Cross-		h		Peptide	Span	
link	Peptides involved [®]	Mod. [®]	X-Linker	¹⁴ N	¹⁴ N ¹⁵ N	
				D	а	-
S87-K88	84-QEM SK DLEEVK-94	XL d	BS ³ ^d	1472.72	1486.68	Intra Intra
K12-K23	11-VKDLATVYVDVLKDSGR-27	XL XL	BS ³ CBDPS	2015.14 2386.15	2037.08 2408.09	Intra Intra
S55-K59	46-LLDNWDSVT S TFSKLR-61	XL XL	BS ³ CBDPS	2019.05 2390.09	2040.98 2412.04	Intra Intra
K94-K96	89-DLEEVKAKVQPYLDDFQK-106	XL XL	BS ³ CBDPS	2302.20 2673.24	2325.13 2696.18	Intra Intra
K133-K140	132-Q K LHELQEKLSPLGEEMR-149	XL XL	BS ³ CBDPS	2302.22 2673.26	2329.14 2700.18	Intra Intra
K206-K208	196-ATEHLSTLSEKAKPALEDLR-215	XL XL	BS ³ CBDPS	2346.26 2717.30	2373.18 2744.22	Intra Intra
K140-S142	132-QKLHELQE KLS PLGEEMR-149	XL,H	BS ³	2458.30	2485.23	Intra
S36-K40	28-DYVSQFEG S ALG K QLNLK-45	^d XL	⁴ CBDPS	2505.15	2528.11	ª Intra
K106-K107	97-VQPYLDDFQ KK WQEEMELYR-116	XL ^d	BS ³ ^d	2782.36	2811.28	Intra ^d
K52-K59		^d		2200.00	2442.04	d
	40-LLUINVV U 3 VI 3IF 3 N LK-01	AL	CDDP3	2390.09	2412.04	initia

Identified INTRA-peptide BS³ and CBDPS cross-links in isolated lipid-free, monomeric apoA-I samples derived from mixed ¹⁴N and ¹⁵N labeled proteins

^a Lysines or serines involved in cross-links are in bold.

^b Chemical modifications: XL = 1 complete cross-link (BS³ +138.06808 Da, CBDPS +509.09682 Da), H

= 1 hydrolyzed cross-linker (BS³: +156.07864 Da, CBDPS: +527.10738 Da).

^c Experimentally derived monoisotopic mass for each peptide with each isotope and the combinations.

^d Not detected. These ions were detectable in one sample set; for example CBDPS but not BS³.

Supplementary Table 2 Identified INTER-peptide BS³ and CBDPS cross-links in isolated lipid-free, monomeric apoA-I samples derived from mixed ¹⁴N and ¹⁵N labeled proteins

Cross- link	Peptides involved ^a	Mod. ^b	X-Linker	Peptide ¹⁴ N	Span	
				D)a	
K118-K239	117-Q K VEPLR-123	XL	BS ³	1608.93	1628.87	Intra
	239- K LNTQ-243	XL	CBDPS	1319.98	1999.93	Intra
K94-K239	89-DLEEV K AK-96	XL	BS ³	1670.93	1688.88	Intra
	239- K LNTQ-243	XL	CBDPS	2041.96	2059.91	Intra
K133-K239	132-Q K LHELQEK-140	XL	BS ³	1892.06	1914.99	Intra
	239- K LNTQ-243	XL	CBDPS	2263.09	2286.03	Intra
K182-K239	178-LEAL K ENGGAR-188	XL	BS ³	1897.04	1920.97	Intra
	239- K LNTQ-243	XL	CBDPS	2268.08	2292.01	Intra
NT-239	-1-GDEPPQSPWDR-10	XL	BS ³	2022.98	2046.92	Intra
	239 -K LNTQ-243	XL	CBDPS	2394.02	2417.96	Intra
K118-S142	117-Q K VEPLR-123	XL	BS ³	2037.11	2061.04	Intra
	141-LSPLGEEMR-149	XL	CBDPS	2408.15	2432.08	Intra
S167-K239	161-THLAPY S DELR-171	XL	BS ³	2041.07	2065.00	Intra
	239- K LNTQ-243	XL	CBDPS	2412.13	2432.09	Intra
S87-K239	84-QEM S KDLEEVK-94	XL	BS ³	2075.06	2097.00	Intra
	239- K LNTQ-243	XL	CBDPS	2446.10	2468.04	Intra
K107-K239	107- K WQEEMELYR-116	XL	BS ³	2151.09	2175.02	Intra
	239- K LNTQ-243	XL	CBDPS	2522.13	2546.06	Intra
K118-K133	117-Q K VEPLR-123	XL	BS ³	2158.23	2185.15	Intra
	132-Q K LHELQEK-140	XL	CBDPS	2529.28	2556.20	Intra
K118-K182	117-Q K VEPLR-123	XL	BS ³	2163.23	2191.15	Intra
	178-LEAL K ENGGAR-188	XL	CBDPS	2534.26	2562.18	Intra
K96-K239	95-A K VQPYLDDFQK-106	XL	BS ³	2191.17	2215.10	Intra
	239 -K LNTQ-243	XL	CBDPS	2562.21	2586.14	Intra
K12-K239	11-V K DLATVYVDVLK-23	XL	BS ³	2202.27	2225.21	Intra
	239- K LNTQ-243	^d	CBDPS	^a	^a	^d
NT-K118	-1-GDEPPQSPWDR-10	XL	BS ³	2289.16	2317.08	Intra
	117-Q K VEPLR-123	XL	CBDPS	2660.20	2688.12	Intra
K182-K208	178-LEAL K ENGGAR-188	XL	BS³	2306.28	2335.20	Intra
	207-A K PALEDLR-215	XL	CBDPS	2677.28	2706.20	Intra
NT-K94	-1-GDEPPQSPWDR-10	XL	BS°	2351.15	2377.07	Intra
	89-DLEEV K AK-96	XL	CBDPS	2722.19	2748.13	Intra
S201-K208	196-ATEHL S TLSEK-206	XL	BS°	2364.25	2391.17	Intra
	207-A K PALEDLR-215	XL	CBDPS	2735.28	2762.21	Intra
K107-K118	107- K WQEEMELYR-116	XL	BS°	2417.26	2445.18	Intra
	117-Q K VEPLR-123	XL	CBDPS	2788.30	2816.22	Intra
NT-K208	-1-GDEPPQSPWDR-10	XL	BS°	2432.22	2461.13	Intra
	207-A K PALEDLR-215	XL	CBDPS	2803.25	2832.17	Intra
K107-K208	107-KWQEEMELYR-116	XL	BS	2560.31	2589.23	Intra
	207-A K PALEDLR-215	XL	CBDPS	2931.36	2960.27	Intra
NT-K133	-1-GDEPPQSPWDR-10	XL	BS	2572.27	2603.19	Intra
	132-Q K LHELQEK-140	XL	CBDPS	2943.32	2974.23	Intra
NT-K182	-1-GDEPPQSPWDR-10	XL	BS°	2577.26	2609.17	Intra
	178-LEALKENGGAR-188	XL	CBDPS	2948.31	2980.21	Intra
K96-K208	95-AKVQPYLDDFQK-106	XL	BS°	2600.40	2629.32	Intra
0.000	207-A K PALEDLR-215	XL	CBDPS	2971.45	3000.37	Intra
S58-K239	46-LLDNWDSVISIF S KLR-61	XL	BS°	2621.39	2651.30	Intra
0.50 1/0.00	239- K LN1Q-243	XL	CBDPS	2992.43	3022.35	Intra
S59-K239	46-LLDNWDSVISIFSKLR-61	XL	BS°	2621.39	2651.30	Intra
1/1/0 1/000	239- K LNTQ-243	XL	CBDPS	2992.44	3022.35	Intra
K140-K239	134-LHELQEKLSPLGEEMR-149	XL	BS	2648.40	2679.31	Intra
1// 00 0 / /5	239-KLNTQ-243	XL	CRDA2	3019.45	3050.35	Intra
K133-S142	132-QKLHELQEK-140	"	BS	"	"	~
1/107 1/100	141-LSPLGEEMK-149	XL	CRDA2	2691.27	2/18.19	Intra
K107-K182		XL	BS	2705.36	2/37.28	Intra
		XL	CRDA2	3076.39	3108.31	Intra
K40-K239	28-DYVSQFEGSALGKQLNLK-45	XL	BS	2736.45	2767.36 d	Intra
	239- K LNTQ-243	*	CRDA2			

K96-K182	95-AKVQPYLDDFQK-106	XL	BS ³	2745.44	2777.37	Intra
	178-LEAL K ENGGAR-188	^d	CBDPS	^d	^d	^d
NT-K88	-1-GDEPPOSPWDR-10	XI	BS ³	2755 28	2785 20	Intra
		XI	CBDPS	3126 32	3156.25	Intra
K12-K182			BS3	2756 55	2787.46	Intra
N12-N102			CBDBS	2100.00	2101.40	Intra
K407 6467				d	3100.00 d	d
K107-5167			82			
	161-THLAPY SDELR-171	XL	CBDPS	3220.44	3252.35	Intra
NT-K96	-1-GDEPPQSPWDR-10	XL	BS°	2871.39	2903.29	Intra
	95-AKVQPYLDDFQK-106	XL	CBDPS	3242.44	3274.30	Intra
NT-K12	-1-GDEPPQSPWDR-10	XL	BS°	2882.49	2913.40	Intra
	11-VKDLATVYVDVLK-23	XL	CBDPS	3253.54	3284.45	Intra
K96-S167	95-AKVQPYLDDFQK-106	XL	BS ³	2889.47	2921.38	Intra
	161-THLAPY S DELR-171	XL	CBDPS	3260.52	3292.43	Intra
K118-K140	117-Q K VEPLR-123	XL	BS ³	2914.59	2949.48	Intra
	134-LHELQEKLSPLGEEMR-149	XL	CBDPS	3285.62	3320.52	Intra
K88-K96	84-OEMSKDI EEVK-94	XI	BS ³	2923 47	2953.38	Intra
		XI	CROPS	3204 51	3324.46	Intra
S167 K192		d	BC3	d	d	d
3107-K102				2066 20	2009 20	
1/00 1/107				2900.39	2996.30	litua
K96-K107	95-AKVQPYLDDFQK-106	XL	B2-	2999.50	3031.40	Intra
	107-KWQEEMELYR-116	XL	CBDPS	3370.54	3402.45	Intra
K40-K118	28-DYVSQFEGSALG K QLNLK-45	XL	BS°	3002.64	3037.52	Intra
	117-Q K VEPLR-123		CBDPS	"	"	"
K208-K239	196-ATEHLSTLSEKA K PALEDLR-215	XL,H	BS³	3104.66	3139,56	Intra
	239- K LNTQ-243	^d	CBDPS	^d	^d	^d
K195-K208	189-LAEYHA K ATEHLSTLSEK-206	XL	BS ³	3176.69	3213.59	Intra
	207-A K PALEDLR-215	XL	CBDPS	3547.74	3584.64	Intra
K40-K133	28-DYVSQFEGSALGKQLNLK-45	XL	BS ³	3285.75	3323.64	Intra
	132-Q K LHELQEK-140	d	CBDPS	d	d	d
NT-K59	-1-GDEPPOSPWDR-10	XI	BS ³	3301.62	3339 50	Intra
		XL	CBDPS	3672.66	3710 55	Intra
NT K140			BC3	2740.97	2792 75	Intra
NT-R140			CBDBS	3740.07 d	d 3703.75	d
0004 1/000				2000 70		
5204-K208	189-LAETHAKATEHLSTL 3 EK-200		B9	3332.78 d	3369.67	Intra
	207-AKPALEDLR-215		CBDPS			Intra
K226-K239	216-QGLLPVLESFKVSFLSALEEYTK-238	XL	BS°	3337,83	3371.75	Intra
	239- K LNTQ-243		CBDPS	"	"	"
K77-K239	62-EQLGPVTQEFWDNLE K ETEGLR-83	XL	BS°	3357.70	3395.59	Intra
	239- K LNTQ-243	XL	CBDPS	3728.74	3766.62	Intra
NT-K23	-1-GDEPPQSPWDR-10	XL,H	BS ³	3453.76	3491.66	Intra
	11-VKDLATVYVDVL K DSGR-27	d	CBDPS	^d	d	^d
K118-K226	117-QKVEPLR-123	XL	BS ³	3604.01	3641.90	Intra
	216-QGLLPVLESF K VSFLSALEEYTK-238	^d	CBDPS	^d	d	^d
K77-K182	62-FQI GPVTQFFWDNI FKFTFGI R-83	XI	BS ³	3911.98	3957.85	Intra
	178-I FALKENGGAR-188	XI	CBDPS	4283 03	4328 88	Intra
NT-K77	-1-GDEPPOSPWDR-10	XI	R\$ ³	4037 03	4083 70	Intra
			CBUDS	1108 07	1151 82	Intra
			CDDF3	4400.97	4404.00	Intro
r//-rod			DO DO	4090.01	4133.88	Intra
		XL		4461.03	4504.91	intra
K40-K140	28-DYVSQFEGSALGKQLNLK-45	XL,H	BS	4454.36	4504.22	Intra
	132-QKLHELQE K LSPLGEEMR-149	"	CBDPS	"	"	"

^a Lysines involved in cross-links are in bold.
^b Chemical modifications: XL = 1 complete cross-link (BS³ +138.06808 Da, CBDPS +509.09682 Da), H = 1 hydrolyzed cross-linker (BS³: +156.07864 Da, CBDPS: +527.10738 Da).
^c Experimentally derived monoisotopic mass for each peptide with each isotope and the combinations.
^d Not detected. These ions were detectable in one sample set; for example CBDPS but not BS³.

ApoA-I Sample	l(O) ^a (Guinier)	R ^{, b} (Guinier)	Real Space R _g	D _{max} c	Volume	DAMMIF NSD ^d
	cm⁻¹	Å	Å	Å	ų	Å
CBDPS						
4.0 mg/ml	603	26	25.29	85	70165	
2.0 mg/ml	301	25.8	25.24	83	68091	0.579 ± 0.032
1.0 mg/ml	149	25.1	25.53	83	70191	
BS ³						
4.0 mg/ml	569	25.95	25.54	88	77337	
2.0 mg/ml	294	25.58	25.25	81	77334	0.596 ± 0.024
1.0 mg/ml	140	27.67	25.24	81	83946	

Experimental parameters from SAXS sampling of monomeric apoA-I cross-linked with CBDPS or BS3

Supplementary Table 4 Universal cross-linking list across four studies on lipid-free monomeric apoA-I

Pos	iduo		Bong	ortod ^a			ross-Linkor	0	Distance ^c
1	iuue 2	Silva et al	Pollard et al	Segrest et al	Melchior		BC3	CROPS	
	2	Silva et al	r ollaru et al	Segrest et al	Weichiol	MIDA	000	CDDF3	(~)
1	10		v	v	v	v	v	v	22
1	12		Λ	Λ	×	~	×	Λ	23
1	23 50		V		<u> </u>		×	v	20
1			^		<u> </u>		 	<u> </u>	20
1	11				<u>^</u>		X	<u>^</u>	20
1	00				<u> </u>		<u> </u>	<u> </u>	28
1	94	X			<u>X</u>		<u>X</u>	<u>X</u>	28
1	96	X	V		<u> </u>		<u> </u>	<u>X</u>	28
1	118		X		<u>X</u>		<u>X</u>	<u>X</u>	28
1	133				<u>X</u>		<u>X</u>	X	28
1	140				<u>X</u>		X		28
1	182				X		X	X	28
1	195			Х		X			23
1	208				X		X	Х	28
1	239				X		X	X	28
12	23	Х	X	Х	Х	Х	X	Х	23
12	182				Х		Х	Х	28
12	195		Х						28
12	226			Х		Х			23
12	239				Х		Х		28
23	59	Х	Х	Х	Х	Х			23
23	239			Х		Х			23
36	40				Х		Х	Х	28
40	45	Х	Х	Х		Х			23
40	59		Х						28
40	94			Х		Х			23
40	118		Х		Х		Х		28
40	133		Х	Х	Х	Х	Х		23
40	140		Х		Х		Х		28
40	182		Х						28
40	239		Х	Х	Х	Х	Х		23
45	59		Х						28
52	59				Х		Х	Х	28
55	59				Х		Х	Х	28
58	239				Х		Х	Х	28
59	195			Х		Х			23
59	239			Х	Х	Х	Х	Х	23
77	88				Х		Х	Х	28
77	182				Х		Х	Х	28
77	195			Х		Х			23
77	208			Х		Х			23
77	239				Х		Х	Х	28
87	88				X	1	X	-	28
87	239				X	1	X	Х	28
88	94	Х	Х		- •	1		- •	28
88	96	~	~		Х	1	х	Х	28
88	118		Х		~	1	~		28
88	195		~	X		x			23
94	96	X	X	X X	X	X	X	X	23
9/	226	~ ~	Λ	×	~	X	~	~	23
94	220		Y	×	X	X	X	X	23
06	106	v	×	^	^	^	~	^	20
90	100	^	^		v	1	Y	Y	20
90	167				×	1	×	×	20
90	107				^ V	1	~ ~	^	<u>∠0</u> 29
90	102	v		v	۸	~	^		20
90	195	<u> </u>		<u> </u>	V		v	×	23
90	208	<u> </u>		٨	٨	~	~	^	23
96	226	X				I			28

96	239			Х	Х	Х	Х	Х	23
106	107	Х		Х	Х	Х	Х	Х	23
107	118				Х		Х	Х	28
107	167				Х			Х	28
107	182				Х		Х	Х	28
107	208				Х		Х	Х	28
107	239			Х	Х	Х	Х	Х	23
118	133		Х	Х	Х	Х	Х	Х	23
118	140	Х	Х	Х	Х	Х	Х	Х	23
118	142				Х		Х	Х	28
118	182				Х		Х	Х	28
118	195			Х		Х			23
118	208			Х		Х			23
118	226			Х	Х	Х	Х		23
118	239			Х	Х	Х	Х	Х	23
133	140	Х	Х	Х	Х	Х	Х	Х	23
133	142				Х		Х		28
133	239			Х	Х	Х	Х	Х	23
140	142				Х		Х	Х	28
140	239			Х	Х	Х	Х	Х	23
167	182				Х			Х	28
167	239				Х		Х	Х	28
182	195			Х		Х			23
182	208				Х		Х	Х	28
182	226			Х		Х			23
182	239				Х		Х	Х	28
195	206			Х		Х			23
195	208				Х		Х	Х	28
195	226			Х		Х			23
195	239			Х		Х			23
201	208				Х		Х	Х	28
204	208				Х		Х		28
206	208	Х	Х	Х	Х	Х	Х	Х	23
206	226			Х		Х			23
208	239				X		Х		28
226	238	Х							28
226	239			Х	X	Х	Х		23
238	239	Х	Х	Х		Х			23

^a Cross-linked residues reported in the current study or Silva et al ¹, Pollard et al ², or Segrest et al ³.
 ^b Cross-link found with cross-linking reagent
 ^c Upper-limit Cα-Cα distance used as cross-linking constraint for consensus model

Reported structural features of lipid-free monomeric apoA-I determined by far circular dichroism

Author	Year	A-I Source	[PRO] mg/ml	Temp (°C)	Alpha	Beta- Sheet	Coil/ Turns	Ref
Davidson et al	1996	Plasma	0.05-0.1	25	57.0%		43.0%	4
Bergeron et al	1997	Native His-apoA-I	0.067	24	56.0% 50.0%		44.0% 50.0%	5 a
Rogers et al	1998	Plasma	0.01-0.56	25	68.0%		32.0%	6 b
Sparks et al	1999	Plasma	0.067	24	49.0%		51.0%	7 c
Suurkuusk et al	1999	Plasma	0.1	25	44.0%		56.0%	8 d
Davidson et al	1999	Pro-apoA-I	0.05-0.1	25	56.0%		44.0%	9 d
Huang et al	2000	Pro-apoA-I	0.1	25	45.0%		55.0%	10
Panzenbock et al	2000	Plasma	0.1	25	52.0%	7.9%	37.3%	11
Weinberg et al	2000	Plasma	0.08	25	54.0%		46.0%	12
Sigalov et al	2001	Plasma	0.1	25	62.0%		38.0%	13
Gorshkova et al	2002	Pro-apoA-I	0.025-0.1	25	58.0%		42.0%	14 d
Reschly et al	2002	Plasma	0.1	25	40.0%		60.0%	15
Saito et al	2003	Plasma	0.025-0.05	25	49.0%		51.0%	16 e
		r-apoA-I			46.0%		54.0%	
Fang et al	2003	Plasma	0.06-0.1	25	60.0%		40.0%	17 f
		I-apuA-i Ploomo			46.0%		40.0%	
Saito et al	2004	r-apoA-I	0.025	25	40.0% 44.0%		54.0% 56.0%	18 e
Han et al	2005	r-apoA-I	0.07	25	52.0%		48.0%	19 d
Silva et al	2005	Plasma	0.03	25	55.0%	8.0%	37%	1
Zhu et al	2005	His-apoA-I	0.06-0.1	25	54.0%		46.0%	20 a
Arnulphi ot al	2005	Plasma	0.054	15	48.0%		52.0%	21
Annuiphi et ai	2005	Flasilla	0.054	37	50.0%		50.0%	
Gorshkova et al	2006	Pro-anoA-I	0 025-0 08	25	58.0%		42.0%	22 g
	2000		0.025-0.00	25	59.0%		41.0%	
Tanaka et al	2008	r-apoA-I	0.05	25	44.0%		56.0%	23 d
Fukuda et al	2008	Plasma	0.06	37	44.0%		56.0%	24
Kono et al	2009	r-apoA-I	0.03-0.05		46.0%		54.0%	25 d
Chetty et al	2009	Plasma	0.05	25	49.0%		51.0%	26
Jayaraman et al	2012	Plasma	0.02	25	57.0%		43.0%	27
Zehender et al	2012	r-apoA-I	0.1	25	45.0%		55.0%	28 h
Della-Riva et al	2013	r-apoA-I	0.1	25	56.0%		44.0%	291

^a Studies performed on recombinant human apoA-I which contains Met-Arg-Gly-Ser-(His)₆ on the NT

^b CD was obtained on a range of values that both fall within and exceed concentrations reported for monomeric apoA-I.

 $^{\circ}$ The source of apoA-I is unclear. "Lyophilized apoA-I (purity > 96%) were purchased from Biogenesis."

^d Studies performed on recombinant human proapoA-I which contains a hexapeptide on the NT normally cleaved when secreted into plasma.

^e Studies performed on recombinant human apoA-I which containing a Gly-Ser, on the NT.

^f Studies performed on recombinant human apoA-I containing a Gly-Ala-Met-Gly-Ser, on the NT.

^g Studies performed on recombinant human proapoA-I containing a hexapeptide on the NT normally cleaved when secreted into plasma. Protein was expressed in either a baculovirus (top) or adenovirus (bottom) system. ^h Studies performed on recombinant human apoA-I containing a Gly-Gly on the NT.

Studies performed on recombinant human apoA-I which contains a point mutation, E2D at the Nterminus.

Reported cleavage sites on lipid-free monomeric apoA-I determined by limited proteolysis

Author	Year	A-I Source	[PRO] mg/ml	Temp (°C)	Proteolytic Enzyme	Cleavage Sites	Ref
Roberts et al	1997	Plasma	0.1	37	a,b	Y115, E125, E136, E191, Y192, L200, L211, E212, E223, F225, E235	30
Rogers et al	1997	Plasma	0.1	37	а	F57, L122, Y192	31

^a Chymotrypsin: Cleaves at the carboxy-terminal side of Tyrosine (Tyr, Y), Phenalanine (Phe, F), Tryptophan (Trp,W), and Leucine (Leu, L). ^b *S. Aureus* V8 protease: Cleaves at the carboxy-terminal side of glutamic acid (Glu, E) residues

Supplementary Table 7 Reported molecular dimensions for lipid-free monomeric apoA-I measured by sedimentation velocity

Author	Year	A-I Source	[PRO] mg/ml	Length (Å)	Width (Å)	Axial Ratio	Ref
Barbeau et al	1979	Plasma	0.05-0.7	151.2	25.2	6.0	32
Edelstein et al	1980	Plasma	0.05	164	25	6.6	33
Rogers et al	1998	Plasma	0.1-0.2	168	24	7.2	31