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Implementing the Proposed Method With R

All the methods proposed in the present article have been implemented in R (R Devel-

opment Core Team, 2013). This appendix briefly discusses how to use those R codes to

analyze the emotion data. The input values that are included in this code may be changed

by the users according to their own data.

List of R files and their function:

• main.R: Main program to run.

• def con.R: Define the sample size, number of observed variables, number of factors,

number of burn-in, number of MCMC samples for inference, etc.

• def rec.R: Allocation of computation variables.

• Gibbs.R: Details of Gibbs sampler steps, including Gibbs Omega.R, Gibbs LY.R,

Gibbs MU.R, Gibbs PHI.R, Gibbs PSX.R, Gibbs MISY.R and Postp.R, where

- Gibbs Omega.R: Generate Ω from p(Ω|Y,µ,Λ,Φ,Ψ);

- Gibbs LY.R: Generate Λ from p(Λ|Y,Ω,µ,Φ,Ψ);

- Gibbs MU.R: Generate µ from p(µ|Y,Ω,Φ,Λ,Ψ);

- Gibbs PHI.R: Generate Φ from p(Φ|Y,Ω,µ,Λ,Ψ);

- Gibbs PSX.R: Generate Σ from p(Σ|Y,Ω,µ,Λ,Φ, τ , λ) and compute Ψ =

Σ−1.

- Gibbs MISY.R: Generate the missing response from its conditional distribu-

tions to deal with missing responses (if any).

- Postp.R: Calculate the posterior predictive (PP) p-value.

Note: The derivation of the above-mentioned conditional distributions will be pre-

sented in the next section.
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• ind.R: Define the position of fixed and unknown parameters in factor loading matrix.

• init1.R: Set initial values for the unknown parameters.

• Prior.R: Set hyperparameters of prior distribution.

• read observed.R: Read the data to be analyzed.

• write model fit.R: Write the posterior predictive p-value into a text file and save in

“Result\Est\PP.txt”.

• write result.R: Write the parameter estimates into separate text files and save in

“Result\Est\”. Write the standard error estimates into separate text files and save

in “Result\SE\”.

• HPD.R: Calculate the HPD intervals, write them into separate text files and save

in “Result\Est\”.

Once R has been downloaded and installed, the data can be analyzed step by step as

follows:

1. Put all the files of R codes and data (e.g. emotion.txt) in an appropriate directory

(e.g., E:\R code\) and set this directory in main.R by using setwd(“E:\R code\”). Some

packages are required to be installed into R: msm, MCMCpack, statmod, and psycho-

metric. If any of these packages doesn’t exist, it will be installed automatically by the

commands written in main.R.

2. Prepare the data file and replace the missing responses with NA. In read observed.R,

change the name of the data file (e.g. emotion.txt).

3. In def con.R, change the settings according to model and data. For example, in the

emotion data analysis, sample size was 175, number of items was 28, number of factors was
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5. So we can set N←175, NY←28, NZ←5. Similarly, we can set the numbers according

to the MCMC procedure, e.g., number of burn-in and so on.

4. In ind.R, set the position of fixed and unknown parameters according to model

specification and factor structure. IDY is a NY×NZ indicator matrix where 0 represents

the fixed parameters and 1 represents the unknown parameters needed to be estimated

in Λ.

5. In Prior.R, set values of hyperparameters according to prior input.

6. In init1.R, set initial values for the unknown parameters.

7. Run the file main.R.

9. All the results are saved in “Result\Est\” and “Result\SE\”. Names of parameter

estimates, standard error estimates and HPD intervals begin with Em, SE and HPD

respectively. Note: LY, MU, PHI and PSX present the unknown parameters in Λ, µ, Φ

and Ψ respectively.

Derivation of Conditional Distributions

The specific prior distributions for inverse of the covariance matrix can be expressed as the

product of double exponential distributions for the off-diagonal elements and exponential

distributions for the diagonal elements:

p(Σ|λ) ∝
∏
i<j

{DE(σij|λ)}
p∏
i=1

{
EXP(σii|

λ

2
)

}
I(Σ � 0), (1)

where DE(σij|λ) is the double exponential density function of the form λ
2

exp(−λ|σij|),

and EXP(σii|λ2 ) is the exponential density function of the form λ
2

exp(−λ
2
σii)I(σii > 0)

where I(σii > 0) is an indicator function of the event that σii > 0, and I(Σ � 0) is an

indicator function of the event that Σ is positive definite.

The double exponential distribution can be represented as a scale mixture of normals

(Hans, 2009; Park & Casella, 2008; Wang, 2012). Let σ = (σij)i≤j be the vector of the
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upper off-diagonal and diagonal elements of Σ, and τ = (τij)i<j be the vector of latent

scale parameters. The density for σ given τ and λ is given by:

p(σ|τ , λ) =
1

Cτ

∏
i<j

{
1√

2πτij
exp(−

σ2
ij

2τij
)

}
p∏
i=1

{
λ

2
exp(−λ

2
σii)

}
I(Σ � 0), (2)

where the normalizing term Cτ depends on τ . The following prior distribution is proposed

for τ ,

p(τ |λ) ∝ Cτ
∏
i<j

λ2

2
exp(−λ

2

2
τij). (3)

Wang (2012) proved that p(σ|τ , λ) and p(τ |λ) are proper priors, and the analytically

intractable terms Cτ in Eqs. 2 and 3 can be canceled out so that the marginal distribution

of the σij’s follows Eq. 1. However, because of the positive definite constraint, the normal

distributions for the σij’s are dependent given the scale parameters τij. To solve this

problem, a data-augmented block Gibbs sampling scheme proposed by Wang (2012) is

considered for posterior computations under the hierarchical frameworks represented by

Eqs. 2 and 3.

For the conditional distribution p(Σ|Y,Ω,µ,Λ,Φ, τ , λ), we describe the operational-

ization of the required Gibbs sampler under the Bayesian Lasso prior. To simplify nota-

tion, denote the vector that contains all unknown distinct parameters in µ, Λ, and Φ by

θ.

The conditional distribution p(Σ|Y,Ω,θ, τ , λ) can be decomposed as follows:

p(Σ|Y,Ω,θ, τ , λ) ∝ p(Y|Ω,θ,Σ)p(Σ|τ , λ)

∝ |Σ|
n
2 exp

[
−1

2
tr(S̃Σ)

]∏
i<j

{
exp(−

σ2
ij

2τij
)

}

×
p∏
i=1

{
exp(−λ

2
σii)

}
I(Σ � 0), (4)

where S̃ =
∑n

i=1(yi − µ − Λωi)(yi − µ − Λωi)
T . Following Wang (2012), we consider

an efficient block Gibbs sampling to update Σ one column at a time after appropriate

reparametrization.
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Denote the running index for observed measurements by k. For k = 1, 2, · · · , p,

partition and rearrange the columns of Σ and S̃ as follows:

Σ =

(
Σ−kk σk
σTk σkk

)
, S̃ =

(
S̃−kk s̃k
s̃Tk s̃kk

)
,

where σkk is the kth diagonal element of Σ, σk = (σk1, · · · , σk,k−1, σk,k+1, · · · , σkp)T is the

vector of all off-diagonal elements of the kth column, and Σ−kk is the (p − 1) × (p − 1)

matrix resulting from deleting the kth row and kth column from Σ. Similarly, s̃kk is the

kth diagonal element of S̃, s̃k is the vector of all off-diagonal elements of the kth column

of S̃, and S̃−kk is the matrix with the kth row and kth column of S̃ deleted. Therefore

we have:

p(σk, σkk|Σ−kk,Y,Ω,θ, τ , λ) ∝ (σkk − σTkΣ−1
−kkσk)

n
2

× exp

{
−1

2

[
σTkM−1

τ σk + 2s̃Tkσk + (s̃kk + λ)σkk
]}

,

(5)

where Mτ is the diagonal matrix with diagonal elements τk1, · · · , τk,k−1, τk,k+1, · · · , τkp.

Let β = σk and γ = σkk − σTkΣ−1
−kkσk. It can be shown that:

β|Σ−kk,Y,Ω,θ, τ , λ ∼ N(−
[
(s̃kk + λ)Σ−1

−kk + M−1
τ
]−1

s̃k,
[
(s̃kk + λ)Σ−1

−kk + M−1
τ
]−1

),

(6)

γ|Σ−kk,Y,Ω,θ, τ , λ ∼ Gamma(
n

2
+ 1,

s̃kk + λ

2
). (7)

After simulating observations from the above conditional distributions, we can obtain

σk = β, σTk = βT and σkk = γ + σTkΣ−1
−kkσk, then the last column and row of Σ are

updated at a time. At the end, Ψ = Σ−1 is computed.

The conditional distribution p(τ |Y,Ω,θ,Σ, λ) can be expressed as follows:

p(τ |Y,Ω,θ,Σ, λ) ∝ p(Σ|τ , λ)p(τ |λ)

∝
∏
i<j

τ
− 1

2
ij exp

{
−
σ2
ij + λ2τ 2ij

2τij

}
. (8)
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It can be shown that for i < j,

1

τij
|Y,Ω,θ,Σ, λ ∼ IG(

√
λ2

σ2
ij

, λ2), (9)

where IG(a, b) indicates the inverse-Gaussian distribution with mean a and shape param-

eter b.

Additionally, it can be shown that the conditional distribution p(λ|Y,Ω,θ,Σ, τ ) fol-

lows:

λ|Y,Ω,θ,Σ, τ ∼ Gamma(αλ0 +
p(p+ 1)

2
, βλ0 +

1

2

p∑
i=1

p∑
j=1

|σij|). (10)

Let ΛT
k be the kth row of Λ, Λ−k be submatrix of Λ with the kth row deleted, Yk be

the submatrix of Y only with the kth row, and Y−k be the submatrix of Y with the kth

row deleted. As Ψ is not diagonal, the conditional distribution of Λk can be expressed

as:

p(Λk|Y,Ω,Λ−k,µ,Φ,Ψ) ∝ p(Yk|Y−k,Λk,Λ−k,Ω,µ,Φ,Ψ)p(Λk), (11)

for k = 1, · · · , p. Without a loss of generality, we partition and rearrange the columns of

Ψ as follows:

Ψ =

(
Ψ−kk ψk

ψT
k ψkk

)
,

where ψkk is the kth diagonal element of Ψ, ψk = (ψk1, · · · , ψk,k−1, ψk,k+1, · · · , ψkp)T is

the vector of all off-diagonal elements of the kth column, and Ψ−kk is the (p−1)× (p−1)

matrix resulting from deleting the kth row and kth column from Ψ. It can be shown that:

Λk|Y,Ω,Λ−k,µ,Φ,Ψ ∼ N [(Ψ∗−1
k ΩΩT + H−1

0k )−1(Ψ∗−1
k ΩY∗T

k + H−1
0k Λ0k),

(Ψ∗−1
k ΩΩT + H−1

0k )−1], (12)

where Ψ∗
k = ψkk − ψT

kΨ−1
−kkψk and Y∗

k is the matrix with element y∗ik = yik − µk −

ψT
kΨ−1

−kk(y−ik −µ−k −Λ−kωi), y−ik is the vector of yi with the kth element deleted, and

µ−k is the vector of µ with the kth element deleted.
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The conditional distributions p(Ω|Y,µ,Λ,Φ,Ψ), p(Φ|Y,Ω,µ,Λ,Ψ), and p(µ|Y,Ω,Φ,Λ,Ψ)

are similar to those presented in Lee (2007):

ωi|Y,µ,Λ,Φ,Ψ ∼ N((Φ−1 + ΛTΨ−1Λ)−1ΛTΨ−1(yi − µ), (Φ−1 + ΛTΨ−1Λ)−1),

(13)

Φ|Y,Ω,µ,Λ,Ψ ∼ IW (ΩΩT + R−1
0 , n+ ρ0), (14)

µ|Y,Ω,Φ,Λ,Ψ ∼ N((H−1
µ0 + nΨ−1)−1(Ψ−1V + H−1

µ0µ0), (H
−1
µ0 + nΨ−1)−1), (15)

where IW (·, ·) denotes the inverse-Wishart distribution, and V =
∑n

i=1(yi −Λωi).

For i = 1, 2, · · · , n, let yi = (yi,mis,yi,obs), where yi,mis represents the missing data

while yi,obs represents the observed data. For a fully observed yi data point, yi,mis is

empty. Here, we require the additional notation due to the presence of missing data.

Let pi be the dimension of yi,mis, as Ψ is not diagonal, the conditional distribution

p(yi,mis|yi,obs,ωi,µ,Φ,Λ,Ψ) can be expressed as follows:

yi,mis|yi,obs,ωi,µ,Φ,Λ,Ψ ∼ N [(µi,mis + Λi,misωi + Ψmis,obsΨ
−1
obs(yi,obs − µi,obs −Λi,obsωi),

Ψmis −Ψmis,obsΨ
−1
obsΨobs,mis], (16)

where µi,mis is a pi×1 subvector of µ with elements corresponding to missing components,

Λi,mis is a pi × q submatrix of Λ with rows corresponding to missing components, and

Ψmis is a pi×pi submatrix of Ψ corresponding to the residual covariance matrix of missing

components. Similarly, µi,obs is a (p− pi)× 1 subvector of µ with elements corresponding

to observed components, Λi,obs is a (p−pi)×q submatrix of Λ with rows corresponding to

observed components, and Ψobs is a (p−pi)×(p−pi) submatrix of Ψ corresponding to the

residual covariance matrix of observed components. Moreover, Ψmis,obs is a pi × (p− pi)

submatrix of Ψ corresponding to the residual covariance matrix of missing and observed

components, and Ψobs,mis = ΨT
mis,obs.

The following table summarizes the related conditional distributions to simulate ob-
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servations of the unknown parameters of interest, the missing responses and the corre-

sponding R files:

Parameters Distribution R File

Ψ Normal, Gamma Gibbs PSX.R
Λ Normal Gibbs LY.R
Ω Normal Gibbs Omega.R
µ Normal Gibbs MU.R
Φ Inverse-Wishart Gibbs PHI.R

yi,mis Normal Gibbs MISY.R


