
Supplementary Note

Evaluation of orthogonal enzyme-substrate pairs
Previously, we evaluated the orthogonality of a set of two enzyme-substrate pairs using the following equa-
tion (Jones et al., J. Am. Chem. Soc. 139, 2351-2358 (2017)):
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Where EAS1 is the signal produced when enzyme A receives substrate 1, EAS2 is the signal produced with
substrate 2 and enzyme A, etc. Though functional for pairs of enzymes and substrates, this equation does
not allow searches for sets of greater than two. Thus, we sought a new way to quantify orthogonality that
could utilize any number of enzyme-substrate pairs.

For rapid iteration and data sorting, it is important to represent each set of enzyme-substrate pairs as a
scalar value. Such an operation can be completed using basic linear algebra. For the sake of this example,
a set of three enzymes and three substrates will be used:

E1, E2, E3 and S1, S2, S3

Consider that the reactivity of each substrate in each enzyme, r, can be represented in matrix form

M =


S1 S2 S3

E1 r11 r12 r13
E2 r21 r22 r23
E3 r31 r32 r33

 (2)

with enzymes arrayed into rows and substrates arrayed into columns. In this form, the ideal orthogonal
case could be represented by the identity matrix. Mideal shows three substrate-enzyme pairs where each
substrate gives signal in only one enzyme.

Mideal =


S1 S2 S3

E1 1 0 0
E2 0 1 0
E3 0 0 1

 (3)

Comparison of this ideal case to a matrix of experimental data via evaluation of the RMSD (root-mean-
square displacement) will yield a scalar value that can be used to rank enzyme-substrate pairings: the
lower the RMSD, the better the pairing.√

〈(Mexp −Mideal)2〉 = ORMSD (4)

In order to compare the ideal case to an experimental case, we must normalize and symmetrize the exper-
imental matrix. Column-wise normalization is carried out to ensure that each column vector is the same
length. This is done by dividing each vector component by the total vector length (determined via the
Pythagorean Theorem), thus producing a set of unit vectors:

~S1 =


S1

E1 r11
E2 r21
E3 r31

 Ŝ1 =
~S1

|S1|

Where |S1| is the length of ~S1, and Ŝ1 is the unit vector of ~S1. When this process is repeated for ~S2 and ~S3,
the matrix can then be symmetrized via the equation:

M ·MT = Msym (5)



Where ‘·’ denotes the matrix dot product, M̂ is the fully normalized matrix, and M̂T is the matrix transform.
Finally, as indicated in equation 4, the orthogonality of the set of vectors can be evaluated via comparison
to the ideal case via RMSD. √

〈(Msym −Mideal)2〉 = ORMSD

For simpler readability, RMSD can be converted to a positive orthogonality value representing the geometric
mean of the resolution of each substrate by each compound. This is calculated from comparison of the
experimental RMSD, ORMSD and the worst possible RMSD (where Msym is filled with ones), Oworst via a
simple quotient.

Mworst =


S1 S2 S3

E1 1 1 1
E2 1 1 1
E3 1 1 1

 O = 2 ∗ Oworst

ORMSD
(6)


