Resminostat induces changes in epithelial plasticity of hepatocellular carcinoma cells and sensitizes them to sorafenibinduced apoptosis

SUPPLEMENTARY MATERIALS

Characteristics of human HCC cell lines used in the study

Cell line	Tumor type	Morphology	Differentiation grade	TP53 status	HBV	Other characteristics
Нер3В	Human negroid hepatocarcinoma	Epithelial	Well differentiated	Deleted	Integrated	Deficient in functional RB1; mutations within FAS
HLE	Human hepatoma (non differentiated)	Diffusely spreading cells	Poorly differentiated	Mutated G244A R249S V272M	Negative	-
HLF	Human liver hepatocarcinoma	Diffusely spreading cells	Poorly differentiated	Mutated p.G244A	Negative	-

Immunofluorescence studies in 2d

For F-actin, cells were fixed with 4% paraformaldehyde (PFA) in PBS for 30 min at room temperature, incubated with a blocking solution (1% BSA, 10% FBS) before addition of the primary antibody (1:500 dilution, 1 h, room temperature). For VIMENTIN, E-CADHERIN and ZO-1, cells were fixed with methanol (100%; -20°C, 2 min), incubated with blocking solution and cultivated with primary antibodies diluted in 1% BSA (1:50 dilution, 1 h, room temperature). After primary antibody incubation, cells were washed several times with PBS, incubated with Alexa Fluor 488-conjugated antirabbit or Alexa Fluor 488-conjugated anti-mouse (1:1000 dilution, 1 h, room temperature) and mounted with Vectashield mounting medium. Cells were visualized with a Nikon eclipse 80i microscope. Representative images were taken with a Nikon DS-Ri1 digital camera and edited in Adobe Photoshop.

Immunofluorescence in cells cultured on thick layers of collagen i

Cells were fixed during 15 min at room temperature by adding 50 μ L of PFA 12% to cells seeded on 100 μ L of matrix (final concentration of PFA is 4% considering collagen matrix volume) and washed 3 times with PBS during 5 minutes. Afterwards, cells were permeabilized during 10 min using a solution containing 0.2% Triton X-100 in PBS-BSA 5% and washed again 3 times with PBS during 5 min. Next, samples were blocked in a PBS-BSA 5% solution during 20 min. For F-actin cells were stained during 1 h at room temperature with Alexa Fluor 546-phalloidin probe diluted 1:500 in blocking solution, and washed again 5 times with PBS during 5 min. During the second last wash nuclei were stained with a DAPI solution 1:200.

Western blot analysis

Total protein extracts were obtained using a lysis buffer containing 30 mM Tris–HCl pH 7.5, 5 mM EDTA, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS and 10% glycerol (1 h at 4°C; centrifugation at 13,000 rpm, 10 min, 4°C). Protein concentration was measured with the BCA Protein Assay kit (Pierce). β -ACTIN is shown as a loading control. Antibodies were used at a 1:1000 dilution, except for β -ACTIN (1:3000). Images were processed with Adobe Photoshop CS5.

List of primers

Real-time quantitative PCR reactions were performed using the following human specific primers designed by Integrated DNA Technologies (IDT):

		L32	Forward:
5,	٨	ACCTCAACCACCTCCAAC 22	

J-AACUICAAUUA	10C100AA0-5
Reverse: 5'-GG	GTTGGTGACTCTGATGG-3'
CDH1	Forward
5'-CCCAATACATC	TCCCTTCACAG-3'

Primary antibody	Secondary antibody	Company	Reference code	Application
E-CADHERIN	Anti-mouse	BD Biosciences	BD-610182	IF, WB
VIMENTIN	Anti-mouse	Sigma-Aldrich	V6630	IF, WB
ZO-1	Anti-rabbit	Invitrogen	61-7300	IF
F-ACTIN	TRITC-conjugated	Sigma-Aldrich	P1951	IF
β-ΑCΤΙΝ	Anti-mouse	Sigma-Aldrich	A5441	WB
PARP	Anti-rabbit	Cell Signaling	9542	WB
phospho-p42/44 MAPK	Anti-rabbit	Cell Signaling	9101	WB
Secondary antibody	Company	Reference code	Application	
Alexa 488 goat anti mouse	Life Technologies	A11001	IF	
Alexa 488 goat anti rabbit	Life Technologies	A11008	IF	
Anti-mouse	GE Healthcare	NA931V	WB	
Anti-rabbit	GE Healthcare	NA934V	WB	

List of antibodies used in the study

IF: Immunofluorescence; WB: Western Blot;

Reverse 5'-CC	CACCTCTAAGGCCATCT	TTG-3'
VIM Forward:	5'- GGAAGCCTAACTAC	AGCGAG
-3'		
Reverse: 5'- C	AGAGTCCCAGATGAGC	ATTG -3'
SNAI1		Forward:
5'-GCTGCAGGAC	TCTAATCCAGAGTT-3'	
Reverse:		
5'-GACAGAGTCC	CAGATGAGCATTG-3'	
SNAI2	Forward:	5'-
ACACATTAGAAC	TCACACGGG -3'	
Reverse: 5'- T	GGAGAAGGTTTTGGAG	GCAG -3'
ZEB1		Forward:
5'-ACCCTTGAAA	GTGATCCAGC-3'	
Reverse: 5'-C.	ATTCCATTTTCTGTCTTC	CCGC-3'

TWIST1	Forward:
5'-CTCAGCTACGCCTTC	ГСG-3′
Reverse: 5'-ACTGTC	CATTTTCTCCTTCTCTG-3'
EPCAM	Forward: 5'-
CAATGCAGGGTCTAAAA	AGCTG -3'
Reverse: 5'-CACCCA	TCTCCTTTATCTCAGC-3'
CD133	Forward:
5'-GTGGATGCAGAACTT	'GACAAC-3'
Reverse: 5'-ACCCTT	TTGATACCTGCTACG-3'
CD 44	Forward:
5'-TGGGTGTGTCCTTCG	CTCGC-3'
Reverse: 5'-GCGGAC	CCGAACCTGGCAGAG-3'
CD90	Forward:
5'-GAGATCCCAGAACCA	ATGAACC-3'
Reverse: 5'-TGCTGG	TATTCTCATGGCG-3'

Supplementary Figure 1: Resminostat induces cell death in HCC cells. Hep3B (A), HLE (B) and HLF (C) were treated with resminostat (0-5 μ M) for 72 h. Representative images of flow cytometry analysis of non-viable (PI-positive-red), viable cells (PI-negative-blue) and phase contrast microscopy images are shown.

A. Hep3B

B. HLE

Supplementary Figure 2: Resminostat induces apoptosis in HCC cells. Hep3B (A), HLE (B) and HLF (C) were treated with resminostat (0-2.5 µM) for 72 h. Representative plots of cell cycle analysis are shown.

Supplementary Figure 3: Determination of IC50 of resminostat in combination with sorafenib (5 μ M). Hep3B, HLE and HLF cells were treated with sorafenib (5 μ M) and resminostat in a range of concentrations (0-10 μ M). Viable cells were analyzed by crystal violet staining after 72 h of respective treatments and normalized to control. Mean ±SD (n=3).

Supplementary Figure 4: Sorafenib displays cytotoxic effect only in the epithelial Hep3B cells. Hep3B, HLE and HLF cells were treated with sorafenib in a range of concentrations (0-10 μ M). Viable cells were analyzed by crystal violet staining after 24, 48 and 72 h of respective treatments and are represented as viable cells versus time 0. Mean ±SD (n=3).

Supplementary Figure 5: Effect of combined treatment of resminostat and sorafenib. Hep3B, HLE and HLF cells were treated with resminostat (0 μ M), resminostat (1 μ M), sorafenib (5 μ M) or a combination of resminostat (1 μ M) and sorafenib (5 μ M) for 72 h. The % of non-viable cells (PI-positive) was determined by flow cytometry. Representative plots are shown.

Supplementary Figure 6: The effect of resminostat and sorafenib treatment on pERKs and HDAC activity. HLF cells were treated with resminostat (0 μ M), resminostat (1 μ M), sorafenib (5 μ M) or a combination of resminostat (1 μ M) and sorafenib (5 μ M). **(A)** Western blot analysis of pERKs in HLF cells after 20 h and 48 h or respective treatments. β -actin was used as a loading control. Densitometry analysis is shown below respective bands and is normalized to β -actin. **(B)** HDAC activity was detected by a commercial kit after 24 h of respective treatments and is represented as Fluorescence intensity (F355/F460) over time (min). A representative experiment is shown (n=3).

Supplementary Figure 7: Response of a human liver cell line CCL-13 (Chang liver, CHL) to resminostat, sorafenib or the combination of both drugs. CHL cells were treated with resminostat (1 μ M), sorafenib (5 μ M) or a combination of resminostat (1 μ M) and sorafenib (5 μ M) at respective times. Viable cells were analyzed by crystal violet staining and normalized to control. Mean ±SD (n=3).

Supplementary Figure 8: Resminostat treatment decreases the invasive growth ability in HLF cells. HLF cells were treated with resminostat (1 μ M) for 72 h. The methodological approach for invasive growth assay is shown (A). Representative phase contrast images at respective time points are shown at magnification 4x (B).