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Supporting methods: High resolution experiments with a new type of bilayer array and amplifier 
 
For the test of the reliability of the analysis by extended beta distributions, a new low-noise set-up was 

employed. A Meca-4 bilayer array with 50 µm apertures (Nanion Technologies GmbH, Munich, 

Germany) was connected to a VC100 low-noise, high bandwidth patch-clamp amplifier (Chimera 

Instruments, LLC, New York, NY, USA). Overload of the first stage was prevented by limiting the 

bandwidth to 20 kHz and enhancing it again by a subsequent boost filter up to 1 MHz. Signals were 

then passed through an antialiasing filter at 1 MHz and digitized at a fixed sampling frequency of 4 

MHz. For the experiments here, they were filtered again using a digital 10-kHz 4-pole Bessel filter and 

sampled at 1 MHz. The resulting high noise related to the first 1 MHz filter leads to an increase of the 

quantization error of the 16-bit AD converter when it exceeds the signal. However, averaging by the 

subsequent 10-kHz filter reduces the “quantization noise” in the same way as the set-up noise  (1, 2)  

After channel incorporation, current measurements were performed at indicated membrane 

voltages. Measurements were done in the presence of 1 M KCl and 10 mM HEPES, pH 7.4, at room 

temperature.  

 
 
 
Supplementary note 1: The improvements of the extended beta distribution fit over the classical 

beta distribution fit 

 

The first application of beta distributions for fitting amplitude histograms of single-channel current (3, 

4) opened the access to hidden fast gating events in ion channel research. It helped to overcome the 

problem that the inevitable baseline noise of the set-up requires a cut-off frequency of the low-pass 

filter, which often is too low for revealing the open-closed transitions of fast gating. Gating events with 

rate constants faster than the filter’s cut-off frequency are smoothed out. Thus, the transitions can no 

longer be detected by level detectors. However, these transitions still lead to so-called excess noise (5, 

6), which broadens the peaks in the amplitude histogram as compared to that one resulting from the 

baseline noise. A test with simulated data of how far this approach can look beyond the filter frequency 

was provided by Schroeder and Hansen (7). 

The early investigations used an analytical expression for the calculation of the amplitude 

histogram resulting from hidden fast gating. However, this approach was restricted to Markov models 

with only two states (open and closed) and to low-pass filters of first order. However, in real 



experiments, low-pass Bessel filters of 4th or 8th order are used and most ion channels have more than 

just two kinetic states. Yellen (4) employed an empiric correction factor to account for higher-order 

filters, which never worked in our investigations. Riessner (8) showed that the set of differential 

equations describing multi-state Markov model has no analytical solution and can be solved only by 

numerical methods. Even worse, also the constraints have to be implemented by an iterative 

procedure. Probably, these complications were the origin of the decay of the usage of beta 

distributions analysis after a blossom for some years. 

In the meantime, the increase in computer power has enabled the calculation of theoretical 

amplitude histograms by simulated time series  (6, 9, 10). The approach starts from a Markov model 

of gating like that one in Fig. 2A with an arbitrary set of rate constants and an assumption of the often 

unknown true open-channel current Itrue. Two random number generators are employed. The first one 

determines the sink state with the relative probabilities weighted by the rate constants. The second 

random generator determines the point in time of the jump, again weighted by the rate constants. 

Since the dwell-times in some states can be much shorter than the sampling frequency, the time of 

the jumps is given in continuous time. At each jump, a step response of the actual low-pass filter is 

induced. The resulting time series is created from the sum of these step responses. This sum is 

calculated at the sampling points of the experiments. This provides a time series, which is sampled at 

the same times as the measured current trace. When adding the responses, the memory is limited. 

Preceding jumps are ignored when the sum of their responses has decayed below one bit. For the step 

responses, a theoretical response of the low-pass filter (as done in most cases) or a measured response 

can be used. We have verified that the response of our 4-pole Bessel filter exactly matches the 

measured one. 

From the simulated, at this point still noise-free, time series, the amplitude histogram is 

generated. The baseline noise is introduced by a convolution of the amplitude histogram of the 

simulated time series with that one of the baseline noise. This can be a theoretical amplitude histogram 

(obtained from the width of the recorded baseline noise) or from a measured amplitude histogram. 

(In either case, sufficiently long sojourns in a closed state are required). The width of the baseline noise 

can also be readjusted during the fitting routine to give a good fit of the peak related to the closed 

state. That slope of the closed peak, which is on the side adverse to the open peak, is less distorted by 

transitions into the open state.   

Of course, the amplitude histogram resulting from the first simulation run with a suggested 

set of parameters does not match the measured one. Then, the rate constants and Itrue are readjusted 

in repetitive runs under the guidance of a simplex search algorithm (11) until a good fit of the 

theoretical amplitude histogram to the measured one is obtained.  

Applying this method has enabled the study of ion/protein interaction and µs gating in BK 

channels (12, 13) or in viral Kcv channels (14) and the distinctions between the contributions of Ca2+ 

and of ion depletion to the negative slope conductance in BK at positive potentials (15). Even the 

analysis of a fast block with three conducting pores in OmpF became possible (16).  

 

 

  



Supplementary note 2: Relationship between individual gating processes and characteristics of the 

amplitude histogram 

 

As tested by simulated current recordings (17), the minimal number of states needed to fit an 

amplitude histogram (here, one open and three closed states, Fig. 2A) becomes obvious from the 

following characteristics in Fig. S1.  

1.) In Fig. S1, the open peak is broader than the closed peak. This indicates a fast gating process, 

which starts from O with very short sojourns in a closed state called F (fast). In the current 

traces, this fast gating process causes a broadening of the apparent open level as compared to 

the closed level (Fig. S1A). In Fig. S1B, its influence has been removed by increasing kFO and kOF 

by a factor of 30, pushing them beyond the detection limit of the analysis. 

2.) The slope between the open peak and the closed peak in Fig. S1 indicates a gating process 

slower than the O-F gating, but still beyond the cut-off frequency of the low-pass filter. This 

gating process (O–M “medium”) causes the bursts and spikes seen in the current traces in Fig. 

1C. Decreasing kOM and kMO individually by a factor of 2 indicates the strong correlation with 

the parallel shift and the steepness of the slope between the closed peak and the open peak, 

respectively, in Fig. S1C.  

3.) State S (slow) accounts for the long sojourns in the closed state in Fig. 1C. The gating related 

to the O-S transitions determines the height of the valley between the closed peak and the 

open peak in Fig. S1 and the relative heights of these peaks. Decreasing kSO and kOS by a factor 

of 30 in Fig. S1B reveals its influence. Nevertheless, it is not recommended to evaluate slow 

gating by means of beta distributions as the analysis cannot distinguish between several slow 

gating processes. They have to be analyzed by dwell time distributions (18) or direct fit of the 

time series (19).  

  



 

 
Fig. S1. Mutual independence of the influence of individual gating processes on an amplitude histogram (black) 

obtained from a current trace of KcvNTS measured in 1.5 M symmetrical KCl at -80 mV. (A) The orange line 

represents the best fit with the star-shaped model in Fig. 2A: Itrue = 18.6 pA,  kFO = 373, kOF = 92, kMO = 17, kOM = 

1.9, kSO = 0.236, kOS = 0.014. All rate constants in ms-1. (B) Influence of the O-S and O-F gating processes, 

demonstrated by changing parameters from the set in without subsequent fitting (A): Blue curve: O-F gating has 

been removed from the fit in (A) by multiplying kFO and kOF by a factor of 30, pushing them beyond the detection 

limit. Green curve: O-S gating has been removed by multiplying kOS and kSO by a factor of 0.03. (C) Influence of 

kOM and kMO: Blue curve: Parallel shift of the slope between the open and the closed peak by multiplying kOM by 

a factor of 0.5. Green curve: decreasing the steepness of the slope by multiplying kMO by a factor of 0.5 without 

subsequent fitting. (D) Eliminating state S of Fig. 2A. Amplitude histogram obtained with the rate constants of 

(A), but with kOS and kSO being omitted, without subsequent fit. (E) Result of a fit starting from the rate constants 

in (D), i.e. those of (A) with state S omitted. The results are Itrue = 15 pA, k*OS =13.84, k*SO  =273.8, k*OM =2174, 

k*MO = 20400. (F) Result of a fit starting from the rate constants in (A) with state F omitted. The results are Itrue = 

15 pA, k*OS =13.87, k*SO  =273.6, k*OM =2137, k*MO = 20060. The lower value of Itrue in (E) and (F) is caused by the 

exclusion of the F-O gating. All rate constants in s-1. The asterisk means “rate constant numerically close to the 

corresponding one of the 3-state model”.  

  

Figures S1B and S1C illustrate that three closed states are required to model the amplitude histogram 

resulting from gating in Kcv and that the different gating modes are related to distinct regions of the 

amplitude histogram. Figures S1 D to F provide an alternative approach showing the necessity of three 

closed states in the model of Fig. 2A. This is done by reducing the number of closed states from three 

to two. In Fig. 1D, state S is taken out. This results in a complete absence of the C-peak. However, it 

could be argued that the remaining two gating mechanisms may take over the function of state S by 

an appropriate adjustment of their rate constants. Starting the fit from the rate constants of Fig. S1D 

leads to the fit in Fig. S1E. One of the two gating process takes care of the O-S gating in order to restore 

the C-peak. The remaining gating process is not capable of modeling both, the broadness of the O-



peak (resulting from O-F gating) and the slope between the C- and O-peak (resulting from O-M gating). 

Here, the fit algorithms takes the O-M gating more serious. In Fig. S1F, the F-state is omitted. The fit 

starts from the rate constants of Fig. S1A without kOF and kFO. The fit ends with up with rate constants 

nearly identical to those in Fig. S1E (legend of Fig. S1). Actually, this is not a surprise, because the 

computer does not know which state is omitted. There are two closed states, and during the fit routine 

they are defined in such a way that they give the best fit. The message is that three closed states are 

indispensable. 

For the analysis here, the most important message from Fig. S1B,C is the low mutual 

interference between the different gating processes. Even strong misfits of the O-F gating or the O-S 

gating in Fig. S1B do not influence the slope between the closed peak and the open peak. Thus, they 

have a very small effect on the determination of kOM and kMO. This is the reason for the high reliability 

of the determination of kOM and kMO. Further details are given by refs. (Schroeder and Hansen, 2009a, 

b; Schroeder, 2015).  

 

Supplementary note 3: Simplified equations for converting the topology of the Markov model from 

the branched one in Fig. 2A to the linear model S-O-F-M 

 

Due to the large difference in the dwell-times in state F and M (Fig. 3B), it is not necessary to use the 

exact matrix transformations for the conversion of one model into another (20). In order to accurately 

describe the downward peaks of M-gating in Fig. 1C, the gross rate constants gMO,L and gOM,L of the 

linear S-O-F-M model must give the same number of transitions between O and M as kMO, and kOM of 

the branched model in Fig. 2A. As shown in Fig. 3B, the dwell-times in F and M differ by a factor of 10. 

Under these numerical conditions, a reasonable estimate of the rate constants kMO,B  and kOM,B of the 

O-M transitions in Fig. 2A (in the main text without index, but here represented by the index B for 

“branched”) is given by the gross rate constants gMO,L and gOM,L in the S-O-F-M model (index L for 

”linear”) (21).  
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Since the relatively few and slow transition between F and M in the linear model do not have a major 

influence on the transitions between O and F, we can assume that kFO,L ≈ kFO,B  >> kFM,L. Thus, we can 

ignore kFM,L in the denominator of Eq. S1a  and obtain 
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Ignoring kFM,L in the denominator in Eq. S1b by the same argument leads to  
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kFO,L is about 10 times faster than kOF,L due to Figs. 3A and 3B (remember the O-F transitions have about 

equal rate constants in both models). Thus, kFM,L is faster than kOM,B in the branched model. This is 

necessary to produce the same number of transitions into the M state since the dwell time in F is very 

short. Since the ratio , ,

, ,
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 is quite constant (Fig. 3A,B, legend of Fig. S2), kOM,L and kOM,B 

differ by a nearly constant factor.   



 

Supplementary note 4: Tests of the reliability of extended beta distribution fits  

 

 
Fig. S2. Test of the reliability of the determination of current (A,C,E,G) and of the rate constant kOM (B,D,F,H). 
(A,B) Symmetrical KCl solution of 1.5 M at -60 mV with IOF/Itrue = 0.72 at the minimum. (C,D) Symmetrical KCl 
solution of 1.5 M at -160 mV with IOF/Itrue = 0.85. (E,F) Symmetrical KCl solution of 100 mM at -60 mV with IOF/Itrue 
= 0.85. (G,H) Symmetrical KCl solution of 0.1 M at -160 mV with IOF/Itrue = 0.79. The ratio IOF/Itrue has been 
determined at the minimum of the error. The values at the abscissa were set constant during the fitting routine 

and the other rate constants were free. The error plotted at the y-axis is 2 = (n/n) with n being the number 
of sampling points per bin in the amplitude histogram. The standard deviations (if not hidden by the data points) 
results from 8 to 10 independent fits.  

 



Figure S2 shows the dependence of the fitting error on the values of Itrue and kOM in symmetrical 0.1 M 

KCl and in 1.5 M KCl at -60 mV and -160 mV. At K+ concentrations of 0.1 M, the open-channel current 

is smaller than that at 1.5 M. Consequently, the signal-to-noise ratio is decreased, and the minimum 

of the error sums becomes less pronounced. Nevertheless, the important finding is that the 

determination of IOF (including averaging over the O-F gating, Eq. 1) is nearly independent of the choice 

of Itrue, Especially, it is quite constant in the valley of the curve error versus kOM. IOF is about 80% of Itrue 

(e.g., in Fig. 3A,B, legend of Fig. S2).  Even though the minimum in Fig. S2G is weak it supports the 

finding in Fig. 3A,B and in the legend of Fig. S2 that kOF and kFO are quite voltage-insensitive. 

 
 
Supplementary note 5: The relationship between the rate constant kOM and kMO and the gating factor 
gf 

 

Equations 3 and 4 give an approximate phenomenological description of the voltage 
dependence of the two rate constants kOM and kMO of the O-M gating process. Inserting them 
into Eq. 5 for the gating factor gf (i.e. the “open probability” of the O-M process) leads to: 
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qOM in the denominator has to be omitted because it is related to for a different mechanism at positive 
potentials (Fig. 6) 
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Eq. S5 is a Boltzman equation. However, gfmin is absent as compared to Eq. 5.  Eq. 5 has been used for 
the phenomenological fit of gf in Fig. 5B. This implies that at high negative voltages, there is a deviation 
from the exponential form of kMO (Eq. 4). There are some rare observations that the steepness 
decreases at negative voltages. A further investigation requires the usage of membranes, which 
tolerate higher negative voltages. 
 
 

 

 
  



Supporting References  

1.  Rosenstein, J.K., S. Ramakrishnan, J. Roseman, and K.L. Shepard. 2013. Single ion channel 
recordings with CMOS-anchored lipid membranes. Nano Lett. 13: 2682–2686. 

2.  Hartel, A.J.W., P. Ong, I. Schroeder, M.H. Giese, S. Shekar, O.B. Clarke, A.R. Marks, W.A. 
Hendrickson, and K.L. Shepard. Ion channel recordings of the ryanodine receptor RyR1 at 
microsecond temporal resolution. under Revision 

3.  FitzHugh, R. 1983. Statistical properties of the asymmetric random telegraph signal, with 
applications to single-channel analysis. Math. Biosci. 89: 75–89. 

4.  Yellen, G. 1984. Ionic permeation and blockade in Ca2+-activated K+ channels of bovine 
chromaffin cells. J. Gen. Physiol. 84: 157–186. 

5.  Heinemann, S.H., and F.J. Sigworth. 1991. Open channel noise. VI. Analysis of amplitude 
histograms to determine rapid kinetic parameters. Biophys. J. 60: 577–587. 

6.  Schroeder, I. 2015. How to resolve microsecond current fluctuations in single ion channels: 
The power of beta distributions. Channels. 9: 262–280. 

7.  Schroeder, I., and U.-P. Hansen. 2009. Interference of shot noise of open-channel current with 
analysis of fast gating: patchers do not (yet) have to care. J. Membr. Biol. 229: 153–163. 

8.  Riessner, T. 1998. Level detection and extended beta distributions for the analysis of fast rate 
constants of Markov processes in sampled data. Aachen: Shaker Verlag. 

9.  Schroeder, I., P. Harlfinger, T. Huth, and U.-P. Hansen. 2005. A subsequent fit of time series 
and amplitude histogram of patch-clamp records reveals rate constants up to 1 per 
microsecond. J. Membr. Biol. 203: 83–99. 

10.  Schroeder, I., and U.-P. Hansen. 2006. Strengths and limits of Beta distributions as a means of 
reconstructing the true single-channel current in patch clamp time series with fast gating. J. 
Membr. Biol. 210: 199–212. 

11.  Caceci, M.S., and W.P. Cacheris. 1984. Fitting curves to data - The simplex algorithm is the 
answer. BYTE. 5: 340–362. 

12.  Schroeder, I., and U.-P. Hansen. 2007. Saturation and microsecond gating of current indicate 
depletion-induced instability of the MaxiK selectivity filter. J. Gen. Physiol. 130: 83–97. 

13.  Schroeder, I., and U.-P. Hansen. 2008. Tl+-induced µs gating of current indicates instability of 
the MaxiK selectivity filter as caused by ion/pore interaction. J. Gen. Physiol. 131: 365–378. 

14.  Abenavoli, A., M.L. DiFrancesco, I. Schroeder, S. Epimashko, S. Gazzarrini, U.-P. Hansen, G. 
Thiel, and A. Moroni. 2009. Fast and slow gating are inherent properties of the pore module 
of the K+ channel Kcv. J. Gen. Physiol. 134: 219–229. 

15.  Schroeder, I., G. Thiel, and U.-P. Hansen. 2013. Ca2+ block and flickering both contribute to the 
negative slope of the IV curve in BK channels. J. Gen. Physiol. 141: 499–505. 

16.  Brauser, A., I. Schroeder, T. Gutsmann, C. Cosentino, A. Moroni, U. Hansen, and M. 
Winterhalter. 2012. Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the 
analysis of fast flickering single-porin current. J. Gen. Physiol. 140: 69–82. 

17.  Schroeder, I., and U.-P. Hansen. 2009. Using a five-state model for fitting amplitude 
histograms from MaxiK channels: beta-distributions reveal more than expected. Eur. Biophys. 
J. 38: 1101–1114. 

18.  Blunck, R., U. Kirst, T. Riessner, and U.-P. Hansen. 1998. How powerful is the dwell-time 
analysis of multichannel records? J. Membr. Biol. 165: 19–35. 

19.  Albertsen, A., and U.-P. Hansen. 1994. Estimation of kinetic rate constants from multi-channel 
recordings by a direct fit of the time series. Biophys. J. 67: 1393–1403. 

20.  Kienker, P. 1989. Equivalence of aggregated Markov models of ion-channel gating. Proc. R. 
Soc. Lond. B. 236: 269–309. 

21.  Hansen, U.-P., O. Rauh, and I. Schroeder. 2016. A simple recipe for setting up the flux 
equations of cyclic and linear reaction schemes of ion transport with a high number of states: 
the arrow scheme. Channels. 10: 1–20. 

 


