Supporting Information

Structural Requirements of the ASBT by 3D-QSAR Analysis Using Aminopyridine Conjugates of Chenodeoxycholic Acid

Xiaowan Zheng, Yongmei Pan, Chayan Acharya[†], Peter W. Swaan, James E. Polli*

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.

[†]Present Address: Institut Européen de Chimie et Biologie, Université Bordeaux 1, 2 rue

Robert Escarpit, 33607 Pessac Cedex, France

*To whom correspondence should be addressed. (e-mail: jpolli@rx.umaryland.edu); Tel.

+1410-706-8292; Fax: +1 410-706-5017

Xiaowan Zheng and Yongmei Pan contributed equally to this work.

Running Title: conjugate QSAR for ASBT transporter

Comp.			LC-MS/M	S	¹ H-NMR (DMSO-d6) ^d	
	Exact	Q1 Mass	Q3 Mass	Retention	X-Initial B%	-
	Mass ^{<i>a</i>}	$(m/z)^{b}$	$(m/z)^{b}$	Time (min)	in gradient ^c	
1	597.38	598.30	94.90	1.04	35%	12.52 (1H, s, β), 10.44 (1H, s, γ), 8.29 (1H, d, α),
						8.06 (1H, d, α), 8.00 (1H, d, γ), 7.75 (1H, t, α), 7.07
						$(1H, t, \alpha), 4.17 (1H, m, \theta)$
2	597.38	598.41	221.00	1.24	40%	12.34 (1H, s, β), 10.21 (1H, s, γ) 8.74 (1H, s, α) 8.26
						$(1H, d, \alpha), 8.05 (1H, d, \alpha), 8.00 (1H, d, \gamma) 7.35 (1H, t, \alpha)$
						α), 4.20 (1H, m, θ)
3	597.38	598.41	221.00	2.24	30%	12.63 (1H, s, β), 10.55 (1H, s, γ), 8.45 (2H, d, α),
						8.09 (1H, d, γ), 7.66 (2H, d, α), 4.23 (1H, m, θ)
4	625.41	626.31	189.01	1.23	33%	12.50 (1H, s, β), 8.74 (1H, d, 7), 8.22 (1H, t, α), 8.09
						$(1H, d, \gamma), 8.05 (1H, t, \gamma), 7.72 (1H, t, \alpha) 7.25 (1H, d, \gamma)$
_						α), 4.12 (1H, m, θ) 3.52 (1H, m, α) 3.09 (1H, t, α)
5	611.39	612.30	238.03	1.55	35%	12.41 (1H, s, β), 9.45 (1H, s, γ), 8.23 (1H, d, α), 8.08
						$(1H, d, \gamma), 7.78 (1H, d, \alpha), 7.20 (1H, t, \alpha), 4.22 (1H, t, \alpha))$
6	(11.20)	(10.05	2 20.02	1.00	400/	m, θ), 2.39 (3H, s, α)
6	611.39	612.25	238.03	1.00	40%	12.43 (1H, s, β), 9.51 (1H, s, γ), 8.49 (1H, s, α), 8.23
						$(1H, d, \alpha) = 8.09 (1H, d, \gamma) / .24 (1H, d, \alpha), 4.25 (1H, m, 0) = 2.10 (2H, a, m)$
7	611 20	612 45	109.01	1 42	400/	$(0, 0), 2.19 (3H, S, \alpha)$ 12 21 (111 a, b) 10 09(111 a, c) 8 50 (111 a, c) 8 02
1	011.39	012.43	108.91	1.45	40%	$12.21 (1H, S, P), 10.06(1H, S, \gamma), 6.50 (1H, S, \alpha), 6.05$
						$(1\Pi, u, \gamma), \delta.0/(1\Pi, S, u), 7.\delta/(1\Pi, S, u), 4.51(1\Pi, m, 0), 2.40(2H, s, a))$
						$\Pi, \theta, 2.40 (3\Pi, S, \alpha)$
8	611.39	612.25	237.99	1.38	35%	12.01 (1H, s, β), 10.03 (1H, s, γ), 8.57 (1H, s, α), 8.02
						(1H, d, γ), 7.88 (1H, d, α), 7.16 (1H, d, α) 4.21 (1H,
						m, θ), 2.38 (3H, s, $α$)
9	611.39	612.30	108.97	1.98	32%	12.03 (1H, s, β), 10.24 (1H, s, γ), 8.26 (1H, d, α),
						8.03 (1H, d, γ), 7.43 (1H, s, α), 7.34 (1H, d, α) 4.31

Table S1. Physicochemical characteristics of conjugates.

10	625.41	626.81	234.04	1.46	35%	$(1H, m, \theta) 2.39(3H, s, \alpha)$ 11.57 (1H, s, β) 10.31 (1H, s, γ), 7.89 (1H, d, γ), 7.75
						$(1H \ s \ a) \ 6 \ 78 \ (1H \ s \ a) \ 4 \ 27 \ (1H \ m \ \theta) \ 2 \ 32 \ (3H \ s)$
						(111, 5, w), 0.70 (111, 5, w), 1.27 (111, 11, 0) 2.52 (511, 0)
11	715 46	716 54	NΛ	NΛ	NΛ	$10.30(1H \text{ s w}) \approx 20(1H \text{ d w}) = 7.74(1H \text{ s w}) = 7.35$
11	/13.40	/10.34				$(511 \circ R) \in 72 (111 \circ R) = 5.00 (211 \circ R) + 20 (111$
						$(3\Pi, S, p), 0.70 (1\Pi, S, u), 3.09 (2\Pi, S, p), 4.29 (1\Pi, 0), 2.22 (2H) (2H) (2D) (2H) (2H) (2H) (2H) (2H) (2H) (2H) (2H$
	(05.41	(2 (11	100.00	1.10	220/	m, θ), 2.33 (3H, s, α), 2.24 (3H, s, α)
12	625.41	626.41	123.00	1.10	32%	11.48 (1H, s, β), 10.01 (1H, s, γ), 7.71 (1H, d, α),
						7.43 (1H, d, γ), 7.01 (1H, d, α), 4.11 (H, m, θ), 2.35
						$(3H, s, \alpha), 2.37 (3H, s, \alpha)$
13	715.46	716.57	NA	NA	NA	9.38 (1H, s, γ), 8.25 (1H, d, γ), 4.31 (1H, m, θ), 7.60
						(1H, d, α), 7.35 (5H, s, β), 7.03 (1H, d, α), 5.12 (2H,
						s, β), 2.38 (3H, s, α), 2.31 (3H, s, α)
14	627.39	628.40	124.92	1.39	45%	12.40 (1H, s, β), 9.92 (1H, s, γ), 8.33 (1H, s, 7), 8.04
						(1H, d, γ), 7.87 (1H, d, α), 6.77 (1H, d, α), 4.19 (1H,
						m, θ), 3.80 (3H, s, α)
15	612.39	613.40	220.50	1.76	35%	12.56 (1H, s, β), 10.29 (1H, s, γ), 8.12 (1H, d, γ),
						7.52 (1H, t, α), 7.31 (2H, s, α) 6.34 (1H, d, α), 5.93
						$(1H, d, \alpha), 4.24 (1H, m, \theta)$
16	613.37	614.40	221.97	1.18	40%	$12.59 (1H, s, \beta), 10.25 (1H, s, \gamma), 8.09 (1H, d, \gamma),$
						7.90 (1H, d, a), 7.30 (1H, d, a), 7.18 (1H, t, a) 5.47
						$(1H, s, \alpha), 4.18 (1H, m, \theta)$
17	703.42	704.41	312.07	2.55	48%	10.20 (1H, s, γ), 8.25 (1H, d, γ), 7.88 (1H, d, α), 7.35
						$(5H \ s \ \beta) \ 7 \ 27 \ (1H \ d \ \alpha) \ 7 \ 14 \ (1H \ t \ \alpha) \ 5 \ 11 \ (2H \ c)$
						s, β), 4.30 (1H, m, θ)
18	615.37	616.40	112.91	1.36	45%	$12.50 (1H, s, \beta), 9.93 (1H, s, \gamma), 8.41 (1H, d, \alpha), 8.06$
						$(1H d \gamma) 7 92 (1H d \alpha) 7 33 (1H t \alpha) 4 19 (1H d \alpha)$
						(111, a, b) $(111, a, a), (111, a, a), (111, a)$
19	615 37	616 41	112 98	1.52	40%	$12.48(1H s \beta) 10.70(1H s \gamma) 8.58(1H s \alpha) 8.26$
•/	510.07	010.11	112.70	1.02	1070	$(1H \ s \ \alpha) \ 8 \ 13 \ (1H \ d \ \gamma) \ 8 \ 08 \ (1H \ s \ \alpha) \ 4 \ 21 \ (1H \ s \ \alpha)$
						(111, 0, u), 0.10 (111, u, 1), 0.00 (111, 0, u), 7.21 (111, m A)
						····, v <i>j</i>

20	615.37	616.40	224.80	1.59	40%	12.57 (1H, s, β), 10.25 (1H, s, γ), 8.42 (1H, s, α), 8.17
						$(1H, d, \alpha), 8.11 (1H, d, \gamma), 7.17 (1H, d, \alpha), 4.34 (1H, d, \alpha), 7.17 (1H, d, \alpha), 4.34 (1H, d, \alpha), 10.11 (1H, d, \alpha), 10.$
						(112, 4, 4), (112, 4, 7), (112, 4, 4), (112, 4, 4), (112, 4, 4), (112, 4),
21	675 29	676 3/678 30	599 40	4 73	45%	$12.56(1H \times R) = 10.35(1H \times r) = 9.35(1H \times r) = 8.09$
	070.29	010.51010.50	077.10	1.75	10 / 0	(1H d v) = 863 (1H s a) = 836 (1H s a) = 424 (1H s)
						(111, 4, 7), 0.05 (111, 5, 4), 0.50 (111, 5, 4), 1.27 (111, 7) m A)
22	675 29	676 3/678 26	172.81	5 69	45%	$12.54(1H \times R) = 10.27(1H \times r) \times 8.57(1H \times r) \times 0.09$
	015.27	070.5/070.20	172.01	5.07	-1370	(111, 3, 0), 10.27 (111, 3, 7), 0.57 (111, 3, 0), 0.57 (111, 3), 0.
						$(111, \mathbf{u}, \gamma), 7.50(111, \mathbf{u}, \mathbf{u}), 7.50(111, \mathbf{u}, \mathbf{u}), 4.25(111, \mathbf{u}, \mathbf{u}), 4.25(111, \mathbf{u}, \mathbf{u}), 7.50(111, \mathbf{u}, \mathbf{u}), 7.50$
22	621 24	622 20/624 20	540 16	1 97	400/	12.56(111 g R) 10.20(111 g r) 8.58(111 g r) 8.10
23	031.34	032.30/034.30	340.10	4.0/	40%	(111 d x) = 206 (111 d x) = 7.45 (111 d x) = 4.24 (111 d x)
						$(\Pi, \mathbf{u}, \boldsymbol{\gamma}), 8.00 (\Pi, \mathbf{u}, \boldsymbol{u}), 7.43 (\Pi, \mathbf{u}, \boldsymbol{u}) 4.24 (\Pi, \boldsymbol{u}, \boldsymbol{u})$
24	(21.24	(22) 20/(21, 40)	120.02	1 15	420/	$[\Pi, \forall]$ 12.51 (111 - 0) 11.45 (111) 0.04 (111) 0.02
24	631.34	632.30/634.40	128.92	4.45	43%	12.51 (1H, s, β), 11.45 (1H, s, γ), 8.84 (1H, s, α), 8.68
						$(1H, d, \alpha), 8.18 (1H, d, \gamma), 8.04 (1H, d, \alpha), 4.22 (1H, \alpha)$
• -	(10.00)				2 5 2 (m, θ
25	612.38	613.40	221.12	2.72	35%	12.49 (1H, s, β), 9.76 (1H, s, γ), 8.06 (1H, s, γ), 7.66
						$(1H, d, \alpha), 6.93 (1, t, \alpha), 6.84 (1H, d, \alpha), 6.75 (1H, t, \alpha)$
						α), 4.30 (1H, m, θ)
26	612.38	613.30	220.94	1.83	40%	12.58 (1H, s, β), 9.82 (1H, s, γ), 8.07 (1H, d, γ), 7.21
						$(1H, s, \alpha), 7.08 (1H, t, \alpha), 6.97 (1H, d, \alpha), 6.46 (1H, d, \alpha))$
						d, α), 4.15 (1H, m, $θ$)
27	612.38	613.31	220.81	1.44	45%	12.53 (1H, s, β), 9.63 (1H, s, γ) 8.06 (1H, d, γ), 7.34
						(2H, d, α), 6.68 (2H, d, α), 4.20 (1H, m, θ)

^{*a*} Calculated monoisotopic mass.

^b Q1 and Q3 mass are experimental mass [M+H]⁺.

^c The mobile phase was A, 0.1% formic acid in water; and B, 0.1% formic acid in acetonitrile. The gradient times were listed as percent organic phase, B%. 0–0.2 (X%), 0.2–3.0 (X–95%), 3.0–4.0 (95%), 4.0–4.2 (95-X%), and 4.2–7.0 min (X%)

^{*d*} Only characteristic peaks are shown, CDCA region and methylene peaks are not shown; values are in ppm relative to TMS; β indicates assignment to proton peaks in R₁; α indicates assignment to protons in R₂; γ indicates assignment to protons in amide, θ indicates the proton in α carbon.

Comp.	Obs. pK_i^a	Pre. pK _i		Obs. $Log(J_{max}/K_t)^{b}$	Pre. $Log(J_{max}/K_t)$
-	-	CoMFA-1	CoMSIA-3		CoMFA-2
1	5.28	5.26	5.29	0.790	0.794
2 ^c	5.82	5.09	4.93	1.45	0.479
3	5.06	5.02	5.00	0.300	0.307
4	5.15	5.10	5.23	0.280	0.279
5	5.33	5.36	5.42	-0.150	-0.151
6	4.96	5.01	4.91	-0.410	-0.412
7	4.63	4.62	4.71	0.290	0.289
8	5.1	5.31	5.20	0.0800	0.0770
9	5.55	5.57	5.43	0.300	0.298
10	5.18	5.11	5.17	0.980	0.984
11	3.91	3.94	4.00	ND	ND
12	5.72	5.58	5.70	-0.260	-0.257
13	4.55	4.50	4.51	ND	ND
14	5.05	5.05	5.11	1.31	1.31
15	5.08	5.10	5.10	1.51	1.51
16	5.51	5.55	5.48	1.16	1.16
17	4.75	4.78	4.66	NM	NM
18 ^c	5.24	5.09	5.11	3.43	0.783
19	5.16	5.09	5.00	0.920	0.925
20	5.24	5.09	5.12	0.420	0.418
21	5.3	5.09	5.36	0.310	0.308
22 ^c	4.68	4.74	4.67	0.620	0.331
23	5.1	5.10	5.25	NM	NM
24	5.1	5.15	5.13	NM	NM
25 ^c	5.45	5.27	5.47	1.42	0.649
26	5.61	5.65	5.66	1.15	1.15
27	5.14	5.20	5.12	0.460	0.457

 Table S2. 3D-QSAR models for inhibition and transport efficiency.

^{*a*} $-\log(K_i)$ calculated from observed K_i .

^b Calculated from $log(normJ_{max}/K_t \times 100)$

^c **2**, **18**, **22**, and **25** were used as test set.

Figure S1. Relationship between *normJ*_{max} and *K*_t. Transporting capacity was not associated with transporter affinity. Linear regression showed a slope of 0.008 μ M⁻¹ and *r*² of 0.064. **15**, **18**, **22**, and **25** yielded *J*_{max} higher than taurocholate. All other conjugates exhibited *J*_{max} less than taurocholate *J*_{max}, and ranged from 0.0791 to 0.716.

Figure S2. Relationship between *normJ*_{max}/ K_t and K_t . Linear regression showed a slope of -0.003 μ M⁻² and r^2 of 0.028. Transporting efficiency was not associated with inhibition potency. **18** was removed from the plot due to its high *normJ*_{max}/ K_t value of 26.7.