Implementing the Proposed Method With R

All the methods proposed in the present article have been implemented in R (R Devel-
opment Core Team, 2013). This appendix briefly discusses how to use those R codes to
analyze the emotion data. The input values that are included in this code may be changed
by the users according to their own data.

List of R files and their function:

main.R: Main program to run.

def_con.R: Define the sample size, number of observed variables, number of factors,

number of burn-in, number of MCMC samples for inference, etc.

def_rec.R: Allocation of computation variables.

Gibbs.R: Details of Gibbs sampler steps, including Gibbs_Omega.R, Gibbs_LY.R,

Gibbs_MU.R, Gibbs_PHI.R, Gibbs_PSX.R, Gibbs_ MISY.R and Postp.R, where

- Gibbs_Omega.R: Generate Q from p(Q|Y, u, A, &, ¥);

- Gibbs_LY.R: Generate A from p(A|Y,Q, u, ®, ¥);

- Gibbs_ MU.R: Generate p from p(p|Y,Q, &, A, ¥);

- Gibbs_PHI.R: Generate ® from p(®|Y,Q, u, A, ¥);

- Gibbs_PSX.R: Generate ¥ from p(2|Y,Q, u, A, ®,7,)\) and compute ¥ =
x-L

- Gibbs_MISY.R: Generate the missing response from its conditional distribu-

tions to deal with missing responses (if any).

Postp.R: Calculate the posterior predictive (PP) p-value.

Note: The derivation of the above-mentioned conditional distributions will be pre-

sented in the next section.



e ind.R: Define the position of fixed and unknown parameters in factor loading matrix.

e initl.R: Set initial values for the unknown parameters.

e Prior.R: Set hyperparameters of prior distribution.

e read_observed.R: Read the data to be analyzed.

e write_model fit.R: Write the posterior predictive p-value into a text file and save in

“Result\Est\PP.txt”.

e write result.R: Write the parameter estimates into separate text files and save in
“Result\Est\”. Write the standard error estimates into separate text files and save

in “Result\SE\”.

e HPD.R: Calculate the HPD intervals, write them into separate text files and save

in “Result\Est\”.

Once R has been downloaded and installed, the data can be analyzed step by step as
follows:

1. Put all the files of R codes and data (e.g. emotion.txt) in an appropriate directory
(e.g., E:\R code\) and set this directory in main.R by using setwd(“E:\R code\”). Some
packages are required to be installed into R: msm, MCMCpack, statmod, and psycho-
metric. If any of these packages doesn’t exist, it will be installed automatically by the
commands written in main.R.

2. Prepare the data file and replace the missing responses with NA. In read_observed.R,
change the name of the data file (e.g. emotion.txt).

3. In def_con.R, change the settings according to model and data. For example, in the

emotion data analysis, sample size was 175, number of items was 28, number of factors was



5. So we can set N«—175, NY<+-28, NZ<«-5. Similarly, we can set the numbers according
to the MCMC procedure, e.g., number of burn-in and so on.

4. In ind.R, set the position of fixed and unknown parameters according to model
specification and factor structure. IDY is a NY xNZ indicator matrix where 0 represents
the fixed parameters and 1 represents the unknown parameters needed to be estimated
in A.

5. In Prior.R, set values of hyperparameters according to prior input.

6. In init1.R, set initial values for the unknown parameters.

7. Run the file main.R.

9. All the results are saved in “Result\Est\” and “Result\SE\”. Names of parameter
estimates, standard error estimates and HPD intervals begin with Em, SE and HPD
respectively. Note: LY, MU, PHI and PSX present the unknown parameters in A, u, ®

and W respectively.
Derivation of Conditional Distributions

The specific prior distributions for inverse of the covariance matrix can be expressed as the
product of double exponential distributions for the off-diagonal elements and exponential
distributions for the diagonal elements:
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where DE(0;;|\) is the double exponential density function of the form 4 exp(—A|oy;|),
and EXP(UM%) is the exponential density function of the form %exp(—%aii)I(an- > 0)
where I(o;; > 0) is an indicator function of the event that o; > 0, and I(X > 0) is an
indicator function of the event that X is positive definite.

The double exponential distribution can be represented as a scale mixture of normals

(Hans, 2009; Park & Casella, 2008; Wang, 2012). Let o = (0;;)i<; be the vector of the



upper off-diagonal and diagonal elements of 3, and T = (7;;)i;<; be the vector of latent

scale parameters. The density for o given 7 and A is given by:
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where the normalizing term C'+ depends on 7. The following prior distribution is proposed
for T,
A2 A2
p(r[A) < Cr [ ] 5 exp(— 5. (3)
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Wang (2012) proved that p(o|r,\) and p(7|\) are proper priors, and the analytically
intractable terms Cr in Egs. 2 and 3 can be canceled out so that the marginal distribution
of the o;;’s follows Eq. 1. However, because of the positive definite constraint, the normal
distributions for the o0;;’s are dependent given the scale parameters 7;;. To solve this
problem, a data-augmented block Gibbs sampling scheme proposed by Wang (2012) is
considered for posterior computations under the hierarchical frameworks represented by
Eqgs. 2 and 3.

For the conditional distribution p(3|Y, Q, u, A, ®, 7, \), we describe the operational-
ization of the required Gibbs sampler under the Bayesian Lasso prior. To simplify nota-
tion, denote the vector that contains all unknown distinct parameters in u, A, and ® by
0.

The conditional distribution p(3|Y,€2,0, 7, \) can be decomposed as follows:
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where S = 327 (y; — 1 — Aw;)(yi — u — Aw;)”. Following Wang (2012), we consider
an efficient block Gibbs sampling to update ¥ one column at a time after appropriate

reparametrization.



Denote the running index for observed measurements by k. For k = 1,2,--- p,

partition and rearrange the columns of ¥ and S as follows:
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where oy, is the kth diagonal element of X, o, = (0%, , Ok k-1, Ok ki1, " »0kp) . is the
vector of all off-diagonal elements of the kth column, and ¥_j; is the (p — 1) x (p — 1)
matrix resulting from deleting the kth row and kth column from 3. Similarly, sgx is the
kth diagonal element of S, §, is the vector of all off-diagonal elements of the kth column
of S, and S_ is the matrix with the kth row and kth column of S deleted. Therefore

we have:
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where M+ is the diagonal matrix with diagonal elements 7p1, -+, Th k-1, Thkt1, " * 5 Thp-
Let B =0y and v = o3, — X"}, 0. It can be shown that:
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After simulating observations from the above conditional distributions, we can obtain
o, =0, ol = BT and o = v + o{E:}Ckak, then the last column and row of X are
updated at a time. At the end, ¥ = X! is computed.

The conditional distribution p(7|Y, €, 8,3, \) can be expressed as follows:
p(T[Y,Q,0,3,X) o< p(Z|7, A)p(T|A)
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It can be shown that for i < j,
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where 1G(a, b) indicates the inverse-Gaussian distribution with mean a and shape param-
eter b.
Additionally, it can be shown that the conditional distribution p(A|Y, 2, 8,3, 7) fol-

lows:

MY, Q,0,3 7 ~ Gamma(ay + p( ﬁ,\o Z Z |0i]). (10)
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Let A;‘g be the kth row of A, A_; be submatrix of A with the kth row deleted, Y, be
the submatrix of Y only with the kth row, and Y _j; be the submatrix of Y with the kth
row deleted. As W is not diagonal, the conditional distribution of A, can be expressed

as:.
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for k=1,---,p. Without a loss of generality, we partition and rearrange the columns of

W as follows:
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where 1y, is the kth diagonal element of W, 1, = (Vr1, -+, Yk k-1, Vkpi1,  » Ukp)’ 18

the vector of all off-diagonal elements of the kth column, and W_j is the (p—1) x (p—1)

matrix resulting from deleting the kth row and kth column from W. It can be shown that:
ALY, QA 4, p, @, % ~ N[(T7'QQ" +H,H) ' (P;7'QY;" + Hy,! Aok),
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where WUy = g — sz\Il:}gkz/;k and Y; is the matrix with element v}, = vir — px —

zb;‘f\I!:,lck(y_ik — p_p — A_yw;), y_i is the vector of y; with the kth element deleted, and

p_;, is the vector of pu with the kth element deleted.



The conditional distributions p(2|Y, u, A, ®, ¥), p(®|Y,Q, u, A, V), and p(pu|Y,Q, &, A, ¥)

are similar to those presented in Lee (2007):
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where IW (-, -) denotes the inverse-Wishart distribution, and V.= 3"  (y; — Aw;).

For i = 1,2,--- ,n, let y; = (Vimis, Yiobs), Where y; ;s represents the missing data
while y; o5 represents the observed data. For a fully observed y; data point, y;mis is
empty. Here, we require the additional notation due to the presence of missing data.
Let p; be the dimension of y;..is, as W is not diagonal, the conditional distribution

P(Vimis|Yiobs, Wi, b, ®, A, W) can be expressed as follows:

Yi,mis|Yi,ob57 Wi, W, ¢7 A7 v ~ N[(“@m@s + Ai,miswi + ‘I’mis,obS‘Ilo_b{e(yi,obs - ui,obs - Ai,obswi)y
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where p, ;¢ is a p; x 1 subvector of g with elements corresponding to missing components,
A mis 18 a p; X g submatrix of A with rows corresponding to missing components, and
W, .is 18 a p; X p; submatrix of ¥ corresponding to the residual covariance matrix of missing
components. Similarly, p; ,, is a (p — p;) X 1 subvector of p with elements corresponding
to observed components, A; 5 is a (p—p;) X ¢ submatrix of A with rows corresponding to
observed components, and W, is a (p—p;) X (p—p;) submatrix of ¥ corresponding to the
residual covariance matrix of observed components. Moreover, W,,;s o5 is & p; X (p — p;)

submatrix of ¥ corresponding to the residual covariance matrix of missing and observed

T

components, and ‘I’obs,mz’s = \Ilmis obs*

The following table summarizes the related conditional distributions to simulate ob-



servations of the unknown parameters of interest, the missing responses and the corre-

sponding R files:

Parameters Distribution R File
v Normal, Gamma Gibbs_ PSX.R
A Normal Gibbs_LY.R
Q Normal Gibbs_Omega.R
m Normal Gibbs_MU.R
P Inverse-Wishart Gibbs_PHI.R

Yimis Normal Gibbs_MISY.R




