acid	1.08%	Ubiquitin [M+8H] ⁸⁺	1.08%		
L-isoleucine	1.11%	Renin [M+3H] ³⁺	1.08%		
Melittin [M+5H] ⁵⁺	1.18%	Ubiquitin [M+9H] ⁹⁺	1.16%		
Creatinine	1.54%	Ubiquitin [M+11H] ¹¹⁺	1.24%		
PNNL		Creatinine	1.34%		
Melittin [M+3H] ³⁺	1.00%	Ubiquitin [M+10H] ¹⁰⁺	1.42%		
Neurotensin [M+2H] ²⁺	1.04%	Ubiquitin [M+12H] ¹²⁺	1.47%		
Renin [M+2H] ²⁺	1.08%	Ubiquitin [M+7H] ⁷⁺	1.71%		
Angiotensin II [M+2H] ²⁺	1.10%	Vanderbilt			
Angiotensin I [M+2H] ²⁺	1.13%	L-histidine	1.02%		
Melittin [M+4H] ⁴⁺	1.20%	Neurotensin [M+3H] ³⁺	1.03%		
Bradykinin [M+3H] ³⁺	1.22%	Uric acid	1.05%		
Bradykinin [M+2H] ²⁺	1.30%	Melittin [M+4H] ⁴⁺	1.06%		
Angiotensin II [M+2H] ²⁺	1.33%	L-glutamic acid	1.08%		
Substance P [M+3H] ³⁺	1.42%	L-leucine	1.14%		
Angiotensin I [M+3H] ³⁺	1.53%	L-aspartic acid	1.18%		
Neurotensin [M+3H] ³⁺	1.56%	Ubiquitin [M+9H] ⁹⁺	1.23%		
Renin [M+4H] ⁴⁺	1.59%	Cytochrome c [M+16H] ¹⁶⁺	1.24%		
Renin [M+3H] ³⁺	1.86%	L-isoleucine	1.27%		
Melittin [M+5H] ⁵⁺	1.92%	Creatinine	1.39%		
Melittin [M+5H] ⁵⁺	2.69%	Renin $[M+3H]^{3+}$	1.60%		
		Melittin [M+5H] ⁵⁺	1.70%		

Figure S3. Absolute error of single field CCS values compared to stepped field CCS values obtained on the Reference System. The biological samples listed in the table are those that fall above 1% error. The reasons for the larger deviations are discussed in the manuscript.

Figure S4. The bar graphs from Figure 4B comparing single field CCS values from each lab to stepped field CCS values on the Reference System are shown separately for clarity. The molecular classes are listed on the "Agilent Internal" plot with the other three plots following the same order.

Figure S5. Bias plots for single field data from each lab compared to stepped field data acquired on the Reference System. Results for all 4 labs are overlaid in A. Results for each lab are shown on individual plots for clarity for B. Agilent, C. BOKU, D. PNNL, and E. Vanderbilt. These plots further emphasize that a majority of the single field CCS measurements are within 1% across the four labs.

Theoretical Simulation Details

Theoretical CCS ranges were determined for the molecules examined in this study. This involved the classic two step approach of sampling conformational space of each molecule followed by a theoretical CCS calculation for each conformation. Initial structures were either optimized in Gaussian09¹ or built in MOE² or XLEAP³ software. Gaussian was used for molecules under 800 Da to obtain an electrostatic description of the molecule. Peptides larger than 800 Da were built in XLEAP with both existing amino acid residues and Gaussian optimized residues for those not included in XLEAP (i.e. -COOH capped C-termini, N-termini with neutralized side chains) to better mimic the gas-phase charged species. Distance geometry, a computationally-inexpensive method, was utilized allowing a large number of conformers (1-20,000 depending on molecule size and flexibility) to be generated in a short amount of CPU time (usually hours when parallelized).⁴ Distance geometry is mathematical approach to sampling conformational space as it treats all the atoms in the molecule as points in space and uses linear algebra to convert a set of distance between all pairwise points to three dimensional coordinates of a molecule. The mathematical basis of this approach allows it to randomly sample conformational space very quickly. This gives us confidence that we are sampling all conformational space of the molecules in this study in a very time efficient manner. The resulting conformations from distance geometry were submitted to an energy minimization in Amber to create low energy conformations.

All conformations were then submitted to MOBCAL⁵ to calculate a projection approximation (PA) theoretical CCS value. PA in MOBCAL calculates theoretical CCS values very quickly, but these theoretical CCS values can only be aligned with helium data. Based on the PA, helium CCS values and RMSD clustering a subset of conformers is selected for submission to the projected superposition approximation (PSA)⁶⁻⁹webserver. PSA also determines theoretical CCS values very quickly and has a set of preliminary nitrogen parameters so theoretical nitrogen CCS values can be determined. Since the current format of PSA is through their webserver submitting 20,000 conformations is not possible so selecting a subset of these conformations is desirable. Based on the MOBCAL PA CCS calculation the 10 highest and 10 lowest PA, helium CCS range. An additional 20 conformers are selected based on RMSD clustering, meaning the 20 most structurally unique conformations are also selected for submission to PSA. This set of 60 conformers is reasonable for submission to PSA and should be sufficient to give us a theoretical CCS range in nitrogen space for the molecules in this study.

Figure S6. Comparison of experimental stepped field CCS values to CCS ranges based on computational conformational space sampling are shown in A. for larger molecules and in B. for smaller molecules. Computational results are represented with horizontal bars colored according to molecular class. Experimental values are overlaid as either green circles showing agreement or red circles showing disagreement. Ions are listed in increasing m/z order to avoid overlap of isomers and dense m/z regions specifically at low masses. Agreement between experiment and theory varies based on chemical class and molecule size. Good agreement is observed for tune mix ions above 600 m/z as shown in Figure S6A, but not for smaller tune mix ions (118-322 m/z) in Figure S6B. Peptide ions which range from 300-1500 m/z and +1 to +5 charge states in Figure S6A show good agreement between experiment and theory. Fatty acids which range from 200-368 m/z in Figure S6B also show excellent agreement between theoretical ranges and experimental CCS measurements. In contrast, the theoretical methods used here generated CCS ranges which did not encompass experimental CCS values for the majority of metabolites ions in Figure S6B, all of which are below 500 m/z. It is noted here that the PSA nitrogen parameters used are preliminary and were not developed for small molecule CCS prediction.⁶⁻⁹ For small molecules, the contribution of the cross section of the nitrogen buffer gas becomes significant, and experimental CCS_{N2} values obtained at low CCS ranges should converge on the CCS of the

nitrogen gas polarization limit (ca. 93 Å²),¹⁰ which is evident in the experimental values in **Figure S6B**. While other calculations exist for computing theoretical CCS values such as the trajectory method which better simulates the effect of nitrogen as a buffer gas, this method is much more computationally expensive than PSA. This is a concern when attempting to calculate theoretical CCS values for a large number of conformations that span the conformational space of even small molecules like many of the metabolites investigated in this work. Although more work could be done in attempt to provide more accurate theoretical CCS values the work in its current state serves two main purposes. First, to show how current theoretical methods would benefit from future parameterization which relies on accurate experimental CCS values presented in this manuscript. Second, this work provides visual insight into the conformational landscape of the molecules in this study and the theoretical CCS values that currently represent them. Conformations representing these ranges are included in Figure S6-S19.

Figure S7. Sample conformations from computational sampling for the tune mix ions. A representative conformation is shown for the lowest and highest theoretical CCS values as well as for one that closely agrees with the experimental CCS value. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, phosphorus with pink, and fluorine with green.

Figure S8. Sample conformations from computational sampling for the tune mix ions. A representative conformation is shown for the lowest and highest theoretical CCS values as well as for one that closely agrees with the experimental CCS value. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, phosphorus with pink, and fluorine with green.

Figure S9. Sample conformations from computational sampling for the tune mix ions. A representative conformation is shown for the lowest and highest theoretical CCS values as well as for one that closely agrees with the experimental CCS value. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, phosphorus with pink, and fluorine with green.

Figure S10. Sample conformations from computational sampling for the fatty acids. A representative conformation is shown for the lowest and highest theoretical CCS values as well as for one that closely agrees with the experimental CCS value. Carbon is represented with dark grey, hydrogen with light grey, and oxygen with red.

Figure S11. Sample conformations from computational sampling for the fatty acids. A representative conformation is shown for the lowest and highest theoretical CCS values as well as for one that closely agrees with the experimental CCS value. Carbon is represented with dark grey, hydrogen with light grey, and oxygen with red.

Figure S12. Sample conformations from computational sampling for the metabolites. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. An * indicates metabolites that had more than one possible protonation sites with conformations shown for the additional protonation site. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, sulfur with yellow, nitrogen with blue, and sodium with orange.

Figure S13. Sample conformations from computational sampling for the metabolites. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, sulfur with yellow, and nitrogen with blue.

Figure S14. Sample conformations from computational sampling for the metabolites. A representative conformation is shown for the lowest and highest theoretical CCS values as well as for one that closely agrees with the experimental CCS value. If no conformation is indicated within the range, the experimental CCS value fell outside the range. An * indicates metabolites that had more than one possible protonation sites with conformations shown for the additional protonation site. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, sulfur with yellow, nitrogen with blue, and sodium with orange.

Figure S15. Sample conformations from computational sampling for the metabolites. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, and sodium with orange.

Figure S16. Sample conformations from computational sampling for the peptides. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with bluem and sulfur with yellow.

Figure S17. Sample conformations from computational sampling for the peptides. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, and sulfur with yellow.

Figure S18. Sample conformations from computational sampling for the peptides. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, and sulfur with yellow.

Figure S19. Sample conformations from computational sampling for the peptides. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, and sulfur with yellow.

Figure S20. Sample conformations from computational sampling for the peptides. A representative conformation is shown for the lowest and highest theoretical CCS values. If no conformation is indicated within the range, the experimental CCS value fell outside the range. Carbon is represented with dark grey, hydrogen with light grey, oxygen with red, nitrogen with blue, and sulfur with yellow.

References:

(1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., Gaussian 09 software. *Gaussian Inc., Wallingford* **2009**.

(2) *Molecular Operating Environment (MOE)*, 2012.10; Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2012.

(3) Case, D. A.; Babin, V.; Berryman, J.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham Iii, T. E.; Darden, T. A.; Duke, R. E.; Gohlke, H., Amber 14. **2014**.

(4) Stow, S. M.; Goodwin, C. R.; Kliman, M.; Bachmann, B. O.; McLean, J. A.; Lybrand, T. P.,. *J Phys. Chem. B* **2014**, *118* (48), 13812-13820.

(5) Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F., *J. Phys. Chem.* **1996**, *100*, 16082-16086.

(6) Bleiholder, C.; Wyttenbach, T.; Bowers, M. T., Int. J. of Mass Spectrom. 2011, 308, 1-10.

(7) Bleiholder, C.; Contreras, S.; Do, T. D.; Bowers, M. T., Int. J. of Mass Spectrom. **2013**, 345, 89-96.

(8) Anderson, S. E.; Bleiholder, C.; Brocker, E. R.; Stang, P. J.; Bowers, M. T., Int. J. Mass Spectrom. 2012, 330-332, 78-84.

(9) Bleiholder, C.; Contreras, S.; Bowers, M. T., Int. J. Mass Spectrom. 2013, 354, 275-280.

(10) Illenseer, C.; Löhmannsröben, H.-G., Phys. Chem. Chem. Phys. 2001, 3, 2388-2393.