
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure I: A: [a] CAD (computer aided design) image of the final chamber design 
depicting the step barrier midway in the chamber and fluid inlet/outlet on each side. [b] 
Computational fluid dynamics (CFD) simulation showing the streamlines of a recirculation region 
following a step barrier and unidirectional laminar flow before and after the step. [c] Streamlines 
(green) and velocity vectors (red) depicting the recirculating, disturbed flow patterns after the step 
barrier. [d] The trajectories of fluorescent microbeads under flow after the step (left) compared to the 
laminar region. B: Recirculation length after the step barrier as a function of varying step height. C: 
Endothelial alignment measurements in HAECs in LF (left) and DF conditions.  20-40 cells per 
condition, n=3 independent experiments. Inset shows representative images of the characteristic 
endothelial morphology of HAECs under LF (left) and DF.    
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Supplemental Figure II: A: Representative rhodamine images of cells without DiI-oxLDL (left) and 
with DiI-oxLDL (right). B: OxLDL specific fluorescence as a function of the addition of increasing 
amounts of unlabeled oxLDL.  C: Representative images visually show that an acid wash removes 
the undesired bound DiI-oxLDL particles still attached to the fixed ECs. D and E: OxLDL (D) and 
LDL (E) specific fluorescent signal as a function of increasing amounts of DiI-oxLDL and DiI-LDL, 
respectively.  Representative images are shown on the left.   * p<0.05; #p<0.05 with 1000 ng/mL 
DiI-oxLDL and DiI-LDL, respectively. 
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Supplemental Figure III:  A: Histograms showing the elastic modulus values of HAECs exposed to 
varying concentrations of oxLDL for 48 hours.  B: Average elastic modulus of HAECs treated with 0, 

0.01, 0.1 or 10 g/mL oxLDL.  * p<0.05  
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Supplemental Figure IV:  A: Histograms depicting the elastic modulus of HAECs grown on 
fibronectin- (FN, top) and collagen-coated (CL, bottom) PDMS microfluidic devices following 48 hours 
of LF (left) and DF (right) (20-30 cells per condition, 4 independent experiments).  B: Average elastic 
modulus of ECs from the above described conditions. * p<0.05. 
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Supplemental Figure V: A: Representative western blot and average CD36 protein expression in 

CHO cells that do not express detectable amount of CD36 and CHO cells over-expressed with 

human CD36 construct (n=4).  B, C and D: Average CD36 mRNA (n=3) (B) and protein 

expression (n=4) (C) in HAECs compared to HMVECs with representative full western blot gel with 

markers (D).  *p<0.05 
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Supplemental Figure VI: Lox1 protein expression in HAECs exposed to 48 hours of athero-

protective and pro-atherogenic flow as well as static conditions (n=5). 
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Supplemental Figure VII: A: CD36 mRNA expression (left) and CD36 protein expression (middle, 

right) for scrambled and two different CD36-targetting siRNAs. B: Lox1 mRNA expression (left) and 

Lox1 protein expression (middle, right) for scrambled and two different Lox1-targetting siRNAs.              

* p<0.05. 
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Supplemental Figure VIII: A: Representative images of DiI-oxLDL uptake into HAECs transfected with 

control (top) or Lox1-targetting siRNAs (middle, bottom) exposed to LF (left) and DF (right). B: Average 

oxLDL uptake into HAECs transfected with scrambled control or two different Lox1-targetted siRNAs 

under LF and DF conditions. 20-40 cells per condition per experiment, n=4 independent experiments 

(p<0.05). 
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Supplemental Figure IX: A: Representative histology sections of descending aortic (DA) from WT 
(top) and CD36 KO (bottom) mice stained for CD36.  B: Average CD36 expression in aortic sections 
from WT and CD36 KO mice (n=4, 15-20 sections per condition). * p<0.05.  

 

CD36 

CD36 KO 

DA 

  WT DA          

A. 

C
D

3
6
 E

x
p
re

s
s
io

n
  

0

0.5

1

1.5

WT KO

* 

WT       CD36 KO  

B. 


