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Supporting	information		

SI1.	Genotype	screening,	clonal	identities	and	contamination	

Genotype	screening	

The	 clonal	 identity	 of	 a	 total	 of	 600	 individuals,	 on	 average	 25	 randomly	 isolated	 individuals	 per	

mesocosm	 sampled	 at	 the	 end	 of	 the	 experiment	 (day	 70),	 was	 determined	 by	 means	 of	

microsatellite	analyses	following		Jansen,	Geldof,	De	Meester,	and	Orsini	(2011)	and	Orsini,	Spanier,	

and	 De	 Meester	 (2012).	 Genomic	 DNA	 was	 extracted	 from	 random	 Daphnia	 magna	 individuals	

isolated	from	the	mesocosms	using	the	Proteinase	K	digestion	method,	as	described	by	Mergeay	et	

al.	(2008).	Live	Daphnia	were	homogenized	in	100	µl	proteinase	K-buffer	(16mM	[NH4]2SO4,	67	mM	

Tris-HCl,	pH	8.8,	0.01%	Tween-20,	10%	DTT	and	0.5mM	proteinase	K).	Following	overnight	incubation	

at	 56°C,	 a	 10	 minute	 denaturation	 of	 samples	 was	 carried	 out	 at	 96°C.	 Qualitative	 PCR	 (T1	 PCR	

machine;	 Biometra,	 Germany)	 was	 conducted	 with	 the	 QIAGEN	 multiplex	 PCR	 kit	 (QIAGEN,	

Netherlands).	Nine	microsatellite	markers,	structured	in	one	multiplex	(multiplex	MO1,	as	in	Jansen	

et	 al.	 (2011)	 and	 Orsini	 et	 al.	 (2012);	 EST4276	 was	 added	 as	 an	 additional	 marker)	 were	 used	 to	

identify	clonal	lineages.		

PCR	cycling	conditions	included	an	initial	denaturation	step	at	95°C	for	15	minutes,	30	cycles	of	94°C	

for	 30	 seconds,	 annealing	 at	 56°C	 for	 30	 seconds,	 extension	 at	 72°C	 for	 45	 seconds,	 and	 a	 final	

elongation	step	at	60°C	for	30	minutes.	Microsatellite	alleles	were	scored	using	an	ABI	PRISM	3031	

automated	sequencer	 (Applied	Biosystems)	and	analyzed	with	 the	Gene	Mapper	 software	 (applied	

Biosystems)	using	LIZZ500	as	standard	size.	Based	on	reference	samples	(composed	of	animals	from	

stock	 cultures	 and	 maternal	 individuals	 that	 gave	 rise	 to	 the	 animals	 that	 were	 used	 to	 stock	

mesocosms),	all	genotyped	individuals	were	classified	and	named	according	to	their	layer	of	origin	(B,	

M,	T)	and	specific	clone	identification	code	(as	in	Pauwels,	Stoks,	Decaestecker,	&	De	Meester,	2007;	

Stoks,	 Govaert,	 Pauwels,	 Jansen,	 &	 De	 Meester,	 2016).	 The	 multilocus-genotypes	 were	 also	

compared	to	earlier	genotyping	efforts	on	the	same	clones	(Orsini	et	al.,	2012).	
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Clonal	identities	and	contamination	

The	36	clones	used	in	the	present	experiment	were	the	same	as	used	in	Stoks	et	al.	(2016),	however,	

we	detected	that	some	contamination	had	occurred	when	we	screened	the	clones	for	their	genotype	

using	 9	 microsatellite	 markers	 (see	 above).	 For	 the	 pre-fish	 population	 our	 multi-locus	 genotype	

identification	suggests	that	one	clone	(B7)	was	accidently	replaced	by	another	clone	from	the	same	

population	 (B9).	 For	 this	 population,	 the	 contamination	 only	 occurred	 within	 the	 population	 and	

resulted	in	11	instead	of	12	clones	being	used	in	the	experiment	(Figure	SI1	a	&	b).	For	the	high-fish	

population,	 two	 clones	 (M10	 and	M12)	were	 accidently	 replaced	by	 another	 clone	 from	 the	 same	

population	 (M11),	 one	 clone	 (M3)	 was	 accidently	 replaced	 by	 a	 clone	 with	 the	 same	 multilocus	

genotype	as	 clone	B6	of	 the	pre-fish	population,	and	one	clone	 (M2)	was	accidently	 replaced	by	a	

clone	with	the	same	multilocus	genotype	as	clone	T12	from	the	reduced-fish	population.	So	for	this	

population,	 8	 clones	 were	 inoculated	 in	 addition	 to	 two	 clones	 that	 was	 derived	 from	 another	

population	 (Figure	 SI1	 c	 &	 d).	 In	 the	 reduced-fish	 population,	 multi-locus	 genotype	 identification	

suggests	that	one	clone	(T3)	was	accidently	replaced	by	a	clone	from	the	high-fish	population	(M7).	

For	 this	population,	11	 clones	were	used	 in	 the	experiment	 in	addition	 to	one	clone	 from	another	

population	(Figure	SI1	e	&	f).	As	we	screened	the	 lineages	for	their	genotypes	after	 inoculating	the	

mesocosms,	we	could	not	prevent	the	contamination.	Although	the	contamination	was	unfortunate,	

only	the	among-population	contaminations	(one	clone	in	the	reduced-fish	population	and	two	clones	

in	the	high-fish	population)	can	potentially	interfere	with	the	interpretation	of	our	results,	which	are	

based	on	 comparisons	 among	populations.	Moreover,	 to	 the	 extent	 that	 the	 interpretation	 of	 our	

results	 depends	 on	 the	 detection	 of	 among-population	 differences,	 the	 contamination	 does	 not	

induce	false	positives,	but	rather	results	in	a	conservative	assessment	of	the	impact	of	evolutionary	

change.	 The	 average	detected	 relative	 abundance	of	 the	pre-fish	 clone	 in	 the	high-fish	 population	

treatment	at	the	end	of	the	experiment	was	0%	in	both	Control	and	Predation	treatments	(Figure	SI1	
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c	 &	 d),	 which	 translates	 into	 at	 most	 very	 low	 abundances	 of	 this	 clone.	 The	 average	 observed	

relative	abundance	of	the	reduced-fish	population	clone	in	the	high-fish	population	treatment	at	the	

end	 of	 the	 experiment	 was	 1%	 in	 the	 Control	 mesocosms	 and	 26%	 in	 the	 Predation	 mesocosms	

(Figure	SI1	c	&	d).	The	average	observed	relative	abundance	of	the	high-fish	population	clone	in	the	

reduced-fish	 population	 treatment	 at	 the	 end	 of	 the	 experiment	 was	 38.1	 %	 in	 the	 Control	

mesocosms	and	28.7%	in	the	Predation	mesocosms	(Figure	SI1	e	&	f).	

SI2.	Data	analysis		

Empirical	dynamic	modeling	

Empirical	 dynamic	 modeling	 (EDM),	 uses	 time-series	 to	 reconstruct	 the	 attractor	 manifold	 (see	

further)	 and	 allows	 for	 the	 exploration	 of	 the	mechanisms	 underlying	 the	 dynamics	 of	 the	 system	

(Deyle,	May,	Munch,	&	Sugihara,	2016;	Sugihara,	1994;	Sugihara	et	al.,	2012;	Sugihara	&	May,	1990).	

Simplex	projections	are	a	 forecasting	 technique	 from	the	EDM	framework	 (Sugihara	&	May,	1990).	

The	forecast	skill	of	simplex	projections	using	one	group	of	time-series	as	a	library	(i.e.	learning	set)	

to	make	forecasts	 for	data	points	 in	another	time-series	can	be	used	to	assess	 the	similarity	 in	 the	

attractor	manifold	of	those	time-series.	The	S-map	method	is	a	technique	from	the	EDM	framework	

that	 can	be	used	 to	 estimate	 interaction	 strengths.	 S-maps	do	 so	by	 recovering	 the	 Jacobians	 (i.e.	

partial	derivatives)	at	each	time-point	(Deyle,	May,	et	al.,	2016;	Sugihara,	1994).	Another	technique	

from	the	EDM	framework	 is	convergent	cross	mapping	 (CCM)	 (Sugihara	et	al.,	2012).	CCMs	can	be	

used	to	 identify	causal	 links	 in	 the	system.	A	brief	explanation	of	EDM	and	the	techniques	that	we	

used	 are	 given	 below,	 together	 with	 details	 of	 our	 implementation	 of	 them.	 For	 more	 in-depth	

explanations	 and	 further	 examples,	we	 refer	 the	 reader	 to	 the	 rEDM	user	 guide	 Ye,	 Clark,	Deyele,	

Keyes,	 and	Sugihara	 (2016)	and	empirical	dynamic	modeling	 for	beginners	 (Chang,	Ushio,	&	Hsieh,	

2017).		

Dynamic	 systems	 are	 often	 described	 as	 a	 set	 of	 multiple	 equations,	 in	 which	 each	 equation	

describes	 how	 the	 dynamics	 of	 a	 certain	 variable	 depends	 on	 itself	 and	 other	 variables.	 When	
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different	states	of	a	system	are	very	similar,	 the	state	of	 the	system	will	over	 the	short	 run	evolve	

very	similarly.	Representing	all	the	relevant	variables	of	a	system	as	a	set	of	Cartesian	coordinates	in	

state	space	and	the	observations	in	the	time-series	of	these	variables	as	coordinates	visited	by	that	

system,	results	in	a	collection	of	trajectories	forming	a	geometric	object	called	an	attractor	manifold.	

The	 attractor	 manifold	 is	 the	 product	 of	 the	 specific	 rules	 and	 equations	 that	 describe	 the	

interactions	between	variables	of	the	system,	and	thus	is	an	empirical	description	of	the	dynamics	of	

the	system.	An	animation	explaining	the	reconstruction	of	 the	attractor	manifold	by	 its	variables	 is	

given	 in	 Sugihara	 et	 al.	 (2012;	 https://youtu.be/8DikuwwPWsY).	 As	 similar	 states	 evolve	 similarly	

over	 the	 short	 run,	 so	 do	 nearby	 states	 in	 state	 space.	 Thus,	 when	 time-series	 of	 the	 relevant	

variables	are	available,	 short-term	 forecasts	 for	a	given	state	can	be	made	based	on	 the	predicted	

short-term	future	of	nearby	states	 in	state	space.	However,	when	time-series	for	some	variables	 in	

the	 system	 are	 not	 available,	 trajectories	 cross	 and	 nearby	 states	 will	 not	 go	 in	 exactly	 the	 same	

direction.	 In	 reality	 there	 might	 be	 countless	 variables	 influencing	 every	 system,	 but	 often	 the	

majority	of	the	changes	over	time	in	a	certain	state	variable	are	caused	by	only	a	few	other	variables.	

Hence,	relatively	skillful	forecasts	can	be	made	based	on	these	few	relevant	variables.	It	is,	however,	

not	always	feasible	to	obtain	measurements	of	or	know	all	relevant	variables	of	the	system.	Takens	

(1981)	addressed	this	problem	by	using	the	fact	that	 in	a	dynamic	system,	time-series	of	a	variable	

that	 is	 influenced	by	other	variables	also	contain	 information	on	these	variables.	An	everyday	used	

example	 of	 this	 principle	 is	 our	 ability	 to	 estimate	 the	 future	 location	 of	moving	 objects	 by	 using	

consecutive	snapshots	of	these	objects,	 locations,	without	directly	observing	the	momentum	of	the	

object	and	the	forces	(e.g.	gravity)	acting	on	it.	Thus,	instead	of	representing	the	state	of	the	system	

as	 a	 vector	 (i.e.	 a	 multidimensional	 point)	 in	 state	 space	 with	 as	 coordinates	 the	 relevant	 state	

variables,	one	can	use	time-lagged	observations	(i.e.	snapshots)	of	one	variable	as	the	coordinates.	

This	 is	 called	a	 time-lagged	embedding.	There	are	a	minimum	number	of	 time-lagged	observations	

needed	 to	 capture	 all	 the	necessary	 information	and	 thereby	prevent	 trajectories	 from	crossing	 in	

the	time-lagged	embedding	(i.e.	for	the	embedding	to	be	diffeomorphic).	Before	Takens’	theorem,	it	
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was	not	clear	 if	 the	number	of	time-lags	needed	would	be	too	high	for	any	practical	usage.	Takens	

(1981)	 found	a	 connection	between	 the	number	of	 required	 lags,	 i.e.	 the	embedding	dimension	E,	

and	the	number	of	state	variables,	 i.e.	 the	number	of	dimensions	D.	He	demonstrated	that	a	time-

lagged	embedding	using	just	E	=	2	*	D	+	1	lags	is	the	maximum	needed	to	obtain	a	diffeomorphism	of	

the	original	attractor	manifold	of	a	dynamic	system	(i.e.	to	prevent	lines	crossing	in	the	embedding).	

Thus,	if	the	relevant	variables	of	a	system	are	the	two	variables	X	and	Y,	no	more	than	five	lags	are	

needed	in	the	embedding	(i.e.	{Y(t),	Y(t-1),	Y(t-2),	Y(t-3),	Y(t-4)}).	This	means	one	can	obtain	a	shadow	

version	(i.e.	a	time-lagged	embedding)	of	the	original	attractor	manifold	by	using	only	a	few	lags	of	

one	variable.	Although	this	shadow	manifold	is	a	globally	distorted	(e.g.	stretched	or	bent)	version	of	

the	original	manifold,	this	distortion	is	a	smooth	invertible	change	in	coordinates.	A	short	animation	

by	 Sugihara	 et	 al.	 (2012)	 explaining	 Takens’	 theorem	 can	 be	 found	 here:	

https://youtu.be/QQwtrWBwxQg.	 The	 same	 points	 in	 time	 that	 are	 close	 on	 the	 original	 attractor	

manifold	are	also	close	on	the	shadow	manifold.	Thus,	as	the	state	of	the	system	changes	over	time	

and	visits	different	neighborhoods	on	 the	attractor	manifold,	 it	will	 pass	by	neighborhoods	on	 the	

manifold	that	it	has	visited	before	and	the	time	points	in	history	close	to	each	other	on	the	original	

attractor	are	also	close	on	the	shadow	manifold.	In	(univariate)	simplex	projections,	this	fact	is	used	

to	 make	 forecasts	 using	 only	 one	 variable	 (Sugihara	 &	 May,	 1990).	 As	 differences	 in	 dynamics	

between	different	populations	can	be	more	pronounced	 in	some	variables	 (i.e.	dimensions	 in	state	

space)	than	others,	we	decided	to	test	for	significant	differences	between	populations	independently	

for	different	variables.	For	this	test	we	were	thus	able	to	use	univariate	simplex	projections.		

An	 interesting	 consequence	 from	 Takens’	 theorem	 is	 that	 when	 a	 variable	 X	 influences	 another	

variable	 Y,	 then	X	 will	 leave	 its	mark	 on	 the	 dynamics	 of	 Y.	 Time-points	 close	 on	 the	 time-lagged	

embedding	of	X	will	also	be	close	on	the	time-lagged	embedding	of	Y.	Thus,	if	nearby	points	on	the	

shadow	manifold	of	Y	are	also	close	on	the	shadow	manifold	of	X,	than	X	likely	influences	variable	Y.	

This	 is	 the	basis	 for	convergent	cross	mapping	 (Sugihara	et	al.,	2012).	An	animation	explaining	 this	

principle	by	Sugihara	et	al.	(2012)	can	be	found	here:	https://youtu.be/NrFdIz-D2yM.		
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Simplex	projections	

We	used	univariate	simplex	projections	to	compare	the	similarity	in	dynamics	of	individual	variables	

between	 populations.	 In	 simplex	 projections,	 for	 each	 state	 in	 the	 time-lagged	 embedding	 of	 the	

prediction	set	 (i.e.	 for	each	target	state	x(t*)),	 the	E+1	closest	points	on	the	shadow	manifold	of	X,	

which	is	reconstructed	using	only	the	library	set,	are	taken	and	a	weight	is	calculated	based	on	their	

Euclidian	distance	 from	x(t*).	 To	make	 forecasts	with	a	 specified	 time	step,	 tp,	 into	 the	 future,	 the	

states	that	the	E+1	nearest	states	have	tp	into	the	future	are	multiplied	with	their	respective	weights	

and	the	average	of	these	products	is	used	as	the	forecast(Sugihara	&	May,	1990).	If	the	time-series	

used	in	the	library	can	be	used	to	make	skillful	forecasts	of	the	time-series	in	the	prediction	set,	then	

the	dynamics	underlying	 the	time-series	 in	 the	prediction	set	must	be	similar	 to	 those	 in	 the	time-

series	 used	 in	 the	 library.	 We	 expressed	 forecast	 skill	 in	 MAE	 (mean	 absolute	 error).	 For	 each	

population,	 to	 determine	 whether	 the	 dynamics	 of	 replicates	 of	 the	 same	 population	 are	 more	

similar	than	between	different	populations,	we	used	a	one	sided	Mann-Whitney	test	comparing	the	

skill	 of	within	population	 forecasts	 to	 forecasts	 from	other	populations.	We	made	 forecasts	 for	 all	

possible	combinations	of	 (replicate)	 time-series	as	 library	and	prediction	sets,	with	3	time-series	as	

library	 predicting	 one	 other	 time-series	 (i.e.	 excluding	 combinations	 where	 the	 same	 time-series	

occurred	in	both	library	and	prediction	set).	This	leads	to	four	MAEs	for	each	set	of	within	population	

forecasts	and	16	 for	 the	between	population	 forecasts.	For	simplex	projections	 the	number	of	 lags	

used	in	the	reconstructed	state	space	has	to	be	specified	(i.e.	the	embedding	dimension	E).	We	here	

each	time	tried	all	embedding	dimensions	below	7	and	used	the	E	that	resulted	in	the	highest	value.		

Another	parameter	that	has	to	be	set	in	simplex	predictions	is	the	forecast	time	step	tp.	The	standard	

choice	 for	 this	 is	 to	 use	 the	 smallest	 step	 (i.e.	 3	 days	 for	 Daphnia	 time-series	 and	 1	 day	 for	

phytoplankton).	 However,	 when	 dynamics	 are	 relatively	 slow,	 small	 time	 steps	 might	 not	 be	

sufficiently	 challenging	 to	 distinguish	 in	 forecast	 skill.	 In	 contrast,	 as	 is	 characteristic	 to	 non-linear	

systems,	 large	 forecast	 time	 steps	 result	 in	 lower	 predictability	 and	 forecast	 skill	 decreases	 in	 all	

models.	Therefore,	in	testing	the	difference	between	populations,	we	tested	different	forecast	time-
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steps	 (3,	 6,	 9,	 12	 and	 15	 days).	 Although	 within	 population	 simplex	 projections	 might	 not	 be	

significantly	more	skillful	(i.e.	lower	MAE)	with	very	small	time-steps	or	too	large	time-steps,	if	they	

significantly	 differ	 from	 another	 population,	 than	 at	 least	 within	 a	 certain	 range	 of	 forecast	 time	

steps,	they	would	do	significantly	better	when	using	 libraries	from	the	same	population	than	when	

using	libraries	from	a	different	population.	In	Simplex	projections,	unlike	the	other	EDM	methods	we	

applied,	 each	 time-series	 is	 analyzed	 separately.	 Hence,	 we	 were	 able	 to	 make	 use	 of	 the	 finer	

resolution	of	the	phytoplankton	time-series	and	use	a	time	lag	of	one	day	between	the	time	lags	in	

the	embedding.	The	P-values	of	these	tests	against	the	forecast	time-step	used	are	shown	in	figure	

SI8	and	the	number	of	significant	p-values	(<0.05)	among	the	tests	using	the	five	different	time	steps,	

are	shown	in	Table	SI1	in	the	main	text.		

Cross	mapping	

For	each	time	point	tp,	the	E+1	closest	points	on	the	shadow	manifold	of	Y	are	taken	and	a	weight	is	

calculated	based	on	their	distance	 from	tp.	Multiplying	the	E+1	nearest	states	with	their	 respective	

weights	and	averaging	them	gives	the	value	of	Y	at	tp.	The	same	E+1	time	points,	but	from	the	time-

series	of	X	are	then	multiplied	with	these	weights	to	make	a	prediction.	Note	that	these	do	not	have	

to	be	 the	E+1	closest	points	on	X	as	well,	as	 long	as	 they	are	 close	enough,	 the	prediction	will	 be	

reasonably	skillful.	The	Pearson	correlation	coefficient	between	the	predicted	values	of	X	based	on	

the	manifold	of	Y	at	each	time	point	and	the	true	value	of	X	at	those	time	points	is	the	prediction	skill	

of	 the	 cross	 map	 (ρccm).	 In	 the	 presence	 of	 a	 causal	 link	 between	 the	 considered	 variables,	 the	

prediction	skill	will	increase	until	they	converge	to	a	certain	ρccm	when	more	time-points	are	used	to	

make	the	shadow	manifold	of	the	library	variable	(in	our	case	Y),	(Sugihara	et	al.,	2012).		

Given	that	each	selection	of	days	from	the	time-series	to	use	 in	the	 library	will	 result	 in	a	different	

cross	map	skill	(ρccm),	the	days	of	the	time-series	used	at	each	library	size	is	drawn	multiple	times	(in	

our	 case	 100	 times)	 resulting	 in	 a	 distribution	 of	 cross	 map	 skills	 (ρccm).	 In	 all	 our	 analysis,	 we	

combined	 time-series	data	of	 the	 four	 replicates	of	 each	population	within	each	 treatment,	 but	 in	



8	

	

such	 a	 way	 that	 no	 one	 vector	 (i.e.	 set	 of	 time	 lagged	 observations)	 contained	 data	 points	 from	

different	replicates	 (Clark	et	al.,	2015;	Hsieh,	Anderson,	&	Sugihara,	2007).	To	avoid	problems	with	

overfitting,	 we	 first	 performed	 CCMs	 predicting	 the	 state	 of	 X	 three	 days	 before	 based,	 on	 the	

shadow	manifold	 of	 Y	 (see	 Deyle,	Maher,	 Hernandez,	 Basu,	 &	 Sugihara,	 2016;	 Deyle,	May,	 et	 al.,	

2016)	and	then	used	the	embedding	dimension	resulting	in	the	highest	ρccm	from	this	as	embedding	

dimension	for	the	actual	CCMs.	In	the	actual	CCMs,	the	shadow	manifold	of	Y	was	used	to	predict	the	

state	 of	 X	 on	 the	 same	 day	 (see	 Figure	 SI10).	 False	 signs	 of	 positive	 cross	 maps	 were	 further	

eliminated	 by	 testing	 against	 randomly	 generated	 surrogate	 time-series	 that	 were	 used	 as	 a	 null	

distribution	(Deyle,	Maher,	et	al.,	2016;	Deyle,	May,	et	al.,	2016).	We	generated	500	surrogate	time-

series	in	which	the	order	of	the	days	was	randomly	permutated.	If	the	cross	map	skill	is	significantly	

greater	 in	 the	 original	 time-series	 than	 in	 the	 surrogate	 time-series	 based	 null	 distribution,	 the	

properties	that	were	incorporated	in	the	surrogate	time-series	are	not	enough	to	explain	the	size	of	

the	cross	map	skill.	Importantly,	we	used	the	same	permutation	of	days	for	each	of	the	4	replicates	in	

generating	null	distributions	to	also	consider	potential	false	signs	of	causal	influences	resulting	from	

synchrony	of	variables	with	external	 forces	that	acted	upon	the	four	replicates	simultaneously.	We	

determined	the	embedding	dimensions	for	both	the	surrogate	and	the	regular	time-series	similarly	

to	the	regular	CCMs	(i.e.	based	on	the	ρccm	 in	3	day	backward	predictions).	When	the	original	time-

series	performed	better	than	95%	of	the	surrogates	using	ρccm	as	a	criterion,	we	considered	them	to	

be	 significant	 (i.e.	p<0.05).	Results	of	 this	analysis	are	given	 in	Figure	SI9.	All	 cases	with	 significant	

surrogate	 tests	 (Figure	 SI9)	 showed	 convergence	 in	 the	 CCM	 plots	 (Figure	 SI10).	 An	 overview	 of	

significant	interactions	between	variables	is	given	in	Figure	5	in	the	main	text.	

S-maps	

The	 closer	 one	 zooms	 into	 a	 small	 neighborhood	 on	 the	 attractor	 manifold,	 the	 more	 linear	 the	

manifold	 becomes.	 The	 S-map	 method	 is	 a	 locally	 weighted	 linear	 regression	 scheme	 (Sugihara,	

1994).	It	approximates	the	best	local	linear	model	at	each	measured	state	by	giving	more	weight	to	
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states	 on	 the	 attractor	 manifold	 that	 are	 more	 nearby	 that	 state.	 Similar	 to	 a	 multivariate	 linear	

regression,	 S-maps	 average	 out	 noise	 by	 using	 all	 data	 points,	 rather	 than	 just	 a	 few	 neighboring	

points	in	state	space.	In	contrast	to	multivariate	linear	regression,	S-maps	allow	points	more	closely	

located	on	the	manifold	to	the	target	point	x(t)	to	be	given	a	higher	weight	in	the	forecast,	thereby	

accounting	 for	 potential	 state-dependent-differences	 in	 interaction	 strengths	 over	 time,	 which	 is	

typical	for	non-linear	dynamic	systems.	S-maps	contain	one	variable,	theta	(θ),	which	sets	the	degree	

of	 non-linearity	 by	 determining	 to	what	 extent	 points	more	 nearby	 on	 the	 attractor	manifold	 are	

given	 more	 weight	 than	 distant	 ones.	 A	 theta	 of	 zero	 leads	 to	 equal	 weights	 for	 all	 points	 and	

basically	 results	 in	 a	 simple	 multivariate	 linear	 regression.	 As	 each	 target	 point	 x(t)	 is	 positioned	

differently	 on	 the	 manifold	 with	 respect	 to	 the	 other	 points	 in	 the	 dataset,	 a	 separate	 weighted	

linear	regression	is	made	for	each	location	x(t*)	on	the	manifold.	The	weight	given	to	observation	 i	

when	making	the	local	 linear	approximation	of	x(t*)	 is	given	by	!! = !
!! ! !! !!(!∗)

! ,	where	 ! !! −

!(!∗) 	 is	 the	Euclidian	distance	between	the	two	vectors	and	! = !
! ! !! − !(!∗)!

!!! .	With	the	

separate	 local	 weightings	 around	 each	 target	 point,	 separate	 linear	 regressions	 can	 be	 made	 by	

solving	the	SVD	(singular	value	decomposition)	for	C	in	the	linear	equation	! = ! ∙ !,	where	A	is	the	

!×!	dimensional	matrix	(E	is	the	embedding	dimension	or	number	of	variables	used	to	reconstruct	

the	attractor	manifold)	of	states	!! !! 	weighted	based	on	the	proximity	 to	the	target	states	!(!∗)	

given	by	!!" = !!!!(!!),	B	 is	 the	n-element	vector	of	 future	values	of	 the	 target	 variables	!!,	 also	

weighted	based	on	 the	proximity	 to	 the	 target	 states,	 given	by	!! = !!!! !! + 1 ,	 and	C	 is	 the	E-

element	vector	of	Jacobian	elements	at	the	target	point	!(!∗)	for	the	target	variable	!!.	

S-maps	 can	 be	 used	 on	 both	 univariate	 embeddings	 of	 one	 variable	 or	 using	 a	 multivariate	

embedding	(Deyle	&	Sugihara,	2011).	When	using	a	multivariate	embedding,	the	S-map	coefficients,	

i.e.	the	regression	coefficients	of	each	locally	weighted	linear	regression	(which	are	equivalent	to	the	

partial	derivatives	on	the	manifold	or	the	Jacobian)	give	the	strengths	and	signs	of	the	 interactions	

between	variables	(Deyle,	May,	et	al.,	2016).	
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In	our	study,	all	the	forecasts	were	done	3	days	into	the	future,	so	that	direct	comparisons	with	our	

observed	 data	 could	 be	 carried	 out,	 and	 using	 leave-one-out	 cross	 validation.	We	made	 separate	

library	sets	for	each	of	the	3	populations	in	each	treatment	(6	library	sets	in	total)	and	always	used	

the	same	multivariate	embedding:	{Chla(t),	Adults(t),	Juv(t)},	irrespective	of	which	of	the	three	target	

variables	(!!)	 (Chla,	 Juveniles	or	Adults)	was	used.	We	performed	S-maps	with	the	following	theta	

values:	0,	10
-4

,	3*10
-4

,	0.001,	0.003,	0.01,	0.03,	0.1,	0.3,	0.5,	0.75,	1,	1.5,	2,	3,	4,	6,	8,	10,	15	and	20.	

The	 theta	 resulting	 in	 the	 best	 forecast	 skill	 ρ	 was	 used	 for	 each	 population,	 treatment	 and	

forecasted	 variable.	 The	 forecast	 skill	ρ	was	 found	 to	be	 always	 significantly	 (<0.0001)	better	 than	

zero	 using	 Fisher’s	 z-transformation	 (Table	 SI2).	 The	 resulting	 S-map	 estimates	 of	 interaction	

strengths	(i.e.	the	elements	of	C)	are	plotted	against	time	in	Figure	SI6	and	SI7.		

The	 effect	 of	X	 on	 the	 future	 (3	 days	 later)	 of	Y	 is	 given	 by	 !" !!!
!" ! .	 The	 interaction	 strengths	 are	

calculated	separately	at	each	time	point	in	the	time-series.	At	each	time	point,	based	on	the	location	

of	the	state	in	state	space,	a	locally	weighted	linear	regression	is	performed.	For	Adult	Daphnia,	for	

instance,	a	linear	regression	would	look	like	this:	

!"#$% ! + 3 = !! + !!!ℎ!" ! + !!!"#$% ! + !!!"# ! + !!.	

But	in	the	non-linear	forecasts	by	the	S-maps,	for	each	forecast	different	parameters	are	estimated	

because	of	the	local	weighting,	and	the	!!, !!	and	!!	become	the	elements	of	the	Jacobian	matrix:		

 !! =
!"#$%&(! + 3)
!"ℎ!"(!) ,!! =

!"#$%& ! + 3
!"#$%& ! ,!! =

!"#$%& ! + 3
!"#$ ! .	

Non-linear	 systems,	 as	 analyzed	 by	 S-maps,	 can	 thus	 be	 interpreted	 as	 linear	 systems,	 but	 with	

changing	 parameters	 depending	 on	 the	 position	 in	 state	 space	 of	 the	 system.	 By	 interpreting	

interactions	this	way,	the	straightforward	intuition	we	have	with	linear	systems	can	be	extended	to	

explore	 non-linear	 systems,	 the	 difference	 being	 that	 the	 interaction	 strengths	 change	 over	 time	

depending	on	the	states.	So	we	see	a	cloud	of	interaction	strengths	in	Figure	3,	Figure	4,	Figure	SI4	

and	 Figure	 SI5	 that	 shows	 how	 interaction	 strengths	 vary	 with	 state.	 By	 plotting	 the	 interaction	
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strengths	estimated	at	each	time	point	against	measured	observations	at	the	same	time	points	of	an	

important	variable	(e.g.	phytoplankton	in	Figure	3,	Figure	4a-d,	Figure	SI4	and	Figure	SI5)	we	are	able	

to	 see	how	 the	 interaction	 strengths	 from	 the	 locally	weighted	 linear	 regressions	predicted	by	 the	

model	 depend	 on	 this	 variable.	 To	 test	 for	 the	 significance	 of	 relations	 between	 estimated	

interaction	strengths	and	variables,	we	performed	several	linear	regressions	(Figure	4).	The	statistics	

of	these	linear	regressions	are	shown	in	Table	SI2.	

SI3.	Linking	interaction	strengths	to	genotypic	trait	values	

Figure	SI11	contains	scatter	plots	showing	the	association	between	average	interaction	strengths	of	

adults	on	juveniles	against	three	measures	of	juvenile	‘quality’	based	on	the	life	history	data	provided	

by	 Stoks	 et	 al.	 (2016):	 (A)	 average	 neonate	 size	 (body	 length);	 (B)	 inverse	 average	 number	 of	

offspring	 of	 the	 first	 two	 clutches	 (1/average	 fecundity);	 (C)	 average	 size	 at	 maturity	 divided	 by	

average	fecundity.	All	data	points	represent	averages	of	all	clones	of	a	given	population	and	in	either	

control	or	fish	kairomone	exposure	conditions	as	studied	in	the	common	garden	experiment	carried	

out	by	Stoks	et	al.	(2016).		

All	three	variables	capture	some	aspects	of	juvenile	energy	content,	but	should	be	considered	loose	

approximations	rather	than	precise	estimates.	We	plot	neonate	body	size	because	of	its	link	to	body	

mass.	We	plot	average	number	of	offspring	assuming	that	investment	per	individual	offspring	would	

become	 lower	as	 their	numbers	 increase.	This	assumes	an	equal	amount	of	available	energy	of	all	

mothers.	 The	 third	 index	 (average	 size	 at	 maturity	 divided	 by	 average	 fecundity)	 tries	 to	 take	

variation	in	energy	content	of	mothers	into	consideration	by	scaling	the	number	of	offspring	to	the	

size	of	the	mother.	

All	 three	 scatterplots	 are	 suggestive	 for	 a	 relationship	 between	 the	 interaction	 strengths	 of	 adults	

and	 juvenile	 ‘quality’,	 even	 though	none	of	 the	 relationships	 is	 significant.	 The	 lack	 of	 significance	

might	reflect:	 (i)	 the	 limited	number	of	data	points,	 (ii)	 the	approximate	nature	of	our	measures	of	

energy	content,	(iii)	the	fact	that	the	life	history	data	are	limited	to	size	of	neonates,	size	of	adults,	
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and	number	of	offspring,	whereas	the	mesocosm	data	integrate	information	on	different	age	classes	

within	the	categories	of	juveniles	and	adults,	and	(iv)	the	impact	of	density	effects	on	body	sizes	(all	

life	history	data	in	Stoks	et	al.	(2016)	were	collected	under	optimal	food	conditions).	Given	that	Stoks	

et	 al.	 (2016)	 quantified	 among	 population	 differences	 in	 genotypic	 trait	 values	 under	 highly	

standardized	 conditions,	 while	 the	 mesocosm	 experiment	 quantified	 dynamics	 of	 these	 same	

populations	 under	 highly	 fluctuating	 population	 densities	 and	 food	 conditions,	 we	 consider	 the	

observed	relationships	(with	correlation	coefficients	reaching	0.59)	to	be	suggestive	of	a	mechanistic	

link	 between	 the	 life	 histories	 of	 the	 populations	 and	 the	 observed	 dynamics	 of	 Daphnia	 and	

chlorophyll	a	in	the	mesocosms.		
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Table	SI1.	Degree	of	non-linearity	(theta)	resulting	in	optimal	S-map	forecast	skill	(i.e.	highest	ρ)	and	probability	that	the	ρ	is	greater	than	zero	using	Fisher’s	
z-transformation.	

	

	

	 	
Treatment	 Population	

Forecasted	variable:	

Chlorophyll	a	 Adults	 Juveniles	

theta	 ρ	 probability	

(Fisher)	

theta	 ρ	 probability	
(Fisher)	

theta	 ρ	 probability	
(Fisher)	

Co
nt
ro
l		 Pre-fish	 1	 0.65	 1.89E-10	 0.75	 0.59	 2.38E-08	 0.1	 0.68	 1.21E-11	

High-fish	 1.5	 0.57	 1.18E-07	 0	 0.52	 1.42E-06	 0.5	 0.55	 2.63E-07	
Reduced-fish	 2	 0.69	 3.29E-12	 0	 0.79	 2.60E-18	 0	 0.70	 1.06E-12	

Pr
ed

at
io
n	
	

Pre-fish	 1	 0.59	 2.87E-08	 6	 0.79	 2.75E-18	 1	 0.68	 1.32E-11	
High-fish	 2	 0.68	 1.23E-11	 3	 0.84	 4.45E-23	 1.5	 0.77	 1.52E-16	

Reduced-fish	 4	 0.53	 1.27E-06	 0.5	 0.74	 9.27E-15	 0.75	 0.68	 1.06E-11	
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Table	SI2.	Results	of	the	simple	linear	regressions	in	Figure	4.	The	S-map	estimates	of	the	effect	of	Daphnia	on	phytoplankton	were	regressed	on	chlorophyll	
a	concentration	(log(chla))	and	(only	for	juveniles)	the	ratio	of	Adult	Daphnia	:	chlorophyll	a	(Adult/log(chla))	for	pre-fish,	high-fish	and	reduced-fish	in	the	
Control	 and	 Predation	 treatments.	 Linear	 regressions	 were	 only	 performed	 for	 all	 population	 x	 treatment	 combinations	 when	 the	 interactions	 were	
significant	(p<0.05)	in	the	CCM	test.		

	

	

	

	

	

Treatment	 Regression	

Pre-fish	 High-fish	 Reduced-fish	

R2	 R2adj	 F1,62	 p	 R2	 R2adj	 F1,62	 p	 R2	 R2adj	 F1,62	 p	

Co
nt
ro
l		

!Chla/!Adult	on	
log(Chla)	

ρCCM	is	not	significant	 ρCCM	is	not	significant	 ρCCM	is	not	significant	

!Chla/!Juv	on	
log(Chla)	

0.68	 0.6776	 133.40	 <	0.001	 ρCCM	is	not	significant	 	0.49	 0.4804	 59.25	 0.001	

!Chla/!Juv	on	
Adult/log(chla)	

0.33	 0.3239	 31.19	 <	0.001	 ρCCM	is	not	significant	 	0.12	 0.1038	 8.298	 <	0.01	

Pr
ed

at
io
n	

!Chla/!Adult	on	
log(Chla)	

0.45	 0.4411	 50.73	 0.001	 0.25	 0.2421	 21.13	 <	0.001	 ρCCM	is	not	significant	

!Chla/!Juv	on	
log(Chla)	

0.09	 0.078	 6.30	 <	0.05	 0.39	 0.3767	 39.08	 <	0.001	 ρCCM	is	not	significant	

!Chla/!Juv	on	
Adult/log(chla)	

0.22	 0.2084	 17.58	 <	0.001	 0.47	 0.4621	 55.12	 <	0.001	 ρCCM	is	not	significant	
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Figure SI1. The average relative abundance of individual clones in each population in the Control and 

Predation treatment at the end of the experiment. Clones codes that start with a letter “T” belong to the 

reduced-fish population (“Top”), codes starting with “M” indicate clones that belong to the high-fish 

population (“Middle”) and “B” indicates clones from the pre-fish population (“Bottom”). In the pre-

fish population clone B7 was accidently replaced by clone B9 from the same population. In the high-
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fish population clones M8 and M9 are the same multi-locus genotype (cannot be discriminated with 

the marker set used), clones M10 and M12 were accidently replaced by clone M11 from the same 

population, clone M3 was accidently replaced by a clone with	the	same	multilocus	genotype	as	B6 of 

the pre-fish population and clone M2 was accidently replaced by	 a	 clone	with	 the	 same	multilocus	

genotype	as	clone T12 from the reduced-fish population. In the reduced-fish population clone T3 was 

replaced by clone M7 from the high-fish population. Error bars indicate standard error. 
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Figure SI2. Total nitrogen concentration (TN), total phosphorus concentration (TP) and water 

temperature (Temp) for each time point over the duration of the experiment based on pooled samples 

of the Control (upper panel) and Predation (lower panel) treatment mesocosms separately .  
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Figure SI3. The density of Daphnia adults, Daphnia juveniles, and chlorophyll a concentration at each 

time point for each replicate mesocosms of each population separately in the Control and Predation 

treatments.  
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Figure SI4. The effect of adults on adults [∂Adult(t+3)/∂Adult(t)] (a,b) and the effect of juveniles on 

juveniles [∂Juv(t+3)/∂Juv(t)] (c,d) as a function of the phytoplankton biomass (log(Chla) for the three 

populations: � pre-fish, � high-fish and � reduced-fish, in the Control (a,c) and Predation (b,d) 

treatments. The effect of adults and juveniles on their own future densities is a mixture of negative 

effects from resource competition with themselves and positive effects from survival. Boxplots show 

the distribution of estimated interaction strengths for the three populations. The bottom and top of the 

box show the lower and upper quartiles, the band in between them shows the median, whiskers show 

the minimum and maximum (excluding outliers) and circles show the outliers. Outliers are values 

more than 1.5 times the length of interquartile range greater than the upper quartile or smaller than the 

lower quartile. The S-map estimated interaction strengths are in normalized units. The solid line shows 

the line of no effect. 
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Figure SI5. The effect of phytoplankton on Daphnia adults [∂Adults(t+3)/∂ Chla(t)] (a,b) on Daphnia 

juveniles [∂Juv(t+3)/∂ Chla(t)] (c,d), and on phytoplankton itself [∂Chla(t+3)/∂ Chla(t)] (e,f) as a 

function of the phytoplankton biomass (log(Chla)) in the three populations: � pre-fish, � high-fish and 

� reduced-fish, in the Control (a,c,e) and Predation (b,d,f) treatments. Boxplots show the distribution 

of estimated interaction strengths for the three populations. The bottom and top of the box show the 

lower and upper quartiles, the band in between them shows the median, whiskers show the minimum 

and maximum (excluding outliers) and circles show the outliers. Outliers are values more than 1.5 

times the length of interquartile range greater than the upper quartile or smaller than the lower quartile. 

The S-map estimated interaction strengths are in normalized units. The solid line shows the line of no 

effect. 
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Figure SI6. Dynamic interactions in the Control treatment. The top three rows show the time-series of 

the three variables (phytoplankton given by log(Chla) (in log(µg/L)), adult densities (in #/L) and 

juvenile densities (in #/L)); the other rows show all the different S-map estimated interaction strengths 

as a function of the day. Row 4-6 show effects on phytoplankton, row 7-9 show effects on adults and 

row 10-12 show effects on juveniles. The first column contains the � pre-fish population, the second 

the � high-fish population and the third the � reduced-fish population. The S-map estimated interaction 

strengths are in normalized units. The solid line shows the line of no effect. 
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Figure SI7. Dynamic interactions in the Predation treatment. The top three rows show the time-series 

of the three variables (phytoplankton given by log(Chla) (in log(µg/L)), adult densities (in #/L) and 

juvenile densities (in #/L)); the other rows show all the different S-map estimated interaction strengths 

as a function of the day. Row 4-6 show effects on phytoplankton, row 7-9 show effects on adults and 

row 10-12 show effects on juveniles. The first column contains the � pre-fish population, the second 

the � high-fish population and the third the � reduced-fish population. The S-map estimated interaction 

strengths are in normalized units. The solid line shows the line of no effect. 
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Figure SI8. Simplex projection tests for population differences. One sided Mann-Whitney tests were 

used to determine if forecasts between replicate mesocosms of the same population are more skillful 

than predictions from a replicate mesocosms from another population. This is done with different 

forecast time step lengths (i.e. 3, 6, 9, 12, 15 days). Below the dashed line, the within population 

forecasts are significantly (p<0.05) more skillful (i.e. lower MAE) than the between population 

forecasts. 
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Figure SI9. Boxplots showing the null distributions of cross map skills (ρccm) in the surrogate time-

series for chlorophyll a concentration, the density of Daphnia adults and the density of Daphnia 

juveniles, for each population and both treatments separately. Cross map skills (ρccm) in the original 

time-series are indicated with grey asterisks. Red asterisks indicate cross map skills (ρccm) that were 

significantly larger than the surrogate time-series. The bottom and top of the box show the lower and 

upper quartiles, the band in between them shows the median, whiskers show the minimum and 

maximum (excluding outliers) and circles show the outliers. Outliers are values more than 1.5 times 

the length of interquartile range greater than the upper quartile or smaller than the lower quartile. 
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Figure SI10. Convergent cross-maps for each population in both treatments. Each plot shows the cross 

map between two variables in both directions against the length of the library set used to make the 

cross map. At each library length 100 random samples were used to make cross maps. The solid line 

shows the average cross map skill (ρccm) and the dashed line shows the standard deviation. If variable 

X influences variable Y, the skill of the cross map from Y to X should initially increase and then 

converge to an upper limit, as the length of the library set used is increased. 
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Figure	SI11.	Scatter	plots	showing	the	association	between	average	interaction	strengths	of	adults	on	

juveniles	against	three	measures	of	juvenile	‘quality’	based	on	life	history	data	(Stoks	et	al.,	2016):	(a)	

average	neonate	size	(body	length);	(b)	inverse	average	number	of	offspring	of	the	first	two	clutches	

(1/average	fecundity);	(c)	average	size	at	maturity	divided	by	average	fecundity. 
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