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Supplement Figure I: Knockdown of NEP decreases SM-proteins and mRNA in
PASMCs. Panel A and C show the effect of rNEP on levels of SM-proteins in NEP-/-
PASMCs and Panel B and D show effect of NEP inhibitor, phosphoramidon (10uM)).
Levels of mRNA for SM-genes (a-actin, myosin, and calponin) were assessed by semi
quantitative RT-PCR shown in Panel E, and average levels from 6 different isolates is
shown in Panel F. Gapdh was used as loading control. (*) represents p< 0.05 for
comparison between NEP+/+ and NEP -/- PASMC or treated versus untreated.
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Supplement Figure |I: Increase in NM-myosin in NEP-/- PASMCs. To further characterize the
phenotype of NEP-/- PASMCs we probed cell lysates from NEP+/+ and -/- PASMCs with
antibodies to SM-myosin, NM-myosin and CRBP; see Panel A. Panel B shows average levels
from 6 different isolates normalized to Gapdh. Panel C shows representative light microscopy
images (taken at 4x magnification using a Nikon microscope) for NEP+/+, NEP-/-, and NEP-/-
treated with NEP-lentivirus PASMCs. (*) represents p< 0.05 for comparison between NEP+/+ and
NEP -/- PASMC.
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Supplement Figure lll: ShRNA to Rac and RhoA inhibit phosphorylation of Cofilin and Mlc.

NEP+/+ and -/- PASMCs were treated with control shRNA, or shRNA to Rac or Rho, and
selected with puromycin and treated with serum 0.2% and PDGF (10ng/ml). Panel A shows
the effect of shRNAs on phospho and total cofilin and Mic levels in NEP+/+ PASMCs and
Panel B the average effects on p-cofilin and p-Mic levels from 3 different infections. Panels C
and D show effects on NEP-/- PASMCs. (*) represents p< 0.05 for comparison between control
and shRNA treated for NEP+/+ and NEP -/- PASMCs. (C=con, S=serum, P=PDGF).
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Supplement Figure 1V: ShRNA to Rac, and RhoA, restores SM-protein expression NEP-/-
PASMCs. NEP-/- PASMCs were infected with control sShRNA or shRNA to Rac or Rho and
selected with puromycin. Cells were treated with serum (0.2%) or PDGF(10ng/ml) for 24h and
lysates were analyzed for SM-proteins. Panel A shows effect of Rac shRNA and Panel B effect of
Rho shRNA on SM-proteins levels from 3 different isolates (C=con, S=serum, P=PDGF).
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Supplement Figure V: Effect of shRNA to Rac and RhoA on SM-proteins and transcription

factors in NEP+/+ PASMCs. NEP+/+ PASMCs treated with control ShRNA, or shRNA to Rac
Rho, and selected with puromycin. PASMCs were treated with serum or PDGF for 24h and
lysates analyzed for SM-proteins and transcription factors. Panel A shows the effect of
shRNAs on SM-proteins in NEP+/+ PASMCs treated with serum and PDGF. Graphical
representation of the average effects of the shRNAs from 3 different infections on SM-
proteins is shown in Panel B. (*) represents p< 0.05 for comparisons between control and

shRNA treatment.
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Supplement Figure VI: Rho kinase (Rock) inhibitor Y27362, attenuates migration in NEP+/+
and -/-PASMCs. NEP+/+ and -/- PASMCs were treated with the Rock inhibitor Y27362
(10uM). Migration,proliferation and cell numbers were measured in cells treated with serum
(0.2%) or PDGF(10ng/ml) for 24h. Panel A shows effect of ShRNA on migration and Panel B
on proliferation and Panel C on cell numbers. NEP+/+ and -/- PASMCs from 3 different
isolates. (*) represents p< 0.05 for comparison between control and treated PASMC.
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Supplement Figure VII: Effect of ShRNA to Rac and RhoA on migration. proliferation and

transcription factor levels in NEP +/+ PASMCs. NEP+/+ PASMCs were infected with either

control shRNA or shRNA to Rac or Rho and selected with puromycin. Migration and
proliferation are measured in cells treated with serum (0.2%) or PDGF(10ng/ml) for 24h. Panel
A shows effect of ShRNA on migration and Panel B on proliferation of NEP+/+ PASMCs from
3 different isolates. Panel C shows effect of the shRNA on levels of Srf, p-Elk-1 and KIf4 in
NEP+/+ PASMCs and Panel D graphical representation levels from 3 different isolates
NORMALIZED TO Gapdh. (*) represents p< 0.05 for comparison between control and treated

PASMC.
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Supplement Figure VIII: Treatment of NEP-/- PASMCs with the NEP substrate, ET-1, and
PDGF enhances the null phenotype. NEP-/- PASMCs were treated with PDGF (10 ng/ml) in the
absence or presence of ET-1(100 nM) for 24h and GTP bound Rac and Rho levels are shown
in Panel A. Graphical representation of average levels from 6 paired isolates is shown in Panel
B. A time course with the agonists (0.75, 1.5, 3, and 6h) was analyzed for levels of phospho and
total cofilin and Mlc shown in Panels C and D. Levels of SM-proteins are shown in Panel E and
F. * p< 0.05 for comparisons between control and treated (n=3).
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Supplement Figure IX _An ETRA antagonist, Ambrisentan reduces p-Erk, p-Elk-1 and Klf4

levels in NEP-/- PASMCs. NEP -/- PASMCs were treated with serum 0.2% in the presence
or absence of Ambrisentan (1uM). Levels of p-Erk, p-Elk-1, and KIf4 were assessed by
Western blotting. Panel A shows the Western blot, and Panel B shows fold change after
Ambrisentan treatment from 3 different isolates normalized to Gapdh. (*) represents p< 0.05
for comparison between control and inhibitor treated cells.
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Supplement Figure X: Decreased levels of RhoGDI PSeri74 and p190 RhoGAP PY1105 jn NEP-/-

PASMCs. NEP+/+ and -/- PASMCs were infected with either control shRNA or shRNA to Rac or
Rho and selected with puromycin. PASMCs were treated with PDGF (10 ng/ml) in the presence or
absence ET-1(100 nM) for 6h and lysates probed with antibodies to phospho and total RhoGDI and
p190 RhoGap.. (C=con, E=ET1, P=PDGF). Panels A and B show representative Western blots for
the effect of Rac and Rho shRNA in NEP+/+ and Panels C and D in NEP-/- PASMCs. Panel E and
F show fold change compared to control after shRNA treatment from 3 different isolates normalized
to Gapdh. (*) represents p< 0.05 for comparison between control and shRNA treated cells.
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Supplement Figure XI: Increased activation of Rho GTPases and downstream effectors in lungs
obtained from NEP-/- mice and Copd patients with FEV1 <50%. Lung lysates from NEP +/+ and -
/- mice, and from Copd patients with FEV1 >80%, and <50% were probed for levels of Rac Rho,
phospho and total -Cofilin and —Mlc. Panel A, shows levels by Western blot in NEP+/+ and -/-
mice treated with fasudil and average expression from 6 different paired isolates is shown in
Panel B. Panel C shows levels in samples from Copd lungs with FEV1 >80% and < 50% .
Average levels from 6 differentisolates normalized to Gapdh is shown in Panel D. (*)represents
p< 0.05 for comparison between NEP+/+ to -/- mouse lung and Copd lung with FEV1<50%
compared to FEV< 80%.
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Supplement Figure XII: Increased RhoGDI P™" and p190RhoGAP PSér [evels in NEP-/- lungs
and human Copd lungs . Lysates were prepared from lungs of NEP+/+ and -/- mice and human
Copd with FEV1 >80% and FEV1< 50%. Lysates were immunoprecipitated with antibodies to
RhoGDI and p190RhoGAP separated on SDS-PAGE and transferred to nitrocellulose, and
probed with antibodies to Pan p-Tyr and, p-Ser and total RhoGDI and p190RhoGAP. Panel A
shows representative Western blot from 3 different isolates of NEP+/+ and -/- mouse lungs.
Panel B show results from Copd lungs.




Supplement Figure XIlI

Mouse Lung

A B
kDa NEP+/+ NEP-/-

- TR BREERE R oD 2.5  ONEP+/+

ONEP+/+ + Fas
ENEP-/-
2.0 41 mNEP-/- + Fas

- B e s SmEEEe hoco

=
3
R

190-.‘ e Er Bew p190RhOGAPY1105

Ly
o
H

IET "  e— g S —— T

o
3]

37= ...--. ey awew e

Fold change compared to NEP+/+

o
o

Control Fasudil Control Fasudil RhoGD]ser164 p190Rh0GAPY1105

Human lung with Copd

C FEV1>80% FEV1<50% b

26_”’ - - RhoGDISer164

15 OFEV1>80%
mFEV1<50%

o] s

26- . - S W RNOGDI

X

o

©

N

-

>

L

L

e

3
100- 1R R AR e - p190Rh0GAPY1105 S * -

g

o 05

o 0.
100~ WEEE g — " p190RhoGAP =

g

(8]
a7- A S -G ) S 00

L .

RhoGDISerie4 p190RhOGAPY1105

Supplement Figure XIllI: Decreased Serine phosphorylation of RhoGDI and tyrosine
phosphorylation of p190 RhoGAP in lungs from NEP-/- mice and humans with copd (FEV1<50%) .
NEP+/+ and -/- mice were treated with fasudil 50mg/Kg) for 7d. Lung lysates from NEP+/+ and -/-
mice and from humans with copd were probed for phospho and total RhoGDI and p190 RhoGAP.
Panels A and B show representative Western blot and average fold change in NEP-/- mice
compared to NEP+/+. Panel E and F show fold change in human Copd with FEV1<50%
compared to FEV1>80% from 6 different isolates normalized to Gapdh.. (*)represents p< 0.05 for
comparison between NEP+/+ to -/- mice and Copd with FEV1<50% compared to FEV< 80% (#)
for comparisons between control and fasudil treatment.




