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Abstract

This Appendix contains the following supplementary discussions, data table and figures:

S1 Measured vessel lengths and radii within the zebrafish trunk (Table S1).

S2 Modeling oxygenation within the trunk.

S3 Incorporating phase skimming in the network model. (Figure S1)

S4 Discussion of the mean field model for a reduced network.

S5 Estimation of occlusive effects in a 4 dpf zebrafish (Figure S2)

S6 Effect of network perturbation upon red blood cell partitioning (Figures S3 and S4)

[] *To whom correspondence should be addressed: shyrsheachang@ucla.edu
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S1 LENGTHS AND RADII OF TRUNK VESSELS

S1. LENGTHS AND RADII OF TRUNK VESSELS

i li (µm) ri (µm) i li (µm)

1 150 5.9 2 151

3 183 7.6 4 141

5 178 6.1 6 156

7 174 6.6 8 160

9 155 6.0 10 172

11 175 6.4 12 166

13 169 5.9 14 163

15 166 6.1 16 156

17 174 5.4 18 146

19 168 6.0 20 138

21 168 4.8 22 123

23 169 3.5 24 113

TABLE S1: The lengths of all 24 vessels and radii of all 12 aorta segments in a 4dpf

zebrafish embryo. The radius of capillaries is set to be the mean value 2.9 µm in Fig. 1C

and Fig. S1. Vessels are numbered as in Fig. 1B (i.e. odd numbered vessels correspond to

sections of dorsal aorta, even numbered vessels to intersegmental arteries).
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S2 MODELING OXYGEN PERFUSION

S2. MODELING OXYGEN PERFUSION

In the early stages of embryogenesis, diffusion of oxygen through the zebrafish’s skin is

generally sufficient to supply zebrafish tissues with oxygen[1]. However, circulatory system

looping defects are typically lethal by 17.5 d.p.f.[2], suggesting oxygen transport by the cir-

culatory system contributes to oxygen supply relatively early in embryonic development. To

determine whether diffusion of oxygen through tissues might compensate for unequal parti-

tioning of oxygen supply between micro-vessels, we directly model the diffusive transport of

oxygen through the zebrafish torso using a reaction-diffusion model[3]. Within the zebrafish

trunk the oxygen partial pressure, P , obeys a reaction diffusion equation:

Dα∇2P = −C + S (S1)

where S represents the distribution of oxygen supply from the blood, and C the rate of

oxygen consumption per volume of tissue, α is the solubility of oxygen and D is the diffu-

sivity of dissolved oxygen. We solved this Partial Differential Equation by creating a Finite

Element Model with first order tetrahedral elements implemented in Comsol Multiphysics

(Comsol, Los Angeles). We extracted the geometry of the trunk muscles from the Zebrafish

Anatomy Portal [4], and the distribution of intersegmental vessels within the trunk from

the Zebrafish Vascular Atlas [5]. The parameter Dα, sometimes called the oxygen perme-

ability, was measured by [3] to be: Dα = 8× 10−14 m2/(s mmHg). We modified the oxygen

consumption rate found by [3] to: C = 5.1× 10−4P/40 ml oxygen/(ml tissue mmHg). This

formula agrees with the rate measured by [3] when P = 40 mmHg, but is smaller at lower

oxygen partial pressures, representing the regulation of tissue oxygen consumption with oxy-

gen availability. The source term represents the rate of oxygen release from blood, and is

compactly supported on the intersegmental vessels. We used the following conversion fac-

tors: assuming that when a red blood cell enters a vessel with all of its hemoglobin molecules

bound to oxygen, and that all of this oxygen is released, the total oxygen release from each

intersegmental vessel can be computed from:

rate of oxygen release (ml/s) = 1.39× 10−10 × flow rate (in cells/s) (S2)

we distribute this flux uniformly across the length of each segmental artery. We apply

no-flux boundary conditions on the boundaries of the trunk. By applying this boundary
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S2 MODELING OXYGEN PERFUSION

condition, our model represents only the contribution of oxygen transport in the circulatory

system to tissue oxygen levels. Oxygen diffusing through the skin of the fish will increase

the oxygen partial pressure everywhere by a constant amount and will ensure that all tissues

are sufficiently oxygenated, but does not affect the absolute differences in partial pressure

that our model is designed to measure. The results of this calculation are shown in Figure

1D in the main text.
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S3 INCORPORATING PHASE SKIMMING IN THE NETWORK MODEL

S3. INCORPORATING PHASE SKIMMING IN THE NETWORK MODEL

In our models for red blood cell transport within the trunk vasculature, we assume that

red blood cells divide at branching points in the same ratio as whole blood. In fact, red

blood cells are more likely to enter the larger of the two daughter vessels at a branching point

than would be expected based on the ratio of fluxes [6] an effect known as phase skimming.

We use the mathematical model developed in [6], to see whether phase skimming can lead

to uniform distribution of red blood cells between SeAs.

Incorporating the phase skimming model of [6] significantly alters hematocrits between

different SeAs. However the overall change in fluxes is much smaller than the predicted

11-fold decrease in flux between the first and last SeA. The ratio of SeA diameters to DA

diameters ranges from 0.39 for the first SeA to 0.85 for the last SeA (Table S1) and velocities

are similar over the entire length of the DA. Due to the increasing in the ratio of SeA to

DA radius with distance from the heart the red blood cells are more likely to enter SeAs

further from the heart than those closer. This leads to a 2-fold increase of SeA hematocrit

(Fig. S1B) from Hct = 0.35 in the first SeA to Hct = 0.65 in the twelfth SeA. However the

increase in Hct is not enough to compensate for the 11-fold change in whole blood fluxes

between first and last SeA: when phase skimming was incorporated into the model we still

saw a 5 fold decrease in red blood cell fluxes between first and last SeAs (Fig. S1A).

The phase skimming model of [6] parameterizes observations blood flows in the rat mesen-

tery. The difference between the sizes, shapes and mechanical properties of zebrafish red

blood cells and rat red blood cells may mean the the model is not quantitatively accurate

for the zebrafish microvasculature. It is therefore worth asking whether any model for phase

skimming could account for the experimental observations. Recall that the model predicts

an 11-fold difference between the red blood cell fluxes in the first and last of the SeAs. To

compensate for this difference the hematocrit in the last SeA would need to be 11 times

larger than the hematocrit in the first SeA. Such a large difference in hematocrit would

be easy to detect, and is not supported by our observations, nor are such large differences

observed in any of the mammalian vessels measured by [6].

5



S3 INCORPORATING PHASE SKIMMING IN THE NETWORK MODEL

FIG. S1: Incorporating phase skimming into the model does not produce uniform red

blood cell fluxes between the SeAs. (A) Predicted red blood cell fluxes in the SeAs

continue to decay with distance from the heart, when the model from [6] is used to

parameterize phase skimming. (B) Hematocrit is predicted to increase with the distance

from the heart but Hematocrit changes are not enough to compensate for the decrease in

flow predicted by the hydraulic resistor network model. Bars show the hematocrits in the

different SeAs, while the black reference line shows the mean hematocrit in the DA.
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S4 MEAN FIELD MODEL FOR A TWO-VESSEL NETWORK

S4. MEAN FIELD MODEL FOR A TWO-VESSEL NETWORK

To understand the role of variations in the occlusive effect between SeA-vessels, we de-

velop a continuum model on a reduced network that included only the DA and the first

and last of the SeAs. The results of this analysis are summarized in the main text. Here,

we describe in more detail the equations that are set up within the model, as well as their

solution. The reduced network consists of 4 blood vessels indexed 1 (the segment of DA

between the two Se), 3 (the segment of DA after the last Se, which connects directly to

the PCV) and 2, 4 being the two Se-vessels (Fig. 5A in main text). We define variables

ni, li, Si, Vi, Qi, Ri0, Ri i = 1, 2, 3, 4 to be the number of cells contained in vessel i, its

length, cross-section area, volume, total flow rate, resistance when no red blood cells are

present within the vessel, and resistance modified by the presence of cells following Equa-

tion (1) in the main text. Since our analyses from Section S3 suggest that phase separation

effects are slight in these trunk microvasculature, we neglect them altogether, assuming con-

stant hematocrit in each vessel. In the mean field formulation, the effect of this is to take

ni

Vi
= ρ, i = 1, 2, 3, 4, where ρ is the constant concentration (# per volume) of red blood

cells. ρ is related to the hematocrit (or volume fraction of red blood cells) by Hct = ρVc

where Vc is the volume of a cell. Thus the flux of red blood cells in vessel i is equal to

ρQi. Finally we define pj, j = 1, 2 to be the unknown pressures at the two branching points

within the network (as in the model without feedbacks, the symmetry of the network allows

us to assign the same pressure value, p = 0 at the points where the SeAs meet the DLAV

and where the DA terminates at the tail of the fish). We make a continuum or mean field

approximation for the effect of the red blood cells contained in each vessel. Specifically,

we assume that red blood cells in each vessel are uniformly dispersed through that vessel.

Then, in steady state we can balance the flux of cells into each vessel with the flux of cells

out of each vessel. For example, for vessel 1, the flux of cells (number/time) out of the

vessel is equal to the volume of blood leaving the vessel in unit time Q1 multiplied by the

density (number/volume) of cells: n1/V1. Similarly the flux of cells into the vessel is given

by the total flux of cells entering the network through node 1, in unit time multiplied by

the ratio in which flow is divided between vessels 1 and 2 ( Q1

Q1+Q2
). Since the total number

of red blood cells in the network is constant in the continuum approximation, the number

of red blood cells entering the network in unit time must be equal to the number leaving,
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S4 MEAN FIELD MODEL FOR A TWO-VESSEL NETWORK

i.e. n2Q2

V2
+ n3Q3

V3
+ n4Q4

V4
. Thus in steady state:(
n2Q2

V2
+
n3Q3

V3
+
n4Q4

V4

)
Q1

Q1 +Q2

=
n1Q1

V1
. (S3)

Similar conservation statements for each of the other 3 vessels in the network give:(
n2Q2

V2
+
n3Q3

V3
+
n4Q4

V4

)
Q2

Q1 +Q2

=
n2Q2

V2
(S4)

n1Q1

V1

Q3

Q3 +Q4

=
n3Q3

V3
(S5)

n1Q1

V1

Q4

Q3 +Q4

=
n4Q4

V4
(S6)

Flux conservation at each node, plus the resistance-to-cell number relationship in Eqn.

(1) from the main text then allows us to compute the fluxes Qi. Specifically, suppose the

fluid inflow is F into the first node. Then since flow rate is proportional to the pressure

difference across a vessel:

Q1 =
p1 − p2
R1

, Q2 =
p1
R2

, Q3 =
p2
R3

, Q4 =
p2
R4

. (S7)

while conserving fluxes at the two nodes gives:

F =
p1 − p2
R1

+
p1
R2

(S8)

p1 − p2
R1

=
p2
R3

+
p2
R4

(S9)

We can solve for the nodal pressures p1, p2 by linear algebra. Define a matrix determinant:

∆ =

∣∣∣∣∣∣
1
R1

+ 1
R2

− 1
R1

1
R1

−( 1
R1

+ 1
R3

+ 1
R4

)

∣∣∣∣∣∣ = −
(

1

R1

+
1

R2

)(
1

R1

+
1

R3

+
1

R4

)
+

1

R2
1

. (S10)

Then Cramer’s rule gives:

p1 =
1

∆

∣∣∣∣∣∣F − 1
R1

0 −( 1
R1

+ 1
R3

+ 1
R4

)

∣∣∣∣∣∣ =
−F ( 1

R1
+ 1

R3
+ 1

R4
)

∆
(S11)

p2 =
1

∆

∣∣∣∣∣∣
1
R1

+ 1
R2

F

1
R1

0

∣∣∣∣∣∣ =
− F

R1

∆
. (S12)

From the formulas for the nodal pressures pi we can use Eqn. (S7) to calculate the fluxes in

each vessel, Qi:

Q1 =
−F
∆R1

(
1

R3

+
1

R4

)
, Q2 = − F

∆R2

(
1

R1

+
1

R3

+
1

R4

), Q3 =
−F

∆R3R1

, Q4 =
−F

∆R4R1

(S13)
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S4 MEAN FIELD MODEL FOR A TWO-VESSEL NETWORK

Although these represent volume fluxes (volume/time), the cell flux in each vessel can then

be computed by multiplying by the cell concentration, ρ. Using Equation (1) from the main

text, we may rewrite R2 = R20 + α2ρV2, and so on.

To analyze flows within the network we focused on two measures of efficiency, (i) One is

the ratio of the cells fluxes in the two SeAs:

flux ratio =
ρQ2

ρQ4

=
Q2

Q4

=
R1R4

R2

(
1

R1

+
1

R3

+
1

R4

)
=

R̄4 + V4ρα4

R̄2 + V2ρα2

(
1 +

R1

R3

+
R1

R4 + V4ρα4

)
. (S14)

(ii) We also compute the viscous dissipation within the network when the flux through

all SeAs, i.e. ρ(Q2 + Q4), is fixed. The dissipation for a single vessel is given by D = Q2R

where Q is the flow rate of the vessel, R is the resistance of the vessel. Thus the dissipation

of the entire network is

Dnetwork =
4∑

i=1

Q2
iRi. (S15)

For the aorta segments, we assume constant resistance (not strongly affected by the number

of red blood cells) so

Daorta =
8µwb

πr4a

2∑
i=1

l2i−1Q
2
2i−1. (S16)

In contrast the dissipation within SeAs depends on the number of cells traveling through

them:

DSe =
2∑

i=1

Q2
2iR2i =

2∑
i=1

Q2
2iR2i0 +

2∑
i=1

Q2
2in2iα2i (S17)

Substituting ni = ρVi, we obtain:

DSe =
8µpl

πr4c

2∑
i=1

l2iQ
2
2i + ρ

2∑
i=1

V2iα2iQ
2
2i (S18)

and

Dnetwork = Daorta +DSe =
8µwb

πr4a

2∑
i=1

l2i−1Q
2
2i−1 +

8µpl

πr4c

2∑
i=1

l2iQ
2
2i + ρ

2∑
i=1

V2iα2iQ
2
2i (S19)

which is Equation (6) in the main text.
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S5 ESTIMATION OF OCCLUSIVE EFFECTS IN A 4 DPF ZEBRAFISH

S5. ESTIMATION OF OCCLUSIVE EFFECTS IN A 4 DPF ZEBRAFISH

To analyze the effect of occlusive feedbacks upon the distribution of red blood cell fluxes

within the trunk vessels, we directly measured the occlusive feedback parameter αc from

Equation (1). Namely, for each vessel, we fit an equation for the resistance of the vessel as

a function of the number, n of cells that it contains:

R = R0 + nαc (S20)

where R is the resistance of Se, R0 is the resistance of the SeA when it contains no cells,

which is given by Hagen-Poiseuille law calculated with plasma viscosity µpl ≈ 1cP , and αc

is the occlusive effect per cell. We directly measure the coefficient αc by tracking red blood

cells in a real zebrafish embryo. To do this me must convert Eqn. (S20) into an equation

for velocity in the vessel. Here we expand our discussion of how this model was fit to the

real data, and show the fits for each of the SeAs.

Since the resistance R is the ratio between the pressure drop ∆p over the Se vessel and

the flow rate Q in the vessel we have

QR = ∆p. (S21)

Plugging Eqn. (S20) into Eqn. (S21) we obtain:

R0 + nαc =
∆p

Q
=

∆p

uπr2
, (S22)

where u is the mean plasma velocity and r is the radius of the vessel. Hence in the vessel 1
u

is linearly related to n:
1

u
=
πr2

∆p
(R0 + nαc), (S23)

assuming that ∆p is constant. Since in the theory developed in [7], red blood cells travel

at the mean velocity of the plasma, we calculated 1
u

by tracking by hand the cells traveling

through the Se arterial network. If we regress 1
u

against n then the slope a and the intercept

b of the line satisfies

a =
πr2αc

∆p
, b =

R̄πr2

∆p
, (S24)

which allows us to calculate the resistance per cell αc:

aR̄

b
= αc. (S25)
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S5 ESTIMATION OF OCCLUSIVE EFFECTS IN A 4 DPF ZEBRAFISH

FIG. S2: Occlusive effects are measured in all 12 Se arteries in a 4 dpf zebrafish; we regress

the reciprocal of the average velocity 1
u

against the cell number n. Line: linear regression

with intercept determined by the numerical solution with no cells.

Fig. S2 shows the experimental measurements and the regression. The maximum number

of cells in a vessel is quite low due to the occlusive effect, which greatly decreases flow when
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A Variation in spacing between intersegmental vessels
S6 EFFECT OF NETWORK PERTURBATION UPON RED BLOOD CELL

PARTITIONING

a vessel contains multiple cells. Therefore we decided to use the theoretical prediction of

plasma velocity with no cells from Figure 1C in the main text to fit 1/v when n = 0, and

thereby the pressure drop ∆p. In applying the cell-free model we ascribed all Se vessels the

same radius and also fixed the radii of all aorta segments. This reduces the noise caused

by variation of radius but preserves the key feature of exponential decay. The resulting

Fahraeus-Lindqvist effect coefficients αc are shown in Fig. 2B in the paper. Note that there

is considerable scatter in the mean velocity data shown in Fig. S2 (a single panel of this

figure is displayed in the main text as Fig. 2A). This scatter is probably dominated by

the complex stick-slip dynamics of red blood cells even when propelled by steady pressure

gradients[7], and by the variation in the pressure drop ∆p across each Se vessel over each

cardiac cycle. Previous measurements have shown that flow rates in the aorta vary by a

factor of 6 over a single heart beat[8]. By lumping together velocimetric measurements from

different phases of the cardiac cycle, our data include unavoidable velocity variation, distinct

from measurement error. However, our theory and fits extract the average values of ∆p over

a full cardiac cycle.

S6. EFFECT OF NETWORK PERTURBATION UPON RED BLOOD CELL PAR-

TITIONING

Real zebrafish vascular networks, and microvascular networks generally vary from indi-

vidual to individual[5, 9]. Some forms of anatomical variation lead to embryo death, while

others do not affect embryo viability at all. We used the model of feedbacks due to ves-

sel occlusion to determine whether uniform red blood cell fluxes could be achieved in two

previously studied forms of vascular network variability.

A. Variation in spacing between intersegmental vessels

In real vascular networks the SeAs are not evenly spaced. In our model (and supported

by visualization of the dsRed-tagged cell movements), we assume that the Se vessels alter-

nate artery-vein-artery-. . . . Real trunk vasculature does not always follow this pattern of

strict alternation; in fact arteries and veins can be ordered in many different ways, and the

particular ordering of vessels seems to have little impact on embryo growth[5], we therefore
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A Variation in spacing between intersegmental vessels
S6 EFFECT OF NETWORK PERTURBATION UPON RED BLOOD CELL

PARTITIONING

infer that it does not affect oxygen perfusion through the trunk. To investigate whether

the feedback mechanism robustly uniformizes cell fluxes, independently of the ordering of

arteries and veins, we simulated cell partitioning between SeA in zebrafish with large vari-

ations in SeA spacing. Specifically, we define a vector {Pa(i) : i = 1, ...11} of normalized

intersegmental distances. The entries of Pa are normalized such that
∑11

i=1 Pa(i) = 11. The

lengths l2i−1, i = 1, ..., 11 of the DA segments are then given by

l2i−1 = laortaPa(i), (S26)

where laorta = 169 µm is the mean Se spacing in a 4 dpf zebrafish. Fix the length of

the last DA segment (between the final Se and the direct connection to the PCV) to be

l23 = 169 µm. We create a network with high variation in the Se spacing by setting

Pa(2i− 1) = 1.69, i = 1, . . . , 6 and Pa(2i) = 0.169, i = 1, . . . , 5, so that successive spacings

differ by a factor of 10. Just as in Fig. 4, we assume a linearly decreasing feedback strength

(i.e. a linear form for the resistance per cell αi), in which the resistance per cell in the i-th

SeA is given by a formula:

αi =
(αmin − αmax)i

n− 1
+ αmax −

αmin − αmax

n− 1
, i = 1, . . . , n (S27)

where αmax = 2.334 × 10−5 g/µm4s is the feedback strength within the first Se from the

data and αmin = 1.01 × 10−6 g/µm4s is that of the last Se. αmax and αmin are obtained

from linear regression on the measured feedback strengths (see main-text, Fig. 2C). We

then used a direct numerical simulation of the cell dynamics in this network (see Materials

and Methods in the main text) to calculate the partitioning of cells in the modified network.

We estimate the uniformity of flows for each set of network parameters by computing the

Coefficient of Variation (CV) of the cell flux. The CV is 0.2538 in the uneven spacing case,

which indicates a lower uniformity compared to a network with the empirically determined

Se spacings (with CV value 0.1815, see Fig. S3). However, if the feedback strength varies

with distance along the DA, (i.e. with vessel distance from the heart, rather than simply

being a function of vessel index), namely:

αi = (αmax − αmin)

∑n−1
j=i Pa(j)∑n−1
j=1 Pa(j)

+ αmin (S28)

then the CV of cell fluxes under the same simulation conditions as were used to create Fig.

2, is 0.1827, which is almost identical to the unperturbed network.
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B DA-PCV shunt
S6 EFFECT OF NETWORK PERTURBATION UPON RED BLOOD CELL

PARTITIONING

FIG. S3: Predicted cell fluxes in wildtype zebrafish due to variability in Se spacing variant.

The wildtype cell fluxes (star) becomes oscillatory under variant spacing (circle), but shows

similar overall uniformity. If the feedback variation is adjusted then uniform partitioning of

cell fluxes is restored (cross).

B. DA-PCV shunt

Genetically modified mibta52b mutant zebrafish have altered differentiation of vessels into

arteries or veins. In particular the mutant trunk vasculature includes a circulatory loop

(shunt) between DA and PCV in the middle of the trunk [10]. mibta52b mutants die before

two weeks post fertilization [10]. To simulate the effect of mibta52b upon the partitioning of

cells through the zebrafish trunk vasculature we created a model of the network, by starting

with the same wild type network geometry as in Fig. 1B in the main text but with the 6th

SeA being assigned a radius 7 µm (identical to the aorta) and a length 17 µm, based on

vessel measurements from [10]. The length of the DA vessel segments on either side of the

shunt connection were set to be one half of the mean DA vessel segment length, mimicking

the DA malformation seen around the shunt in real zebrafish [10]. The cell flux in the shunt,

39 s−1, is much greater than the mean cell flux in all the SeAs, 0.3 s−1. Because cells have

smaller radii than the shunt connection, cells do not occlude this vessel, there is no negative

feedback and cells are not redistributed to SeAs beyond the shunk (Fig. S4). We expect the

low cell fluxes in the other vessels to be associated with low oxygen transport to the rest of

the trunk, which may contribute to the lethality of the mibta52b mutation.
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S6 EFFECT OF NETWORK PERTURBATION UPON RED BLOOD CELL

PARTITIONING

FIG. S4: Predicted cell fluxes in mibta52b mutant zebrafish. In this mutant, the DA and

PCV are directly connected by a shunt, which creates a short-circuit in the network. A

shunt introduced at the location of the 6th Se leads to lower and less uniform fluxes (circle)

compared to wild type embryos (star), and there is almost no cell flux posterior to the shunt

location.
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