SUPPLEMENTAL MATERIAL

CRISPR-Cas9 Screen Reveals a MYCN-amplified Neuroblastoma Dependency on EZH2

Liying Chen, Gabriela Alexe, Neekesh V. Dharia, Linda Ross, Amanda Balboni Iniguez, Amy Saur Conway, Emily Jue Wang, Veronica Veschi, Norris Lam, Jun Qi, W. Clay Gustafson, Nicole Nasholm, Francisca Vazquez, Barbara A. Weir, Glenn S. Cowley, Levi D. Ali, Sasha Pantel, Guozhi Jiang, William F. Harrington, Yenarae Lee, Amy Goodale, Rakela Lubonja, John M. Krill-Burger, Robin M. Meyers, Aviad Tsherniak, David E. Root, James E. Bradner, Todd R. Golub, Charles W. M. Roberts, William C. Hahn, William A. Weiss, Carol J. Thiele, and Kimberly Stegmaier

SUPPLEMENTAL METHODS

Cell Lines

SIMA and MHH-NB-11 were maintained in RPMI (Cellgro) supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicillin-streptomycin with glutamine (Cellgro). All other neuroblastoma cell lines were maintained in DMEM (Cellgro) supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicillin-streptomycin with glutamine (Cellgro). All cell lines were cultured at 37°C in a humidified atmosphere containing 5% CO₂.

Determination of cell viability

Cell viability was assessed using the CellTiter-Glo Luminescent Cell Viability Assay (Promega). Luminescent readings were obtained using the FLUOstar Omega microplate reader (BMG Labtech). Cells were treated across a range of concentrations and area under curve was calculated from ATP luminescence measurements after 5 days of treatment using log-transformed, normalized data in GraphPad Prism 6.0 (GraphPad Software, Inc.). Cell viability was also determined following pLKO.1 lentiviral shRNA-mediated knockdown or CRISPR-Cas9-mediated knockout of *EZH2*. ATP content was measured at multiple time points after transduction.

Flow Cytometry

Apoptosis was measured using the Annexin V: APC Apoptosis Detection Kit as per the manufacturer's protocol (BD Pharmingen). Cell cycle was determined by measuring DNA content using propidium iodide staining.

In Vivo Studies

Inducible shRNA experiment: The human neuroblastoma cell line NGP was stably transduced with a TET-inducible *EZH2* shRNA to generate an NGP-sh*EZH2* cell line. Tumor xenografts were established by injecting 2×10^6 NGP-sh*EZH2* cells in the left flank of 5-week-old female athymic nude mice (Taconic). When tumors reached 75-150 mm³, animals were stratified into cohorts that received doxycycline-chow or regular chow (*n*=10 per group). Tumor growth was monitored with a caliper 3 times a week. In each group, 5 tumors were collected and protein lysate analyzed for EZH2 expression and target inhibition on Day 20 after starting treatment. Statistical significance of survival curves was determined by a log-rank (Mantel-Cox) test and variance of the tumor volume between doxycycline and control was determined by two-way ANOVA. All xenograft studies were approved by the Animal Care and Use Committee of the National Cancer Institute, and all mice treatments, including their housing, were in accordance with the institutional guidelines (PB-023).

Drug treatment experiment with JQEZ5: Tumor xenografts were established in NOD/SCID/gamma female mice using 2×10^6 Kelly cells resuspended in 30% matrigel and injected into the flank. After cell implantation, mice were randomized into cohorts to be treated with 100 mg/kg JQEZ5 (*n*=10) or vehicle (10% HP- β -CD/90% water) (*n*=10) delivered by daily IP injection for 7 days, followed by a 5-day holiday and subsequently treated with 75 mg/kg JQEZ5 or vehicle for 9 days. Tumor volume was measured by caliper twice weekly and animals were sacrificed when tumor volumes exceeded 2,000 mm³. All animal studies were conducted under the auspices of protocols approved by the Dana-Farber Cancer Institute Animal Care and Use Committee.

Drug treatment experiment with GSK126: Tumor xenografts were established in NOD/SCID/gamma female mice using 2×10^6 human neuroblastoma cell CHP-212, SK-N-BE(2), or SH-SY-5Y, resuspended in 30% matrigel and injected into the flank. After cell implantation, mice were randomized into cohorts to be treated with 150 mg/kg GSK126 or vehicle (20% Captisol pH4.5) delivered by daily IP injection. Tumor volume was measured by caliper twice weekly and animals were sacrificed when tumor volumes exceeded 2,000 mm³. All animal studies were conducted under the auspices of protocols approved by the Dana-Farber Cancer Institute Animal Care and Use Committee.

CRISPR-Cas9 Screening

The CRISPR-Cas9 screen was performed using the Avana library containing 73,372 guides and an average of 4 guides per gene. The library contains approximately 1,000 guides that do not target any location in the reference genome as negative controls.

The version of Avana data is available on the Achilles Portal with the recent publication of the CERES algorithm (1). This dataset contains 341 cell lines, including 11 neuroblastoma lines: CHP-212, IMR-32, Kelly, KP-N-YN, MHH-NB-11, NB1, SK-N-BE(2), SK-N-AS, SK-N-DZ, SK-N-FI, and SIMA. Initially, cancer cell lines were transduced with Cas9 using a lentiviral system. Cell lines that met criteria, including acceptable Cas9 activity measuring ability to knockout transduced GFP, appropriate growth properties and other parameters, were then screened with the Avana library. A pool of guides was transduced into a population of cells. The cells were cultured for 21 days in vitro, and at the end of the assay, barcodes for each guide were sequenced for each cell line in replicate.

The sgRNA read count data were deconvoluted from sequence reads by using PoolQ. A series of quality control pre-processing steps was performed to remove samples with poor replicate reproducibility, as well as guides that have low representation in the initial plasmid pool. The replicates that failed fingerprinting and the replicates with less than 15 million reads were removed and then the replicate read counts were scaled to 1 million total reads per replicate. The replicate pairs with Pearson correlation coefficients < 0.7 and the sgRNAs with low representation in the pDNA reference library were filtered out. Next, the log fold-change (logFC) from pDNA reference was calculated and the replicates with logFC SSMD between positive and negative control sgRNAs > -0.5 were removed. The replicate logFC data were Z-MAD normalized and the gene scores were inferred by running the computational tool CERES (1) and then normalized with lists of core cell-essential and non-essential genes. CERES was developed to computationally correct the copy-number effect and to infer true underlying effect of geneknockout as described in (1). CERES models the observed normalized log-fold change for each sgRNA and cell line as the linear combination of gene-knockout and copy-number effects with coefficients giving the guide activities. Copy-number effects are fit with a linear piece-wise model in each cell line. Once all parameters have been fit, the inferred gene scores and guide activity scores are extracted and reported.

Independent Component Analysis

Independent Component Analysis (ICA) (2, 3) was applied to the CERES CRISPR-Cas9 genelevel data to identify the dependencies significantly associated with the neuroblastoma lineage. ICA is a machine learning data decomposition technique for revealing hidden non-Gaussian independent factors that are able to accurately deconvolve the data signal.

ICA models the CERES CRISPR-Cas9 gene dependency scores as a weighted sum of independent component signals, each component capturing a different biological process associated with the tumor lineage dependencies. The genes having the largest projection onto a component (estimated based on the cut-off ICA Z-score ≥ 2.5) are representative for the biological process associated with the component and are assigned as the "leading edge" gene set for the component.

Prior to performing ICA, the CERES gene scores were rank normalized per sample, i.e., the gene level dependency scores were replaced with their rank within each sample. A robust set of 100 independent components was identified from the CERES CRISPR-Cas9 screening rank normalized data by averaging 500 runs of the FastICA v1.2.1 procedure (4) implemented in R v3.2 (https://cran.r-project.org/web/packages/fastICA).

The comparative marker selection method implemented in GenePattern v3.9.10 was applied for ranking the independent components based on the Signal to Noise Ratio (SNR) scores that differentiate the neuroblastoma cell lines from all other cell lines. The top 3 independent components that were identified as significantly associated with depletion in neuroblastoma cells vs. other cell lines (SNR \leq -0.5, permutation $P \leq$ 0.05, False Discovery Rate (FDR) \leq 0.05) were labeled IC1, IC2 and IC3 and used to project the CERES dependency data (Figure 1A).

The *k*-nearest neighbor classification model implemented in the R v3.2 package rminer, (http://cran.r-project.org/package=rminer) was trained for k = 3 on the CERES data projected on the independent components IC1, IC2 and IC3, which are associated with neuroblastoma depletion. This model was shown to accurately separate the neuroblastoma cells from the other cell lines (mean error for 10-fold cross validation 0.026).

The top 100 leading edge genes associated with the components IC1, IC2 and IC3 are presented in Supplementary Table S1A. The PRC2 complex genes *EZH2*, *EED*, *SUZ12* were included in

the leading edge gene set for the component IC3. Gene set enrichment analysis (GSEA) vs. the MSigDB c2.all v5.1 collection (Broad Institute) was performed for the leading edge genes of the independent components IC1, IC2 and IC3 and revealed that each of the leading gene sets were enriched in "PRC2 targets" gene set signatures.

Single-sample Gene Set Enrichment Analysis for Neuroblastoma Dependencies

A single-sample GSEA (ssGSEA) analysis (5-7) on the CERES dependency data across the Mammalian Protein Complexes in the CORUM Database available from the ConsensusPathDB platform (8, 9) was performed to further validate the functional association of the PRC2 complex with neuroblastoma dependencies in the CRISPR-Cas9 screening data.

Single-sample GSEA (ssGSEA) is a variant of the GSEA method that assigns to each individual sample, represented as a ranked list of genes, an Enrichment Score (ES) with respect to each gene set in a given collection of pathways. The ssGSEA ES is calculated as a running sum statistic by walking down across the ranked list of genes, increasing the sum when encountering genes in the gene set and decreasing it when encountering genes not in the gene set. The significance of the ES is estimated based on a permutation *P*-value and adjusted for multiple hypotheses testing through FDR. A positive ES denotes a significant overlap of the signature gene set with groups of genes at the top of the ranked list, while a negative ES denotes a significant overlap of the signature gene set with groups of genes at the bottom of the ranked list. For each sample, the ES was further transformed into a Z-score by subtracting the average of the ES's assigned to all other samples and by dividing the result to their standard deviation.

While GSEA generates a gene set's enrichment score with respect to phenotypic differences across a collection of samples within a dataset, ssGSEA calculates a separate enrichment score for each pairing of sample and gene set, independent of phenotype labeling. In this manner, ssGSEA transforms a single sample's gene expression profile to a gene set enrichment profile. A gene set's enrichment score represents the activity level of the biological process in which the gene set's members are coordinately up- or down-regulated. The gene set representation has an unsupervised biological interpretability and can be further analyzed with statistical and machine learning methods.

The ssGSEA Z-scores for a gene set vs. a tumor cell line in the CRISPR-Cas9 screening data describe the level of dependency of the gene set vs. the cell line, based on the significance cut-off Z-score for depletion \leq -1.

The EED_EZH2 protein complex (gene members *EED*, *EZH2*, *SUZ12*, *RBBP4*, *AEBP2*) showed a significant dependency associated with the neuroblastoma cell lines vs. all other cell lines (P = 0.006, Mann-Whitney non-parametric t-test) and scored as most depleted in the neuroblastoma lineage (average Z-score = -1.48 across the neuroblastoma lineage, average Z-score = 0.05 across all other lineages). The distribution of the ssGSEA Z-scores for the EED_EZH2 protein complex across the lineages showed a significant variability across the lineages in the CERES data (1-way ANOVA F score = 3.05, P < 0.0001).

ChIP-seq and ChIP-qPCR

Crosslinking was performed in fresh cell culture medium containing 1% formaldehyde with gentle rotation for 5 mins in room temperature. Fixation was stopped by the addition of glycine (125 mM final concentration). Fixed cells were trypsinized, washed twice in ice-cold PBS, and then resuspended in 3-x10⁶ cells/130 µl SDS lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1, supplemented with fresh Complete mini-protease inhibitor cocktail (Roche, Indianapolis, IN)). Chromatin was sheared to about 200bp fragments by Covaris ultrasonication. Centrifugation was used to remove debris at 4° C for 10 mins at top speed. The supernatant was diluted 1:10 using ice-cold ChIP dilution buffer (0.01% SDS, 1.1% Triton-X100, 1.2 mM EDTA, 16.7 mM Tris-HCl, 167 mM NaCl pH 8.1, supplemented with fresh Complete miniprotease inhibitor cocktail). Five percent of the diluted sample was saved as input controls and the remainder of the diluted sample was used for immunoprecipitation with antibodies overnight at 4°C. Precipitates were washed sequentially with ice cold low salt wash (0.1% SDS, 1% Triton-X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM NaCl), high salt wash (0.1% SDS, 1% Triton-X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl), LiCl wash (0.25 M LiCl, 1% IGEPALCA-630, 1% deoxycholic acid, 1 mM EDTA, 10 mM Tris-HCl, pH 8.1) and then twice with TE (1 mM EDTA, 10 mM Tris-HCl, pH 8.1). They were then eluted and reverse cross-linked in elution/reverse cross-linking buffer (1% SDS, 0.1 M NaHCO3, 0.2 M NaCl) for 5 hours. Eluted DNA fragments were purified with Qiagen PCR purification kit and analyzed by qPCR, or barcoded with a NEBNext DNA library preparation kit (NEB, Ipswich, MA) and subjected to sequencing on Illumina HiSeq 2000 platform.

Antibodies used in ChIP experiments are: anti-EZH2 (Cell Signaling 5246S); anti-MYCN (Santa Cruz sc-53993); anti-H3K27me3 (Millipore 07-449); anti-H3K4me3 (Abcam ab8580).

Primer sequences for ChIP-qPCR: MCM7 forward: GCGGGAGGTGAAGAAGGCC; MCM7 reverse: CTGTGGCCGGCCAACCG; ZIC3 forward: CGGTGTGTAATTCGGGAAGTG; ZIC3 GCCAAGCGTTGACCCTTTAG; EZH2 (TSS-300bp) forward: reverse: CTGCACACCGCCTTCCT; EZH2 (TSS-300bp) reverse: CCGCCGTCTCTTTGTTCTT; EZH2 CCAGTGGCGTCCCTTACAG; EZH2 (TSS-200bp) (TSS-200bp) forward: reverse: TGCGCTCAGGGCTCGT; EZH2 (TSS) forward: AAAAGCGATGGCGATTGG; EZH2 (TSS) reverse: GGCTCCACTGCCTTCTGAGT.

ChIP-seq Data Analysis

All of the ChIP-seq data sets were aligned using Bowtie v2.2.3 (10, 11) to the build version NCBI37/hg19 of the human genome. Quality control tests were performed based on the FastQC v.0.11.2 software (Babraham Bioinformatics, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and by using the ChIPQC library available from Bioconductor v3.2 (12).

The ChIP-seq peaks for EZH2 and H3K4me3 were identified using MACS v1.4.3, and the ChIPseq broad peaks for H3K27me3 were identified using MACS v.2.0.10 (13) with the cut-off 1e-05 for the *P*-value. The peaks were annotated by using the Annotate Peaks function available in the Homer v4.7 package (14).

The relative ChIP occupancy signal in the gene promoter regions expressed in units of reads per million mapped reads per bp (rpm/bp) was computed for each mark by using the DeepTools v2.2.3 software (15) as the ratio between the area under curve (AUC) of the mark normalized signal vs. the AUC of the background input signal. Gene promoters were defined as the +/- 5 kb regions around the gene transcription start site (TSS). The gene targets for EZH2 and H3K27me3 were identified separately for each of the Kelly and LAN-1 cells as the genes with high relative occupancy of EZH2 or H3K27me3, respectively, ChIP signal in the promoter. The "high" level for the relative occupancy signal in the promoter regions was estimated based on the cut-off 1.5 for the ratio of the AUC signal of the mark vs. the AUC signal of the input. In addition, "core" lists of gene targets for EZH2 andH3K27me3 were defined by intersecting the target gene sets for Kelly and LAN-1 cell lines. The lists of gene targets for EZH2 and H3K27me3 are provided in

Supplemental Table 3. The correlation between the relative promoter signal for H3K27me3 and the relative promoter signal for EZH2 across the hg19 genes was tested for significance by using the rcorr function available in the Hmisc R v3.4 library.

Actively transcribed genes were assessed based on the existence of significantly enriched regions of H3K4me3 within \pm 5 kb of the TSS, combined with the Z-score of genome-wide expression > 1. In order to verify that these genes were not bivalently marked or repressed, we assayed the repressive histone mark H3K27me3 and required that no significantly enriched region for H3K27me3 overlapped within \pm 5kb of the TSS gene promoter region.

The ChIP-seq data for this study is available for download from the Gene Expression Omnibus (GEO) repository (GSE85432) upon manuscript publication.

Metagene Representation of Gene Promoter Occupancy

The metagene representations of global genome-wide average ChIP-seq signal promoter occupancy for EZH2, H3K27me3 and H3K4me3 were performed as described in (16) based on the expression data for cells cultured in baseline growth conditions, available for the Kelly cells in the CCLE database (17) and for the LAN-1 cells in the Gene Expression Omnibus GSE56552 data (18). The genes for each data set were grouped into three categories: highly expressed (Z-score for genome-wide log2 RMA expression \geq 1.5), medium expressed (absolute Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5) and poorly expressed (Z-score for genome-wide log2 RMA expression \leq 0.5). The metagenes for the EZH2, H3K27me3 and H3K4me3 relative ChIP signal occupancy at promoters were created for 500 randomly selected genes from each of the three categories. The ChIP-seq signal was mapped to the +/- 10kb regions flanking TSS. The TSS +/- 10kb regions were aligned and split into 50 bp bins. The normalized ChIP-seq signal occupancy with background input subtracted was then computed as the "Area under the Curve" density signal in rpm/bp units in the flanked regions. Finally, the meta-representations were derived based on the average norma

GSEA for EZH2 and H3K27me3 Target Genes

The GSEA v2.2.0 software (6, 7) was utilized to identify gene sets that have a significant overlap with the genes marked by EZH2 and by H3K27me3. First the hg19 genes were ranked based on the H3K27me3, respectively based on the EZH2 relative ChIP-seq occupancy signal in the

promoter. The goal of GSEA was to identify the gene sets that are distributed at the top or at the bottom of the ranked list of genes. For this purpose, the Pre-Rank GSEA module was run across the comprehensive collection c2 of 4,726 curated canonical pathways and gene sets, available in the MSigDB v5.1 database http://www.broadinstitute.org/gsea/msigdb/index.jsp (6). Gene sets with a nominal $P \le 0.05$ and an FDR ≤ 0.25 for the Kolmogorov-Smirnov enrichment test were considered significant hits. The gene sets identified as significantly enriched in gene targets for EZH2 and H3K27me3 were further tested for association with the PRC2 complex by applying the two-tailed Fisher exact test. Of the 4,726 gene sets available in the c2 collection of MSigDB, 83 were manually annotated as related to the PRC2 complex.

In addition, the lists of core gene targets for EZH2 (361 genes) and H3K27me3 (428 genes) were further tested for significant overlap with the MSigDB v5.1 c2 collection of 4,726 curated canonical pathways based on the "Investigate GeneSets" module available in MSigDB. The significance of the overlap was assessed based on a hypergeometric test, with the 0.05 cut-offs for the *P*-value and the FDR.

Genome-wide Expression Analysis

Kelly and LAN-1 cells were treated in duplicate with 2 μ M GSK126 or DMSO for 2 or 5 days. Total RNA was extracted with an RNeasy Kit (Qiagen) and profiled by RNA sequencing (HiSeq, Illumina) at the Center for Cancer Computational Biology (CCCB) at the Dana-Farber Cancer Institute.

RNA-seq Data Processing

Quality control tests for the mapped reads were performed using the FASTQC software (www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads were aligned to the GRCh37/hg19 human genes by using Tophat2 v2 (19). Quality control tests for the aligned reads and for the replicate consistency were performed by using the qualimap v2.2 (20) and the SARTools (21) pipelines. The total number of reads for individual samples ranged from 17 to 24 Mb. The average percentage of uniquely mapped reads in the aligned data was 86.50%, with a standard deviation 2.3%. The RNA-seq data for this study is available for download from the Gene Expression Omnibus (GEO) repository (GSE85432) upon manuscript publication.

Gene level reads and gene level expression estimated as log2(FPKM) scores were computed using the Feature Counts method implemented in the Bioconductor v3.2 RSubread package (22).

The genome-wide expression data were projected onto a heatmap by using the GENE-E software (http://www.broadinstitute.org/cancer/software/GENE-E/). The overall significance of the differential expression between the control and treatment phenotypes was estimated by using the EdgeR method available from the Bioconductor v3.2 EdgeR library (23) with the significance cut-off $P \le 0.05$ for the posterior probability.

Comparative Marker Analysis

The 16 samples available in the data were analyzed for changes in expression induced by GSK126 vs DMSO at days 2 and 5 in individual cell lines and in both cell lines. The Comparative Marker Selection module from GenePattern v3.9.6 (24) was employed to identify individual genes that were differentially expressed between treated and vehicle conditions. The analysis was performed on the gene level expression data estimated as log2(FPKM) by applying a 2-sided signal-to-noise ratio (SNR) test followed by 1,000 permutations of the phenotype labels. The settings for the SNR parameters were log-transformed-data: yes, complete: no, balanced: no, smooth *P*-values: yes. Molecular signatures for genes down-regulated (respectively up-regulated) by GSK126 vs. DMSO were defined based on the cut-offs: absolute fold change for log2(FPKM) expression \geq 0.5 (for "stringent" signatures), absolute fold change for log2(FPKM) expression \geq 0.5 (for "relaxed" signatures), permutation $P \leq 0.05$, Benjamini-Hochberg false discovery rate (FDR) \leq 0.05.

The differential changes in expression induced by GSK126 were first identified separately for the Kelly and LAN-1 cells. "Core" lists of differentially upregulated and downregulated genes were defined by intersecting the lists of genes differentially upregulated or downregulated by GSK126 in each of the Kelly and LAN-1 cell lines. The GSK126 "stringent" de-repression signature at day 5 consists of 348 genes upregulated between treated samples vs. vehicle in Kelly cells 244 genes upregulated in LAN-1 cells, and 30 core genes upregulated in both cell lines. The GSK126 "relaxed" de-repression signature at day 5 consists of 1,346 genes upregulated between treated samples vs. vehicle in Kelly cells, 1,187 genes upregulated in LAN-1 cells, and 248 core genes up-regulated in both cell lines.

GSEA for the Expression Changes Induced by GSK126

GSEA v2.1.0 software (6, 7) was used to identify functional associations of the molecular phenotypes induced by GSK126 with a compendia of gene signatures: (a) the MSigDB v5.1 collection c2 of 4,726 curated pathways and experimental gene sets, (b) the MSigDB v5.1

collection c5 of 825 Gene Ontology – Biological Processes gene sets, (c) the lists of gene targets for EZH2 and H3K27me3 identified in our ChIP-seq experiments, and (d) signatures of genes repressed in *MYCN*-amplified and high-risk neuroblastoma tumors.

The signatures of genes repressed in *MYCN*-amplified or high-risk neuroblastoma tumors were derived from two primary neuroblastoma gene expression datasets: the Affymetrix U133 A GSE12460 (25) data describing 64 tumors, and the RNA-seq GSE49711 (26) data describing 498 tumors. Gene sets with less than 15 genes or more than 500 genes were excluded from the analysis. Gene sets with a nominal $P \le 0.05$ and FDR ≤ 0.25 were considered significant hits. The results were visualized on GSEA plots, heatmaps and networks for selected gene signatures.

The Enrichment Map v2.1.0 software (27) was employed to organize the significantly enriched gene sets into a network called an "enrichment map." In the enrichment map, the nodes correspond to the gene sets and the edges reflect the overlap between the gene sets corresponding to the nodes according to the two-tailed Fisher exact test. The size of a node correlates with the enrichment *P*-value for the gene set associated to the node. The hubs correspond to collections of gene sets with a unifying functional group label.

Association of the EZH2 Target Gene and GSK126 De-repression Signatures with *MYCN*amplified Status in Primary Neuroblastoma Tumors

The EZH2 gene signatures identified in the ChIP-seq and the RNA-seq experiments in our study were further tested for association with the *MYCN*-amplified status and the high-risk neuroblastoma phenotypes in primary tumors. The two neuroblastoma gene expression datasets: GSE12460 (25), describing 64 tumors, and GSE49711 (26), describing 498 tumors, were analyzed for this purpose.

Drug Synergy Screening and Analysis for Combinations with GSK126

The EZH2 inhibitor GSK126 was screened *in vitro* for the synergistic combination with a panel of 10 small molecules. The screening was performed on Kelly cells. The synergistic activity of the *in vitro* GSK126 combinations was assessed based on the Delta Bliss Sum Negative (DBSumNeg) score with the conservative synergy cutoff DBSumNeg < -3 (28). The DBSumNeg score was introduced as a new metric to quantify the synergy of the combination of two drugs across all dose combinations tested and was computed simply as the sum of the synergistic deviations from the Excess over Bliss model (29).

Chou-Talalay Combination Index for Loewe Additivity

To assess whether individual treatment combinations were synergistic, additive, or antagonistic we computed the combination index (CI) scores for Loewe Additivity based on the Chou-Talalay Median Effect model (30-32)implemented CalcuSyn v2.11 as in (http://www.biosoft.com/w/calcusyn.htm). The median effect model states that the effect x of a dose of a drug is described by the equation $x/(1-x) = (d/D_{IC50})^m$, where D_{IC50} is the IC₅₀ dose of the drug, and m is a parameter that estimated from the dose-effect curve kinetics of the drug: m =1 (hyperbolic), m > 1 (sigmoidal), m < 1 (flat sigmoidal). Loewe additivity is a dose-effect model which states that additivity occurs in a two-drug combination if the sum of the ratios of the dose vs. the median-effect for each individual drug is $d_1/D_{IC50, 1} + d_2/D_{IC50, 2} = 1$, where d_1, d_2 are the doses for the two drugs, and $D_{IC50,1}$ and $D_{IC50,2}$ represent the IC50 doses (median-effect) for the two drugs, respectively. Chou and Talalay (30) showed that Loewe equations are valid for enzyme inhibitors with similar mechanisms of action -- either competitive or non-competitive toward the substrate.

The Chou-Talalay Combination Index for Loewe Additivity model assigns a quantitative measure to any given effect *x* produced by the combination of dose d_1 of drug 1 and dose d_2 of drug 2: CI = $d_1/Dx_1 + d_2/Dx_2$, where Dx_1 is the dose of drug 1 that alone produces the effect *x* and Dx_2 is the dose of drug 2 that alone produces the effect *x*, as estimated from the median effect model. For any given endpoint of the effect measurement CI estimates synergism (CI < 0.8), strong synergism (CI < 0.6), antagonism (CI > 1.2), strong antagonism (CI > 1.4) or additive effect (CI in the range 0.8-1.2). The drug combinations were analyzed based on two types of diagnostic plots:

Effect-oriented plots: the effect *x* of the drug combination on the X axis, and $CI = d_1/D_{x1} + d_2/D_{x2}$ on the Y axis

Dose-oriented (isobologram) plots: d_1/D_{x1} on the X axis, d_2/D_{x2} on the Y axis, along with the Loewe additivity isobole line: $d_1/D_{IC50, 1} + d_2/D_{IC50, 2} = 1$

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. Neuroblastoma Cell Lines Are Dependent on PRC2 Complex and

EZH2. (**A**) EED-EZH2 Complex dependency Z-score in neuroblastoma versus all other cell lines in the CRISPR-Cas9 screen based on single sample GSEA. (**B**) The correlation of relative dependency on *EED* and *EZH2 (left)*, *SUZ12* and *EZH2 (middle)*, or *SUZ12* and *EED (right)*, in each of the neuroblastoma cell lines. X-axis and Y-axis show the gene CERES dependency score. (**C**) Heat map showing *EZH2*, *EED*, and *SUZ12* dependency scores in all cell lines in the screen. (**D**) Immunoblot showing the effect of *EZH2* CRISPR-Cas9 knockout or *EZH2* shRNA knockdown on the H3K27me3 levels in SK-N-BE(2). (**E**) Immunoblot showing the EZH2 expression before or after EZH2 replacement with control (*GFP*), *EZH2* wildtype (*EZH2*-WT), or *EZH2* triple point-mutant (*EZH2*-TM). (**F**) Cell viability assay before or after EZH2 replacement with control (*GFP*), *EZH2* wildtype (*EZH2*-WT), or *EZH2* triple point-mutant (*EZH2*-TM). Shown is a representative of two independent experiments. Mean ± SD of eight technical replicates is shown.

Supplemental Figure 2. Pharmacological Inhibition of EZH2 in MYCN-amplified

Neuroblastoma *in Vitro*. (A) Immunoblot showing dose-dependent target inhibition by JQEZ5 (*left*) or GSK126 (*right*) in neuroblastoma cell lines. Total H3 served as control for H3K27me3. (B) Mann-Whitney test of area under curve response to EZH2 inhibitors comparing *MYCN*-amplified and *MYCN*-nonamplified neuroblastoma. (C) Flow cytometry analysis for Annexin V and PI staining in neuroblastoma cell lines treated with 3 μ M JQEZ5, GSK126 or DMSO control for 8-10 days.

Supplemental Figure 3. Genome-wide EZH2 Binding Pattern in MYCN-amplified

Neuroblastoma LAN-1 cells. (**A**) Metagene analysis showing the average ChIP-seq binding signals of EZH2, H3K27me3 or H3K4me3 for 500 randomly selected genes in each of three categories based on the gene expression level (highly expressed, medium expressed and poorly expressed). X-axis shows the distance in kb to transcription start site (TSS). (**B**) Scatter plot showing correlation between EZH2 relative binding signal and H3K27me3 relative binding signal in the promoter region. (**C**) Gene track showing high binding signal for EZH2 and H3K27me3 and low binding signal for H3K4me3 in two published, validated EZH2 targets. (**D**) Box plots of expression values for (*top*) EZH2 target genes versus non-EZH2 target genes and (*bottom*) H3K27me3 target genes versus non-H3K27me3 target genes in LAN-1 cells. (**E**) GSEA volcano

plot showing enrichment of published PRC2 target signatures from MSigDB v5.1 among genes with (*top*) high EZH2 binding signal or (*bottom*) high H3K27me3 binding signal in LAN-1 cells. (**F**) Enrichment of Benporath PRC2 target signature among genes with (*top*) high EZH2 promoter binding signal or (*bottom*) high H3K27me3 promoter binding signal in LAN-1 cells.

Supplemental Figure 4. Side-by-side Heatmaps of EZH2 and H3K27me3 ChIP-seq AUC

Signal. The 4,536 EZH2 peaks ±4kb in Kelly cells are shown on the left and the 1,936 EZH2 peaks ±4kb in LAN-1 cells on the right. The color scale indicates average signal on a 10-base pair window.

Supplemental Figure 5. GSEA Showing the Effect of GSK126 Treatment on Neuroblastoma Cell Lines (Kelly and LAN-1) and Single Sample GSEA of Neuroblastoma Tumors. (A) GSEA showing enrichment for the previously published gene signatures after treatment with EPZ-6438 (GSE79859) in the expression profiles following GSK126 treatment. (B) GSEA showing enrichment of neurite development and axonogenesis signatures in genes upregulated by GSK126. (C) Single sample GSEA in primary neuroblastoma tumor expression datasets GSE12460 and GSE49711.

Supplemental Figure 6. Isobologram Plots Demonstrate Synergy of Panobinostat and GSK126 in Kelly, SK-N-BE(2), LAN-1 and CHP-212 on Day 6. Shown is a representative of two to three independent experiments.

SUPPLEMENTAL TABLE LEGENDS

Supplemental Table 1. (A) Top 100 leading edge genes for the top 3 independent components IC1, IC2 and IC3 that are associated with the neuroblastoma lineage in the CRISPR-Cas9 CERES dependency data. The genes are ranked based on their Z-score per component. Leading edge genes were selected based on cut-off Z-score \geq 2.5. PRC2 complex genes are highlighted bold. (B) Sensitivity AUC scores for the EZH2 inhibitors GSK126 (day 5), JQEZ5 (day 5) and dependency scores for EZH2, EED, and SUZ12 across the neuroblastoma cell lines in the study.

Supplemental Table 2. Top 50 GSEA significant hits for EZH2 and H3K27me3 ChIP-seq target genes in Kelly and LAN-1 cells using the MSigDB v5.1 collection c2 of 4,726 pathways and

experimental gene sets. For each significant gene set hit the table shows if the gene set is related to the PRC2 complex (1= yes, 0=no), the size of the gene set, the GSEA normalized enrichment score (NES), *P* and false discovery rate (FDR). The MSigDB gene sets are ranked in decreasing order based on the NES. (**A**) Top 50 GSEA hits for EZH2 ChIP-seq target genes in Kelly cells. PRC2 related gene sets are significantly over-represented in the collection of GSEA hits (oddsratios = 9.5, *P* < 0.001, according to the two-tailed Fisher exact test). (**B**) Top 50 GSEA hits for H3K27me3 ChIP-seq target genes in Kelly cells. PRC2 related gene sets are significantly overrepresented in the collection of GSEA hits (odds-ratios = 8.1, *P* < 0.001, according to the twotailed Fisher exact test). (**C**) Top 50 GSEA hits for EZH2 ChIP-seq target genes in LAN-1 cells. PRC2 related gene sets are significantly over-represented in the collection of GSEA hits (oddsratios = 7.9, *P* < 0.001 according to the two-tailed Fisher exact test). (**D**) Top 50 GSEA hits for H3K27me3 ChIP-seq target genes in LAN-1 cells. PRC2 related gene sets are significantly overrepresented in the collection of GSEA hits (odds-ratios = 8.1, *P* < 0.001, according to the twotailed Fisher exact test). (**C**) Top 50 GSEA hits for EZH2 ChIP-seq target genes in LAN-1 cells. PRC2 related gene sets are significantly over-represented in the collection of GSEA hits (oddsratios = 7.9, *P* < 0.001 according to the two-tailed Fisher exact test). (**D**) Top 50 GSEA hits for H3K27me3 ChIP-seq target genes in LAN-1 cells. PRC2 related gene sets are significantly overrepresented in the collection of GSEA hits (odds-ratios = 9.5, *P* < 0.001 according to the twotailed Fisher exact test).

Supplemental Table 3. Custom neuroblastoma PRC2 signatures consisting of the top 300 EZH2 and H3K27me3 ChIP-seq target genes in Kelly and LAN-1 cell lines. Shown in table are the EZH2 and H3K27me3 promoter relative binding signal in Kelly and LAN-1 cells. Genes were ranked in decreasing order based on the promoter binding signal in the highlighted ranking score column. The high level for the relative occupancy signal in the promoter regions was estimated based on the cut-off 1.5 for the ratio of the AUC ChIP-seq signal of the mark vs. the AUC signal of the input. (A) Custom neuroblastoma PRC2 signature consisting of the top 300 EZH2 ChIP-seq target genes in Kelly cells. (B) Custom neuroblastoma PRC2 signature consisting of the top 300 H3K27me3 ChIP-seq target genes in Kelly cells. (C) Custom neuroblastoma PRC2 signature consisting of the top 300 EZH2 ChIP-seq target genes in LAN-1 cells. (D) Custom neuroblastoma PRC2 signature consisting of the top 300 EZH2 ChIP-seq target genes in LAN-1 cells.

Supplemental Table 4. Top 60 significant GSEA hits for EZH2 and H3K27me3 ChIP-seq target genes in Kelly and LAN-1 cells using the MSigDB v5.1 c5 collection of 25 Gene Ontology (GO) gene sets related to biological processes. For each gene set hit the table shows if the gene set is related to any of the 15 Neural Development signatures available in the MSigDB c5 collection (1= yes, 0=no), the size of the gene set, the GSEA normalized enrichment score (NES), *P* and false discovery rate (FDR). The significance cut-offs were 0.05 for *P* and 0.25 for FDR. The top 60 gene set hits are ranked in decreasing order based on the NES. (A) Top 60 GSEA hits for

EZH2 ChIP-seq target genes in Kelly cells. Neural Development related gene sets are significantly over-represented in the collection of GSEA hits (odds-ratios = 51.03, P < 0.001, according to the two-tailed Fisher exact test). (**B**) Top 60 GSEA hits for EZH2 ChIP-seq target genes in LAN-1 cells. Neural Development related gene sets are significantly over-represented in the collection of GSEA hits (odds-ratios = 39.73, P < 0.001, according to the two-tailed Fisher exact test).

Supplemental Table 5. The shRNA sequences and the CRISPR-Cas9 sgRNA sequences targeting *MYCN* and *EZH2* that were used in this study.

REFERENCES

- 1. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, et al. Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. *Nature Genetics*. 2017: in press.
- 2. Comon P. Independent component analysis, a new concept? *Signal processing*. 1994;36(3):287-314.
- 3. Hyvärinen A, Karhunen J, and Oja E. Independent component analysis. *Willey, New York.* 2001.
- 4. Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. *IEEE Trans Neural Netw.* 1999;10(3):626-34.
- 5. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. *Nature*. 2009;462(7269):108-12.
- 6. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102(43):15545-50.
- 7. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat Genet*. 2003;34(3):267-73.
- 8. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, and Herwig R. ConsensusPathDB: toward a more complete picture of cell biology. *Nucleic Acids Res.* 2011;39(Database issue):D712-7.
- 9. Kamburov A, Wierling C, Lehrach H, and Herwig R. ConsensusPathDB--a database for integrating human functional interaction networks. *Nucleic Acids Res.* 2009;37(Database issue):D623-8.
- 10. Langmead B. Aligning short sequencing reads with Bowtie. *Curr Protoc Bioinformatics.* 2010;Chapter 11(Unit 11 7.
- 11. Langmead B, and Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*. 2012;9(4):357-9.
- 12. Carroll TS, Liang Z, Salama R, Stark R, and de Santiago I. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. *Front Genet*. 2014;5(75.
- 13. Feng J, Liu T, Qin B, Zhang Y, and Liu XS. Identifying ChIP-seq enrichment using MACS. *Nat Protoc*. 2012;7(9):1728-40.
- 14. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, and Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell.* 2010;38(4):576-89.
- 15. Ramirez F, Dundar F, Diehl S, Gruning BA, and Manke T. deepTools: a flexible platform for exploring deep-sequencing data. *Nucleic Acids Res.* 2014;42(Web Server issue):W187-91.

- 16. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, and Young RA. Selective inhibition of tumor oncogenes by disruption of superenhancers. *Cell*. 2013;153(2):320-34.
- 17. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. *Nature*. 2012;483(7391):603-7.
- 18. Dassi E, Greco V, Sidarovich V, Zuccotti P, Arseni N, Scaruffi P, Tonini GP, and Quattrone A. Multi-omic profiling of MYCN-amplified neuroblastoma cell-lines. *Genom Data*. 2015;6(285-7.
- 19. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, and Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol.* 2013;14(4):R36.
- 20. Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, Dopazo J, Meyer TF, and Conesa A. Qualimap: evaluating next-generation sequencing alignment data. *Bioinformatics*. 2012;28(20):2678-9.
- 21. Hugo Varet J-YC, Marie-Agnès Dillies. SARTools: a DESeq2- and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. *bioRxiv*. 2015.
- 22. Liao Y, Smyth GK, and Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*. 2014;30(7):923-30.
- 23. Robinson MD, McCarthy DJ, and Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*. 2010;26(1):139-40.
- 24. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, and Mesirov JP. GenePattern 2.0. *Nat Genet*. 2006;38(5):500-1.
- 25. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, Raynal V, Puisieux A, Schleiermacher G, Pierron G, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. *Nature*. 2008;455(7215):967-70.
- 26. Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, Fang H, Hong H, Shen J, Su Z, et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. *Nat Biotechnol*. 2014;32(9):926-32.
- 27. Merico D, Isserlin R, Stueker O, Emili A, and Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. *PLoS One*. 2010;5(11):e13984.
- 28. Mott BT, Eastman RT, Guha R, Sherlach KS, Siriwardana A, Shinn P, McKnight C, Michael S, Lacerda-Queiroz N, Patel PR, et al. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. *Sci Rep.* 2015;5(13891.
- 29. Bliss CI. The calculation of microbial assays. *Bacteriol Rev.* 1956;20(4):243-58.
- 30. Chou TC, and Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. *Adv Enzyme Regul.* 1984;22(27-55.

- 31. Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. *Pharmacological reviews*. 2006;58(3):621-81.
- 32. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. *Cancer Res.* 2010;70(2):440-6.

Supplemental Figure 1. Neuroblastoma Cell Lines Are Dependent on PRC2 Complex and EZH2. (A) EED-EZH2 Complex dependency Z-score in neuroblastoma versus all other cell lines in the CRISPR-Cas9 screen based on single sample GSEA. (B) The correlation of relative dependency on *EED* and *EZH2 (left)*, *SUZ12* and *EZH2 (middle)*, or *SUZ12* and *EED (right)*, in each of the neuroblastoma cell lines. X-axis and Y-axis show the gene CERES dependency score. (C) Heat map showing EZH2, EED and SUZ12 dependency scores in all cell lines in the screen. (D) Immunoblot showing the effect of *EZH2* CRISPR-Cas9 knockout or *EZH2* shRNA knockdown on the H3K27me3 levels in SK-N-BE(2). (E) Immunoblot showing the EZH2 expression before or after EZH2 replacement with control (*GFP*), *EZH2* wild-type (*EZH2*-WT), or *EZH2* triple point-mutant (*EZH2*-TM). (F) Cell viability assay before or after EZH2 replacement with control (*GFP*), *EZH2* wild-type (*EZH2*-WT), or *EZH2* triple point-mutant (*EZH2*-TM). Shown is a representative of two independent experiments. Mean ± SD of eight technical replicates is shown.

Supplemental Figure 2. Pharmacological Inhibition of EZH2 in MYCN-amplified Neuroblastoma in Vitro. (A) Immunoblot showing dose-dependent target inhibition by JQEZ5 (*left*) or GSK126 (*right*) in neuroblastoma cell lines. Total H3 served as control for H3K27me3. (B) Mann-Whitney test of area under curve response to EZH2 inhibitors comparing MYCN-amplified and MYCN-nonamplified neuroblastoma. (C) Flow cytometry analysis for Annexin V and PI staining in neuroblastoma cell lines treated with 3 µM JQEZ5, GSK126 or DMSO control for 8-10 days.

Supplemental Figure 3. Genome-wide EZH2 Binding Pattern in *MYCN*-amplified Neuroblastoma LAN-1 cells. (A) Metagene analysis showing the average ChIP-seq binding signals of EZH2, H3K27me3 or H3K4me3 for 500 randomly selected genes in each of three categories based on the gene expression level (highly expressed, medium expressed and poorly expressed). X-axis shows the distance in kb to transcription start site (TSS). (B) Scatter plot showing correlation between EZH2 relative binding signal and H3K27me3 relative binding signal in the promoter region. (C) Gene track showing high binding signal for EZH2 and H3K27me3 and low binding signal for H3K4me3 in two published, validated EZH2 targets. (D) Box plots of expression values for (*top*) EZH2 target genes versus non-EZH2 target genes and (*bottom*) H3K27me3 target genes in LAN-1 cells. (E) GSEA volcano plot showing enrichment of published PRC2 target signatures from MSigDB v5.1 among genes with (*top*) high EZH2 binding signal or (*bottom*) high H3K27me3 promoter binding signal in LAN-1 cells. (F) Enrichment of Benporath PRC2 target signature among genes with (*top*) high EZH2 promoter binding signal or (*bottom*) high H3K27me3

Supplemental Figure 4. Side-by-side Heatmaps of EZH2 and H3K27me3 ChIP-seq AUC Signal. The 4,536 EZH2 peaks ±4kb in Kelly cells are shown on the left and the 1,936 EZH2 peaks ±4kb in LAN-1 cells on the right. The color scale indicates average signal on a 10-base pair window.

Supplemental Figure 5. GSEA Showing the Effect of GSK126 Treatment on Neuroblastoma Cell Lines (Kelly and LAN-1) and Single Sample GSEA of Neuroblastoma Tumors. (A) GSEA showing enrichment for the previously published gene signatures after treatment with EPZ-6438 (GSE79859) in the expression profiles following GSK126 treatment. (B) GSEA showing enrichment of neurite development and axonogenesis signatures in genes upregulated by GSK126. (C) Single sample GSEA in primary neuroblastoma tumor expression datasets GSE12460 and GSE49711.

Supplemental Figure 6. Isobologram Plots Demonstrate Synergy of Panobinostat and GSK126 in Kelly, SK-N-BE(2), LAN-1 and CHP-212 on Day 6. Shown is a representative of two to three independent experiments.

Supplemental Table 1. (A) Top 100 leading edge dependencies for the top 3 independent components IC1, IC2 and IC3 that are associated with the neuroblastoma lineage in the CRISPR-Cas9 CERES dependency data. The dependencies are ranked based on their Z-score per component. Leading edge dependencies were selected based on cut-off Z-score \geq 2.5. PRC2 complex dependencies are highlighted bold.

#	IC1 leading dependencies	IC1 component Z-score	IC2 leading dependencies	IC2 component Z-score	IC3 leading dependencies	IC3 component Z-score
1	ТХК	7.20	AFMID	7.99	TAF5L	24.03
2	CWH43	6.94	TMEM105	7.93	SUPT20H	23.13
3	TLR6	6.74	ITGB4	7.64	TADA2B	22.74
4	FBXL5	6.74	SPHK1	7.32	TADA1	22.32
5	WDR19	6.52	TNRC6C	7.20	SUPT7L	16.68
6	MRFAP1L1	6.46	SSTR2	7.13	TAF6L	13.21
7	FAM114A1	6.17	P4HB	6.93	MED13	12.20
8	GRXCR1	6.01	TRIM65	6.80	KAT2A	11.20
9	CLRN2	5.95	TK1	6.76	USP22	11.15
10	CNGA1	5.91	CCDC40	6.72	MED19	10.12
11	RELL1	5.88	CD300LF	6.51	SMARCD1	8.87
12	LDB2	5.82	ST6GALNAC2	6.48	MED24	8.63
13	UBE2K	5.76	CACNG4	6.42	CCNC	8.54
14	S100P	5.72	C17orf77	6.40	MED13L	8.28
15	UCHL1	5.67	FADS6	6.37	BRD9	8.12
16	ZAR1	5.65	ABCA8	6.32	PAXIP1	7.71
17	ZCCHC4	5.65	VEZF1	6.23	MED15	7.61
18	PCDH7	5.63	PRCD	6.19	EP300	7.53
19	TMEM33	5.60	TEX19	6.09	NIPBL	7.39
20	LRPAP1	5.57	FOXK2	5.94	ATXN7	7.36
21	BLOC1S4	5.55	CBX2	5.91	MED23	7.01
22	TMEM156	5.51	CYTH1	5.85	GLTSCR1	6.77
23	DOK7	5.39	ST6GALNAC1	5.85	MED16	6.74
24	USP17L13	5.37	LOC100653515	5.76	MLLT1	6.34
25	LGI2	5.10	WBP2	5.75	PRR12	6.11
26	SEL1L3	5.09	MRC2	5.71	CCDC101	5.90
27	TBC1D1	4.97	CPSF4L	5.63	MBNL1	5.70
28	CD38	4.94	GPRC5C	5.58	CREBBP	5.22
29	KCTD8	4.93	TMEM235	5.56	ANKRD52	5.17
30	MFSD10	4.89	RNF213	5.55	DOT1L	5.00
31	ACOX3	4.65	SCAF8	5.55	EED	5.00
32	PHOX2B	4.60	SYNGR2	5.55	TCEB3	4.95
33	CHRNA9	4.60	WDR45B	5.49	KLHDC3	4.88
34	GRK4	4.59	FOXJ1	5.38	CHD2	4.85
35	ATP10D	4.59	CD79B	5.37	PTP4A1	4.80
36	DCAF4L1	4.59	TIMP2	5.33	PAGR1	4.77
37	CORIN	4.55	MIF4GD	5.32	YWHAE	4.64
38	HMX1	4.55	LLGL2	5.24	SUZ12	4.63
39	APBB2	4.48	GDPD1	5.17	TNFAIP3	4.61
40	ABLIM2	4.48	PPP1R27	5.09	RING1	4.58
41	CCKAR	4.42	FAM195B	5.08	TADA3	4.50
42	WHSC1	4.42	GGA3	5.06	EZH2	4.49
43	STIM2	4.40	SDK2	5.04	HDAC2	4.44
44	LCORL	4.40	CACNG5	4.97	C11orf30	4.42
45	SLC30A9	4.38	ACOX1	4.95	MAPKAPK2	4.41
46	ATE1	4.36	PRR29	4.95	TAF11	4.35
47	MXD4	4.32	DNAI2	4.94	KEAP1	4.30
48	RNF212	4.24	OXLD1	4.90	MAU2	4.23
49	RBKS	4.23	PRPSAP1	4.89	ATF7IP	4.19
50	SH3TC1	4.20	SEC14L1	4.80	STAG1	4.13

#	IC1 leading dependencies	IC1 component Z-score	IC2 leading dependencies	IC2 component Z-score	IC3 leading dependencies	IC3 component Z-score
51	HHAT	4.18	PRKCA	4.80	MED1	4.11
52	KCNIP4	4.16	ENDOV	4.75	PITPNB	4.01
53	HMGXB3	4.16	SLC38A10	4.72	ATXN2L	3.94
54	POLN	4.13	SECTM1	4.69	EHMT2	3.89
55	SH3BP2	4.11	PTRH2	4.65	MED25	3.88
56	TBC1D23	4.10	GPR142	4.62	SPIN1	3.86
57	CRIPAK	4.10	CD300C	4.59	ASB7	3.86
58	KLB	4.03	CEP95	4.58	TRAF3	3.78
59	HS3ST1	4.02	CARD14	4.52	FOXA2	3.70
60	KLHL5	4.01	UNK	4.50	CSRNP1	3.70
61	CPZ	4.01	BAIAP2	4.48	MORF4L1	3.67
62	GNG10	3.97	FBF1	4.48	C10orf12	3.67
63	PHLDB1	3.94	LRRC45	4.48	PCGF1	3.61
64	MYL12B	3.91	SMIM5	4.46	SIN3B	3.59
65	FGFBP2	3.90	SGSH	4.43	BTAF1	3.57
66	GNPDA2	3.90	MAFG	4.41	FOXA1	3.48
67	FAM174B	3.89	DHX40	4.41	ACPT	3.37
68	CC2D2A	3.85	KIAA0195	4.40	KAT6A	3.32
69	CCAR2	3.84	GH1	4.40	SIRT1	3.30
70	SMIM20	3.82	CDR2L	4.37	CCNF	3.26
71	ISL1	3.81	CASKIN2	4.37	LACTB2	3.25
72	NSUN7	3.78	GALK1	4.35	APOA5	3.22
73	DCAF16	3.77	KCNJ16	4.34	MTA2	3.21
74	TLR1	3.74	NAT9	4.33	ATXN7L3	3.21
75	PPARGC1A	3.73	ENGASE	4.31	SP1	3.20
76	DEFB131	3.73	EDF1	4.30	NABP2	3.16
77	YIPF7	3.72	HID1	4.28	CLC	3.16
78	SLIT2	3.71	SMIM6	4.26	POLR2M	3.15
79	TLR10	3.69	ZNF750	4.25	PAIP1	3.14
80	LARP4B	3.63	CYGB	4.22	FBXL14	3.14
81	UBE3D	3.61	AANAT	4.15	CCNE1	3.14
82	BEND4	3.60	OTOP2	4.13	UBE2K	3.14
83	CASP7	3.59	PRR11	4.13	MTHFD1	3.10
84	FGFR3	3.59	RNF157	4.12	HEATR3	3.10
85	FZD8	3.58	MAP2K6	4.12	FAM159B	3.10
86	TNNI1	3.58	TMC6	4.09	НТТ	3.09
87	ZNF292	3.57	RFNG	4.04	ZNF143	3.09
88	ADD1	3.56	CANT1	4.03	ARF6	3.09
89	NWD2	3.55	KIRREL3	4.02	THAP4	3.08
90	QDPR	3.55	EVPL	4.01	ROCK1	3.07
91	RBPJ	3.54	EFCAB3	4.01	MYCN	3.07
92	SLC34A2	3.53	KPNA2	4.00	AFF4	3.06
93	SPICE1	3.52	NOTUM	3.99	CAB39	3.06
94	LRRTM3	3.49	YPEL2	3.97	KDM1A	3.06
95	SHISA3	3.49	DUS1L	3.97	CKS1B	3.04
96	LARP7	3.49	TRAPPC13	3.97	ZNF217	3.04
97	TEC	3.47	MFSD11	3.93	ATG101	3.04
98	OCIAD1	3.46	UNC13D	3.93	SERTAD2	3.03
99	BOD1L1	3.45	PCTP	3.93	KLF5	3.03
100	SLC26A1	3.44	RNFT1	3.92	RANBP9	3.03

Supplemental Table 1. (B) Sensitivity AUC scores for the EZH2 inhibitors GSK126 (day 5), JQEZ5 (day 5) and dependency scores for EZH2, EED and SUZ12 across the neuroblastoma cell lines in the study.

#	Cell line	MYCN status	AUC score GSK126 day 5	AUC score JQEZ5 day 5	EZH2 dependency score	EED dependency score	SUZ12 dependency score
1	CHP-212	Amplified	89.150	95.720	-0.335	-0.536	-0.446
2	IMR-32	Amplified	92.850	79.670	0.098	-0.134	-0.234
3	Kelly	Amplified	87.230	80.270	-0.188	-0.474	-0.510
4	LAN-1	Amplified	92.880	92.250	na	na	na
5	MHH-NB-11	Amplified	90.510	82.370	0.095	-0.268	-0.135
6	NB-1	Amplified	82.350	71.890	0.068	-0.535	-0.419
7	NGP	Amplified	79.980	88.700	na	na	na
8	SIMA	Amplified	84.230	81.000	-0.085	-0.461	-0.315
9	SK-N-BE(2)	Amplified	63.240	74.070	-0.105	-0.438	-0.605
10	ACN	Non-amplified	122.400	110.200	na	na	na
11	CHLA-15	Non-amplified	100.100	97.660	na	na	na
12	GI-M-EN	Non-amplified	101.200	95.670	na	na	na
13	SH-SY-5Y	Non-amplified	86.250	98.660	na	na	na
14	SK-N-AS	Non-amplified	92.440	101.500	-0.392	-0.529	-0.531
15	SK-N-FI	Non-amplified	137.700	127.000	0.163	0.069	0.191
16	SK-N-SH	Non-amplified	114.500	105.700	na	na	na

Supplemental Table 2. Top 50 GSEA significant hits for EZH2 and H3K27me3 ChIP-seq target genes in Kelly and LAN-1 cells using the MSigDB v5.1 collection c2 of 4,726 pathways and experimental gene sets. For each significant gene set hit the table shows if the gene set is related to the PRC2 complex (1= yes, 0=no), the size of the gene set, the GSEA normalized enrichment score (NES), *P* and false discovery rate (FDR). The MSigDB gene sets are ranked in decreasing order based on the NES.

(A) Top 50 GSEA hits for EZH2 ChIP-seq target genes in Kelly cells. PRC2 related gene sets are significantly overrepresented in the collection of GSEA hits (odds-ratios = 9.5, P < 0.001, according to the two-tailed Fisher exact test).

_

Rank	Gene Set	PRC2	Size	NES	Р	FDR
4		Complex	0.20	0.57	,	0.0000
1	MEISSNER_BRAIN_HCP_WITH_H3K2/ME3	1	263	3.57	0.0000	0.0000
2	BENPORATH_PRC2_TARGETS	1	615	3.44	0.0000	0.0000
3	MIKKELSEN_NPC_HCP_WITH_H3K27ME3	1	332	3.30	0.0000	0.0000
4	MEISSNER_NPC_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	339	3.27	0.0000	0.0000
5	MEISSNER_NPC_HCP_WITH_H3K2/ME3	1	78	3.27	0.0000	0.0000
6	BENPORATH_EED_TARGETS	1	999	3.25	0.0000	0.0000
7	BENPORATH_SUZ12_TARGETS	1	984	3.24	0.0000	0.0000
8	MIKKELSEN_IPS_WITH_HCP_H3K27ME3	1	99	3.18	0.0000	0.0000
9	MIKKELSEN_MEF_HCP_WITH_H3K27ME3	1	569	3.15	0.0000	0.0000
10	MIKKELSEN_MCV6_HCP_WITH_H3K27ME3	1	418	3.13	0.0000	0.0000
11	SCHLESINGER_METHYLATED_DE_NOVO_IN_CANCER	1	85	3.03	0.0000	0.0000
12	MEISSNER_BRAIN_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	56	2.86	0.0000	0.0000
13	REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT	0	30	2.73	0.0000	0.0000
14	RORIE_TARGETS_OF_EWSR1_FLI1_FUSION_UP	0	27	2.66	0.0000	0.0000
15	MIKKELSEN_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3	1	205	2.61	0.0000	0.0000
16	KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG	0	25	2.61	0.0000	0.0000
17	MCGARVEY_SILENCED_BY_METHYLATION_IN_COLON_CANCER	0	40	2.55	0.0000	0.0002
18	KEGG_HEDGEHOG_SIGNALING_PATHWAY	0	56	2.55	0.0000	0.0002
19	RIZ_ERYTHROID_DIFFERENTIATION_6HR	0	40	2.52	0.0000	0.0000
20	THEODOROU_MAMMARY_TUMORIGENESIS	0	28	2.49	0.0000	0.0000
21	LI_WILMS_TUMOR	0	25	2.48	0.0000	0.0007
22	WANG_LSD1_TARGETS_UP	0	23	2.46	0.0000	0.0008
23	LIEN_BREAST_CARCINOMA_METAPLASTIC	0	35	2.45	0.0000	0.0000
24	MATZUK_IMPLANTATION_AND_UTERINE	0	22	2.43	0.0000	0.0013
25	RIZ_ERYTHROID_DIFFERENTIATION_APOBEC2	0	24	2.43	0.0000	0.0000
26	NIKOLSKY_BREAST_CANCER_5P15_AMPLICON	0	25	2.43	0.0000	0.0000
27	MARTENS_TRETINOIN_RESPONSE_UP	0	803	2.41	0.0000	0.0015
28	WONG_ENDMETRIUM_CANCER_UP	0	25	2.41	0.0000	0.0000
29	RIZ ERYTHROID DIFFERENTIATION HEMGN	0	31	2.40	0.0000	0.0000
30	SCHLESINGER H3K27ME3 IN NORMAL AND METHYLATED IN CANCER	1	28	2.39	0.0000	0.0000
31	LEIN CEREBELLUM MARKERS	0	80	2.36	0.0000	0.0035
32	WANG THOC1 TARGETS DN	0	18	2.36	0.0000	0.0035
33	RIZ ERYTHROID DIFFERENTIATION HBZ	0	41	2.35	0.0000	0.0000
34	SHIN B CELL LYMPHOMA CLUSTER 9	0	19	2.35	0.0000	0.0000
35	LIU CDX2 TARGETS UP	0	35	2.34	0.0000	0.0000
36	MEISSNER NPC HCP WITH H3K4ME2	1	477	2.31	0.0000	0.0070
37	KEGG BASAL CELL CARCINOMA	0	55	2 31	0 0000	0.0069
38	AIGNER ZEB1 TARGETS	0	34	2 31	0 0000	0.0001
39	REACTOME CLASS B 2 SECRETIN FAMILY RECEPTORS	0	87	2 29	0 0000	0.0001
40	KONDO PROSTATE CANCER HCP WITH H3K27ME3	1	95	2.28	0.0000	0.0115
41	DAWSON METHYLATED IN LYMPHOMA TCL1	0	57	2.20	0.0000	0.0001
42	PEREZ TP53 AND TP63 TARGETS	0	104	2.27	0.0000	0.0001
12 13	NIKOLSKY BREAST CANCER 16013 AMRI ICON	0	113	2.20	0.0000	0.0001
40	WANG MIL TARGETS	0	280	2.20	0.0000	0.0001
44	SCHRAETS MIL TARGETS DN	0	200	2.20	0.0000	0.0100
40		0	15	2.20	0.0000	0.0200
40		0	40	2.23	0.0000	0.0002
41		U 4	33 120	2.23	0.0000	0.0002
40 40		1	139	2.21	0.0000	0.0242
49 50	TAU_TEMPORAL_RESPONSE_TU_PROGESTERUNE_GLUSTER_4	U	15	2.20	0.0000	0.0200
50	WEISSNER_NFC_HCF_WITH_H3_UNWETHYLATED	1	505	2.19	0.0000	0.0301

Supplemental Table 2. (B) Top 50 GSEA hits for H3K27me3 ChIP-seq target genes in Kelly cells. PRC2 related gene sets are significantly over-represented in the collection of GSEA hits (odds-ratios = 8.1, P < 0.001, according to the two-tailed Fisher exact test).

Rank	Gene Set	PRC2 Complex	Size	NES	Ρ	FDR
1	MEISSNER_NPC_HCP_WITH_H3K27ME3	1	78	1.82	0.0000	0.0000
2	MEISSNER_BRAIN_HCP_WITH_H3K27ME3	1	263	1.80	0.0000	0.0000
3	RORIE_TARGETS_OF_EWSR1_FLI1_FUSION_UP	0	27	1.69	0.0000	0.0056
4	MIKKELSEN_NPC_HCP_WITH_H3K27ME3	1	332	1.69	0.0000	0.0042
5	BENPORATH_PRC2_TARGETS	1	615	1.68	0.0000	0.0000
6	SHIN_B_CELL_LYMPHOMA_CLUSTER_9	0	19	1.67	0.0000	0.0000
7	MIKKELSEN_IPS_WITH_HCP_H3K27ME3	1	99	1.66	0.0000	0.0130
8	AIGNER_ZEB1_TARGETS	0	34	1.65	0.0000	0.0000
9	YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_4	0	15	1.65	0.0000	0.0115
10	WONG_ENDMETRIUM_CANCER_UP	0	25	1.65	0.0000	0.0000
11	WANG_THOC1_TARGETS_DN	0	18	1.64	0.0010	0.0171
12	KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG	0	25	1.64	0.0000	0.0153
13	MEISSNER_NPC_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	339	1.64	0.0000	0.0156
14	DAZARD_UV_RESPONSE_CLUSTER_G28	0	18	1.64	0.0010	0.0141
15	MATZUK_IMPLANTATION_AND_UTERINE	0	22	1.62	0.0000	0.0189
16	MIKKELSEN_MEF_HCP_WITH_H3K27ME3	1	569	1.62	0.0000	0.0189
17	MATZUK_EMBRYONIC_GERM_CELL	0	19	1.61	0.0000	0.0209
18	REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT	0	30	1.61	0.0000	0.0206
19	BENPORATH_EED_TARGETS	1	999	1.61	0.0000	0.0001
20	YAO_HOXA10_TARGETS_VIA_PROGESTERONE_DN	0	17	1.61	0.0020	0.0212
21	BENPORATH_SUZ12_TARGETS	1	984	1.60	0.0000	0.0001
22	HE_PTEN_TARGETS_UP	0	16	1.59	0.0010	0.0002
23	SHIN_B_CELL_LYMPHOMA_CLUSTER_5	0	16	1.59	0.0000	0.0002
24	RIZ_ERYTHROID_DIFFERENTIATION_APOBEC2	0	24	1.59	0.0000	0.0002
25	MIKKELSEN_MCV6_HCP_WITH_H3K27ME3	1	418	1.59	0.0000	0.0344
26	REACTOME_OLFACTORY_SIGNALING_PATHWAY	0	298	1.56	0.0000	0.0005
27	GAURNIER_PSMD4_TARGETS	0	52	1.56	0.0000	0.0664
28	LIEN_BREAST_CARCINOMA_METAPLASTIC	0	35	1.56	0.0010	0.0004
29	LI_WILMS_TUMOR	0	25	1.55	0.0010	0.0779
30	STREICHER_LSM1_TARGETS_DN	0	19	1.55	0.0010	0.0006
31	CUI_TCF21_TARGETS_DN	0	28	1.55	0.0010	0.0815
32	SCHLESINGER_H3K27ME3_IN_NORMAL_AND_METHYLATED_IN_CANCER	1	28	1.54	0.0020	0.0006
33	REACTOME_GABA_SYNTHESIS_RELEASE_REUPTAKE_AND_DEGRADATION	0	17	1.54	0.0020	0.0899
34	SCHLESINGER_METHYLATED_DE_NOVO_IN_CANCER	0	85	1.54	0.0000	0.0006
35	MEISSNER_BRAIN_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	56	1.54	0.0000	0.0933
36	WANG_BARRETTS_ESOPHAGUS_AND_ESOPHAGUS_CANCER_DN	0	35	1.53	0.0000	0.0009
37	KEGG_OLFACTORY_TRANSDUCTION	0	362	1.53	0.0000	0.0932
38	SMID_BREAST_CANCER_RELAPSE_IN_PLEURA_DN	0	23	1.53	0.0030	0.0906
39	PYEON_CANCER_HEAD_AND_NECK_VS_CERVICAL_DN	0	20	1.53	0.0010	0.0879
40	HINATA_NFKB_TARGETS_KERATINOCYTE_DN	0	22	1.53	0.0010	0.0864
41	BIOCARTA_ALK_PATHWAY	0	37	1.53	0.0000	0.0885
42	CHARAFE_BREAST_CANCER_BASAL_VS_MESENCHYMAL_UP	0	114	1.53	0.0000	0.0010
43	FARMER_BREAST_CANCER_CLUSTER_1	0	41	1.52	0.0000	0.0009
44	MIKKELSEN_MCV6_LCP_WITH_H3K27ME3	1	27	1.52	0.0020	0.1006
45	LEE_NAIVE_T_LYMPHOCYTE	0	16	1.52	0.0010	0.1017
46	REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_	0	54	1.52	0.0000	0.0015
47	GU_PDEF_TARGETS_DN	0	37	1.51	0.0000	0.1110
48	RIZ_ERYTHROID_DIFFERENTIATION_6HR	0	40	1.51	0.0000	0.0014
49	SHIN_B_CELL_LYMPHOMA_CLUSTER_2	0	29	1.51	0.0010	0.0012
50	RIZ_ERYTHROID_DIFFERENTIATION_HBZ	0	41	1.51	0.0010	0.0014

Supplemental Table 2. (C) Top 50 GSEA hits for EZH2 ChIP-seq target genes in LAN-1 cells. PRC2 related gene sets are significantly over-represented in the collection of GSEA hits (odds-ratios = 7.9, P < 0.001 according to the two-tailed Fisher exact test).

Rank	Gene Set	PRC2 Complex	Size	NES	Ρ	FDR
1	MEISSNER_BRAIN_HCP_WITH_H3K27ME3	1	262	3.74	0.0000	0.0000
2	MIKKELSEN_NPC_HCP_WITH_H3K27ME3	1	333	3.65	0.0000	0.0000
3	MEISSNER_NPC_HCP_WITH_H3K27ME3	1	79	3.57	0.0000	0.0000
4	MEISSNER_NPC_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	338	3.51	0.0000	0.0000
5	MIKKELSEN_MCV6_HCP_WITH_H3K27ME3	1	419	3.44	0.0000	0.0000
6	MIKKELSEN_IPS_WITH_HCP_H3K27ME3	1	100	3.43	0.0000	0.0000
7	BENPORATH_PRC2_TARGETS	1	617	3.36	0.0000	0.0000
8	MIKKELSEN_MEF_HCP_WITH_H3K27ME3	1	568	3.25	0.0000	0.0000
9	MARTENS_TRETINOIN_RESPONSE_UP	0	804	3.01	0.0000	0.0000
10	BENPORATH_SUZ12_TARGETS	1	987	2.99	0.0000	0.0000
11	SCHLESINGER_METHYLATED_DE_NOVO_IN_CANCER	0	86	2.83	0.0000	0.0000
12	MIKKELSEN_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3	1	204	2.78	0.0000	0.0000
13	LI_WILMS_TUMOR	0	26	2.77	0.0000	0.0000
14	REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT	0	30	2.57	0.0000	0.0000
15	KEGG_HEDGEHOG_SIGNALING_PATHWAY	0	56	2.55	0.0000	0.0001
16	MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3	1	139	2.52	0.0000	0.0001
17	NIKOLSKY_BREAST_CANCER_5P15_AMPLICON	0	26	2.51	0.0000	0.0000
18	NIKOLSKY_BREAST_CANCER_16P13_AMPLICON	0	114	2.46	0.0000	0.0000
19	REACTOME_CLASS_B_2_SECRETIN_FAMILY_RECEPTORS	0	87	2.44	0.0000	0.0013
20	RIZ_ERYTHROID_DIFFERENTIATION_6HR	0	40	2.42	0.0000	0.0000
21	RIZ_ERYTHROID_DIFFERENTIATION_APOBEC2	0	24	2.41	0.0000	0.0000
22	WINNEPENNINCKX_MELANOMA_METASTASIS_DN	0	41	2.40	0.0000	0.0016
23	MEISSNER_NPC_HCP_WITH_H3K4ME2	1	476	2.39	0.0000	0.0018
24	RIZ_ERYTHROID_DIFFERENTIATION_12HR	0	42	2.38	0.0000	0.0000
25	MEISSNER_BRAIN_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	56	2.37	0.0000	0.0020
26	FUKUSHIMA_TNFSF11_TARGETS	0	15	2.36	0.0000	0.0021
27	KEGG_BASAL_CELL_CARCINOMA	0	55	2.31	0.0000	0.0038
28	WANG_THOC1_TARGETS_DN	0	19	2.31	0.0000	0.0000
29	REACTOME_POTASSIUM_CHANNELS	0	97	2.30	0.0000	0.0046
30	KONDO_PROSTATE_CANCER_HCP_WITH_H3K27ME3	1	95	2.29	0.0000	0.0047
31	THEODOROU_MAMMARY_TUMORIGENESIS	0	28	2.28	0.0000	0.0000
32	RORIE_TARGETS_OF_EWSR1_FLI1_FUSION_UP	0	27	2.28	0.0011	0.0050
33	CAMPS_COLON_CANCER_COPY_NUMBER_UP	0	86	2.28	0.0000	0.0049
34	PARK_TRETINOIN_RESPONSE_AND_PML_RARA_FUSION	0	29	2.28	0.0000	0.0048
35	LEIN_CEREBELLUM_MARKERS	0	80	2.28	0.0000	0.0046
36	MCGARVEY_SILENCED_BY_METHYLATION_IN_COLON_CANCER	0	41	2.27	0.0000	0.0048
37	HANN_RESISTANCE_TO_BCL2_INHIBITOR_UP	0	35	2.26	0.0000	0.0051
38		1	56	2.25	0.0000	0.0000
39	MIKKELSEN_ES_ICP_WITH_H3K27ME3	1	39	2.24	0.0000	0.0000
40		0	22	2.24	0.0011	0.0058
41	MEISSNER_NPC_HCP_WIIH_H3_UNMEIHYLAIED	1	506	2.24	0.0000	0.0058
42	KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG	0	25	2.23	0.0000	0.0063
43		0	41	2.23	0.0000	0.0001
44	LOPES_METHYLATED_IN_COLON_CANCER_UP	0	27	2.22	0.0000	0.0067
45		U	33	2.18	0.0000	0.0001
46	REAUTOME_VULTAGE_GATED_PUTASSIUM_CHANNELS	0	43	2.15	0.0000	0.0148
47	BEGUM_TARGETS_UF_PAX3_FUXU1_FUSION_DN	U	44	2.15	0.0000	0.0002
48		U	44	2.14	0.0000	0.0161
49		U	১৬ 126	2.14	0.0000	0.0002
50	NINULONI_BREADI_UANUER_ZUQIZ_Q13_AMPLICUN	U	130	2.14	0.0000	0.0003

Supplemental Table 2. (D) Top 50 GSEA hits for H3K27me3 ChIP-seq target genes in LAN-1 cells. PRC2 related gene sets are significantly over-represented in the collection of GSEA hits (odds-ratios = 9.5, P < 0.001 according to the two-tailed Fisher exact test).

Rank	Gene Set	PRC2 Complex	Size	NES	Р	FDR
1	MEISSNER_NPC_HCP_WITH_H3K27ME3	1	79	2.03	0.0000	0.0000
2	MEISSNER_BRAIN_HCP_WITH_H3K27ME3	1	262	1.99	0.0000	0.0000
3	MIKKELSEN_NPC_HCP_WITH_H3K27ME3	1	333	1.92	0.0000	0.0003
4	MIKKELSEN_IPS_WITH_HCP_H3K27ME3	1	100	1.88	0.0000	0.0004
5	NIKOLSKY_BREAST_CANCER_5P15_AMPLICON	0	26	1.87	0.0000	0.0000
6	LI_WILMS_TUMOR	0	26	1.85	0.0000	0.0011
7	MEISSNER_NPC_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	338	1.85	0.0000	0.0009
8	BENPORATH_PRC2_TARGETS	1	617	1.82	0.0000	0.0000
9	KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG	0	25	1.80	0.0000	0.0035
10	MIKKELSEN_MCV6_HCP_WITH_H3K27ME3	1	419	1.80	0.0000	0.0039
11	SCHLESINGER_METHYLATED_DE_NOVO_IN_CANCER	0	86	1.78	0.0000	0.0000
12	MIKKELSEN_MEF_HCP_WITH_H3K27ME3	1	568	1.78	0.0000	0.0061
13	KEGG_HEDGEHOG_SIGNALING_PATHWAY	0	56	1.78	0.0000	0.0060
14	REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT	0	30	1.77	0.0000	0.0000
15	RORIE_TARGETS_OF_EWSR1_FLI1_FUSION_UP	0	27	1.77	0.0000	0.0000
16	CERIBELLI_PROMOTERS_INACTIVE_AND_BOUND_BY_NFY	0	33	1.74	0.0000	0.0163
17	LOPES_METHYLATED_IN_COLON_CANCER_UP	0	27	1.74	0.0000	0.0001
18	MARTENS_TRETINOIN_RESPONSE_UP	0	804	1.72	0.0000	0.0261
19	BEGUM_TARGETS_OF_PAX3_FOXO1_FUSION_DN	0	44	1.72	0.0000	0.0002
20	BENPORATH_SUZ12_TARGETS	1	987	1.71	0.0000	0.0002
21	FUKUSHIMA_TNFSF11_TARGETS	0	15	1.70	0.0011	0.0420
22	WATANABE_COLON_CANCER_MSI_VS_MSS_UP	0	26	1.70	0.0000	0.0003
23	ZHENG_RESPONSE_TO_ARSENITE_UP	0	18	1.69	0.0000	0.0002
24	THEODOROU_MAMMARY_TUMORIGENESIS	0	28	1.69	0.0000	0.0003
25	RIZ_ERYTHROID_DIFFERENTIATION_APOBEC2	0	24	1.69	0.0000	0.0004
26	SHIN_B_CELL_LYMPHOMA_CLUSTER_5	0	16	1.69	0.0000	0.0003
27	VALK_AML_WITH_FLT3_ITD	0	39	1.69	0.0000	0.0452
28	REACTOME_NA_CL_DEPENDENT_NEUROTRANSMITTER_TRANSPORTERS	0	17	1.69	0.0010	0.0005
29	KEGG_BASAL_CELL_CARCINOMA	0	55	1.68	0.0000	0.0513
30	MAHADEVAN_IMATINIB_RESISTANCE_DN	0	20	1.68	0.0020	0.0005
31	MATZUK_IMPLANTATION_AND_UTERINE	0	22	1.68	0.0000	0.0536
32	VANDESLUIS_COMMD1_TARGETS_GROUP_4_DN	0	15	1.68	0.0011	0.0526
33	WANG_THOC1_TARGETS_DN	0	19	1.67	0.0000	0.0540
34	RIZ_ERYTHROID_DIFFERENTIATION_12HR	0	42	1.67	0.0000	0.0007
35	REACTOME_ACTIVATED_POINT_MUTANTS_OF_FGFR2	0	16	1.66	0.0021	0.0669
36	LOPES_METHYLATED_IN_COLON_CANCER_DN	0	28	1.66	0.0000	0.0005
37	HALMOS_CEBPA_TARGETS_DN	0	44	1.66	0.0000	0.0005
38	RIZ_ERYTHROID_DIFFERENTIATION_HBZ	0	41	1.66	0.0000	0.0008
39	REACTOME_CLASS_B_2_SECRETIN_FAMILY_RECEPTORS	0	87	1.65	0.0000	0.0010
40	MEISSNER_BRAIN_HCP_WITH_H3K4ME2_AND_H3K27ME3	1	56	1.65	0.0000	0.0813
41	MIKKELSEN_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3	1	204	1.65	0.0000	0.0792
42	LU_TUMOR_ANGIOGENESIS_UP	0	25	1.65	0.0020	0.0776
43	REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS	0	20	1.64	0.0021	0.0012
44	KORKOLA_CORRELATED_WITH_POU5F1	0	34	1.64	0.0010	0.0894
45	ALONSO_METASTASIS_DN	0	23	1.63	0.0020	0.0928
46	PARK_TRETINOIN_RESPONSE_AND_PML_RARA_FUSION	0	29	1.63	0.0000	0.0924
47	HANN_RESISTANCE_TO_BCL2_INHIBITOR_UP	0	35	1.63	0.0000	0.0008
48	MIKKELSEN_MCV6_LCP_WITH_H3K27ME3	1	27	1.62	0.0010	0.1012
49	FIGUEROA_AML_METHYLATION_CLUSTER_5_DN	0	47	1.62	0.0000	0.1020
50	RIZ_ERYTHROID_DIFFERENTIATION_6HR	0	40	1.62	0.0000	0.0016

Supplemental Table 3. Custom neuroblastoma PRC2 signatures consisting of the top 300 EZH2 and H3K27me3 ChIPseq target genes in Kelly and LAN-1 cell lines. Shown in table are the EZH2 and H3K27me3 promoter relative binding signal in Kelly and LAN-1 cells. Genes were ranked in decreasing order based on the promoter binding signal in the highlighted ranking score column. The high level for the relative occupancy signal in the promoter regions was estimated based on the cut-off 1.5 for the ratio of the AUC ChIP-seq signal of the mark vs the AUC signal of the input.

(A) Custom neuroblastoma PRC2 signature consisting of the top 300 EZH2 ChIP-seq target genes in Kelly cells.

_

# 6000	Kelly rel AUC EZH2	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC	
#	Gene	(ranking score)	H3K27me3	EZH2	H3K27me3
1	NFATC1	32.51	23.21	8.52	11.65
2	PAX2	18.04	13.13	9.27	11.36
3	PDGFA	17.82	12.54	6.60	9.41
4	LBX1	17.76	10.41	5.29	8.45
5	NKX1-1	17.14	8.88	2.30	3.80
6	SOX8	16.45	12.54	5.57	11.05
7	PRDM12	15.81	8.51	5.55	6.50
8	SIGIRR	13.33	18.72	1.50	2.04
9	LHX5	12.77	10.54	5.23	7.65
10	ZIC1	12.60	10.24	0.88	0.39
11	FOXL2	12.53	10.62	4.23	6.50
12	EN2	12.41	10.34	6.53	9.53
13	SORCS3	12.35	11.54	3.49	6.60
14	HOXC12	12.26	10.61	4.52	7.43
15	LMX1B	12.23	10.09	6.93	9.23
16	FOXF1	12.13	7.53	5.56	8.73
17	GATA4	12.04	10.44	3.35	5.17
18	FOXF2	12.04	7.84	4.29	6.86
19	HES4	11.41	10.22	1.18	0.49
20	IRX1	11.30	7.80	3.52	7.59
21	ZIC2	11.22	7.69	6.31	9.76
22	TBX15	10.94	8.77	3.14	6.40
23	EVX1	10.74	9.50	3.28	7.78
24	OLIG2	10.30	9.01	4.33	8.13
25	GBX2	10.23	9.71	1.19	1.74
26	IRX2	10.20	7.85	3.54	6.33
27	HUXB8	10.05	7.42	8.66	12.41
28	BARX1	10.02	6.81	2.71	5.38
29		9.97	8.39	5.55	8.53
30	NKX2-2	9.70	7.01	5.10	9.40
31	GATA0	9.63	1.11	4.69	0.20
ు∠ 22		9.51	7.00	0.00	12.22 5.20
33	OTY2	9.41	7.03	2.07	5.29 5.91
35		9.30	8.40	2.01	5.01
36	ECR3	9.30	8.00	2 30	3.47
37	EGRS FLT4	9.29	12 36	2.30	7.02
38	ΔΤΗΙ 1	9.17	12.50	1 56	1.63
39	SOX21	9 15	9.13	2 51	5.47
40	HOXB7	8.92	7 41	7 55	12 16
41	NKX2-5	8.84	7.82	3.05	5.01
42	SOX3	8.83	6.40	3.18	5.20
43	SIM2	8.78	6.87	3.54	5.86
44	PRDM16	8.72	7.89	8.90	15.23
45	ALX4	8.59	8.11	3.48	7.03
46	VENTX	8.56	8.51	5.50	11.58
47	OVOL1	8.56	7.78	2.62	6.07
48	ZIC5	8.54	7.21	3.91	7.16
49	PAX7	8.40	7.11	5.88	8.93
50	BNC1	8.38	7.42	2.35	3.49
51	TNFRSF18	8.31	10.59	2.88	7.59
52	GATA5	8.28	7.51	4.87	9.10
53	SALL3	8.15	8.20	1.79	4.52
54	NKX2-3	8.14	7.07	5.10	9.02
55	SOX14	8.04	8.74	2.79	5.51
56	FOXB1	8.04	8.62	2.70	6.34
57	HOXA6	8.04	7.37	3.08	6.71
58	HOXA5	8.04	7.37	3.08	6.71
59	HOXA7	8.04	7.37	3.08	6.71
60	PRDM13	7.89	8.12	2.00	3.95
61	ZIC4	7.82	7.84	0.89	0.58
62	HUXA11	7.81	8.34	4.68	9.05
63	PPL	7.71	9.56	2.13	5.44
64	DMRTAZ	(./0	7.32	1.51	3.30
65	GUGR	7.69	1.45	1.23	3.03
66	KLF2	1.00	8.67	2.82	5.26

#	Gene	Kelly rel AUC EZH2	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC
π	Oche	(ranking score)	H3K27me3	EZH2	H3K27me3
67	IRX4	7.61	8.30	6.13	10.81
68	NKX2-8	7.59	7.92	3.05	7.71
69	SLC32A1	7.47	9.07	2.24	5.10
70	I HX1	7 46	8 95	5 24	7 60
71	TBX1	7 40	7.56	5 43	9.21
72	LITE1	7 39	8 17	2 56	6.89
72	EBE2	7 34	8.07	1 17	8.26
73		7.34	5.72	4.17 5.71	11.00
74		7.30	0.12	5.71	11.09
75	GPR123	7.18	8.41	3.10	5.83
70	HUXB9	7.13	7.04	4.00	8.97
77	SHH	7.02	7.95	4.44	7.17
78	INHBB	6.99	7.35	5.49	8.34
79	CBFA2T3	6.95	8.67	4.14	10.05
80	HOXB6	6.94	7.83	4.51	9.53
81	HOXB5	6.94	7.83	4.51	9.53
82	BARX2	6.94	6.93	3.52	5.40
83	LHX6	6.90	7.47	2.69	4.31
84	CACNA1H	6.89	7.06	1.75	2.00
85	FOXC2	6.81	6.05	2.35	5.54
86	FIBCD1	6.78	9.20	5.36	11.43
87	ONECUT1	6.77	7.06	1.84	4.11
88	DMRT3	6.77	7.01	3.36	8.10
89	TPSG1	6.75	6.30	1.86	1.40
90	PRDM14	6 72	7 58	1 70	1 96
91	SI C24A4	6 64	9 46	2 18	5 48
92	RRFB1	6.63	5 92	2 33	4 4 5
02	HOXBA	6.61	7 13	2.00	5.82
04		6.57	8.06	2.00	2.76
94		6.57	6.00	2.02	5.85
95		0.57	6.06	2.02	0.00
90	FOXAT	0.50	0.90	1.37	2.21
97	EFNA2	0.51	8.34	1.27	1.50
98	FUXP2	6.49	6.79	2.95	4.56
99	NEUROD2	6.45	6.48	6.29	9.43
100	CXCL16	6.44	10.12	3.15	7.32
101	TLX1	6.43	6.76	3.29	6.68
102	MSX1	6.42	6.87	2.69	4.67
103	COMP	6.40	7.23	3.43	5.72
104	CHRD	6.37	7.82	2.22	2.94
105	ESPN	6.37	7.44	2.99	6.65
106	GAD2	6.23	7.11	2.79	6.86
107	PAX3	6.23	6.80	3.34	6.17
108	AJAP1	6.22	8.11	3.91	8.24
109	LHX4	6.22	5.80	2.08	3.66
110	ZMYND15	6.18	9.62	3.15	7.36
111	GAD1	6.18	7.14	2.02	5.26
112	LMX1A	6.17	5.86	2.23	4.89
113	EGERI 1	6 15	8 12	1 69	2 00
114	NR2F1	6 13	6.13	2 45	5.08
115	CDX2	6 12	5 20	11 43	19.24
116	C10RE94	6 11	9.61	2 77	5 73
117	MUCSB	6.04	8.03	3.85	9.44
112		6.03	6.55	2.42	5.77
110		0.05	6.10	1.20	0.50
119		6.02	6.02	1.30	0.09
120		0.02 E 04	5.02	2.40	6.20
121		5.94	5.00	3.19	0.39
122		5.92	0.57	3.95	0.22
123	RELN	5.90	9.95	1.72	3.82
124	PRKCZ	5.89	7.47	3.29	7.65
125	NPTX1	5.89	6.01	6.66	10.93
126	KLHDC7B	5.88	6.71	1.71	2.95
127	SLC30A3	5.84	7.27	1.25	0.63
128	POU4F3	5.84	7.03	2.42	4.85
129	COL12A1	5.81	7.17	0.81	1.07
130	GSC	5.81	6.41	2.56	4.98
131	ICAM5	5.80	8.51	1.33	0.54
132	HBB	5.79	2.15	2.06	1.55
133	NTN1	5.78	5.89	2.09	5.38
134	DGKQ	5.77	7.79	1.26	0.74
135	GPC4	5.77	7.36	2.91	6.04
136	TFAP2A	5.75	5.83	3.45	6.21
137	FZD10	5.72	6.68	2.64	6.25
138	HOXC13	5 67	7 55	1 93	5 08
130	HTRA1	5.67	7 30	2 40	4 04
140	HOXC11	5.67	5 50	2.70	5.74
141	PAX9	5.67	5.00	4 15	6 77
1/12	ΔΤΡ2Δ3	5.66	7 32	7.10 0.10	5.01
142	A11 2A3	5.00	1.50	2.15	5.31

#	Gene	Kelly rel AUC EZH2	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC
#	Gene	(ranking score)	H3K27me3	EZH2	H3K27me3
143	OLIG3	5.62	5.29	2.88	7.35
144	RASSF7	5.55	6.14	2.50	4.68
145	DSP	5.53	5.78	3.27	5.91
146	ITGB2	5.47	8.13	3.50	8.17
147	GABRD	5.45	6.21	4.40	10.95
148	DLX4	5.43	6.36	2.61	6.21
149	EMX2OS	5.41	5.62	3.05	5.72
150	GRWD1	5.41	3.46	0.76	0.75
151	SIX1	5.40	7.25	2.66	4.73
152	HOXA10	5.39	6.64	2.80	6.33
153	BARHL1	5.38	5.73	5.29	8.60
154	ATAD3C	5.37	7.68	1.28	0.98
155	WNT7B	5.34	6.44	4.23	7.47
156	HS3ST6	5.33	6.64	2.23	4.82
157	TPSD1	5.31	6.81	1.66	1.57
158	ADAM3A	5.27	3.14	0.53	0.48
159	HMX2	5.22	6.65	3.79	6.95
160	LHX3	5.22	3.61	3.77	4.98
161	OLIG1	5.21	8.98	1.96	4.63
162	FOXQ1	5.21	6.59	4.25	9.51
163	NFIX	5.20	5.28	2.65	4.57
164	FOXD2	5.20	4.79	2.40	4.90
165	MMP25	5.18	5.95	2.74	4.96
166	NOG	5.15	6.75	2.74	6.11
167	OSR1	5.14	6.57	1.85	4.65
168	FGF3	5.14	4.72	3.92	7.28
169	CSMD2	5.11	8.14	2.74	5.74
170	TCF21	5.10	9.71	1.84	4.65
171	FOXL1	5.10	7.18	1.88	5.11
172	NEUROG3	5.08	6.19	3.22	6.91
173	SIX6	5.08	4.86	2.53	4.39
174	NRK	5.04	7.20	1.04	1.75
175	FOXE1	5.03	6.18	1.13	2.84
176	ACSS1	5.01	6.90	1.88	3.88
177	SIM1	5.01	5.82	1.34	3.10
178	SLC4A11	5.01	5.62	1.97	3.05
179	PTRF	5.00	6.52	3.08	5.68
180	PPAP2C	4.98	7.77	1.91	4.34
181	WTIP	4.98	5.11	1.29	0.55
182	MAF	4.97	6.50	2.05	5.02
183	HOXA13	4.96	5.46	2.15	5.17
184	ITGB4	4.94	8.19	2.05	5.52
185	CRLF1	4.93	5.45	2.29	4.78
186	SP8	4.90	5.50	6.33	11.39
187	GUCY2D	4.88	5.64	1.45	3.94
188	PRDM6	4.87	6.81	2.25	4.10
189	Т	4.85	5.25	1.93	4.51
190	FEZF2	4.82	5.55	3.51	6.40
191	FAM110C	4.81	7.04	1.90	3.44
192	IGF2BP2	4.81	6.92	1.67	3.60
193	SCN4B	4.78	8.17	1.95	5.22
194	GRIN3B	4.78	6.07	1.61	3.06
195	SMARCA2	4.78	5.41	1.76	2.20
196	ALDH1A2	4.77	8.75	1.29	1.97
197	IHH	4.76	5.31	1.49	2.76
198	KCNA1	4.76	4.64	2.44	4.45
199	FOXD3	4.75	5.43	4.14	7.56
200	SOX17	4.74	5.11	1.66	4.03
201	ICOSLG	4.74	4.56	3.57	8.03
202	TWIST2	4.73	4.78	1.66	3.88
203	FAM83H	4.72	6.27	2.36	3.78
204	SCO2	4.71	4.93	1.32	1.30
205	CYP26A1	4.68	5.70	2.77	6.30
206	HOXA2	4.68	4.71	3.84	7.46
207	LONRF3	4.63	5.97	1.59	3.04
208	NRN1	4.63	5.48	1.50	3.30
209	KRTAP10-12	4.58	7.05	2.06	4.25
210	C210RF90	4.58	7.05	2.06	4.25
211	KRTAP10-11	4.58	7.05	2.06	4.25
212	MUC2	4.58	6.12	2.27	6.64
213	WNT1	4.54	5.06	4.12	8.96
214	BMP4	4.53	5.65	1.35	2.33
215	KISS1R	4.52	4.93	2.14	3.89
216	RIPK4	4.51	7.77	2.22	5.85
217	SLITRK2	4.48	7.13	2.35	7.34
218	HEY2	4.48	5.81	1.68	3.64

#	Gana	Kelly rel AUC EZH2	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC
#	Gene	(ranking score)	H3K27me3	EZH2	H3K27me3
219	SLC1A1	4.47	7.16	2.12	4.99
220	BMP6	4.46	5.44	2.88	5.72
221	ATP8A2	4.45	5.99	3.18	8.23
222	LOC401463	4.45	5.58	1.01	2.50
223	HOXB3	4.42	5.69	2.82	6.31
224	HOXB2	4.42	5.69	2.82	6.31
225	TFAP2E	4.42	5.22	1.19	0.58
226	SSTR5	4.39	3.92	1.69	2.07
227	RAX	4.38	7.16	0.70	0.67
228	IRF4	4.36	5.31	1.89	4.79
229	ACHE	4.35	4.17	2.55	3.26
230	FOXE3	4.34	5.63	1.31	3.57
231	TP73	4.32	3.33	0.82	0.41
232	MATK	4 31	5 59	1 43	3 75
233	FAM43B	4 30	5.90	1 22	0.40
234	PFKI	4 30	5 54	1 61	2 45
235	PAX1	4 29	5 65	3 62	7 48
236	SCT	4 29	5 42	1.33	0.68
237	HOXC10	4 28	5 17	5.37	10.33
238	PAPIN	4 26	6.54	2 05	2 32
239	GRTP1	4 26	6 4 1	1.05	1 07
240	NPR3	4 26	5.92	0.93	1 06
241	TBX5	4,26	4.34	3.10	6.09
242	BACE2	4 22	7.57	2 44	6.38
243	PRRX1	4.22	6.31	2.41	4.27
244	DI X2	4 22	5.65	1 71	2 64
245	MT1G	4 21	6.39	1 97	5 74
246	GADD45B	4 21	5.96	1 07	1.37
247	ICAM4	4 20	5.62	1 13	0.57
248	GJB2	4 20	5 41	1.83	4 53
240	PHI DA2	4 19	3.95	2 52	5 94
250	PCSK6	4 18	5.30	1 19	1 87
251	FBI N5	4 17	7 83	1 55	2 75
252	THBD	4.16	6.61	1.35	2.91
253	PFKFB3	4.16	5.83	1.59	0.87
254	NKD2	4.16	4.38	2.73	6.11
255	MYO5B	4.14	7.40	3.30	7.61
256	MAD2L2	4.14	6.19	1.69	2.27
257	GPR50	4.12	6.02	1.03	1.29
258	RGL3	4.12	5.83	1.67	2.51
259	GRIN2C	4.12	4.10	2.09	3.50
260	CACNG2	4.11	5.84	1.57	4.34
261	PIK3CD	4.10	5.87	1.51	3.01
262	ZNF92	4.10	3.63	2.15	2.66
263	BCL2L11	4.10	3.20	1.33	1.29
264	MRGPRX3	4.08	8.67	1.09	1.53
265	NR5A1	4.08	3.31	2.11	3.69
266	GL13	4.06	5.52	3.02	7.17
267	WNT7A	4.05	4.43	2.51	5.13
268	FAM20A	4.04	6.52	1.17	2.38
269	SLC16A6	4.04	6.52	1.17	2.38
270	WIPI1	4.04	6.52	1.17	2.38
271	NISRI	4.03	5.10	1.89	4.55
272	ROBU3	4.01	7.66	1.46	5.18
273	CDC42EP5	4.01	6.61	2.36	4.96
274	MITM	4.01	5.43	2.69	6.93
275		4.01	5.10	2.80	5.96
276	SNAPC2	4.01	3.32	1.59	0.87
277	PDGFRA	4.00	4.27	1.07	1.31
270	SLC22A TOAS	3.90	3.20	2.09	0.41
279		3.97	5.ZI	2.57	5.60
200	MUCE	3.97	5.13 6.00	4.07	0.0U 5.00
201	M000 U02072B1	3.90	4.61	1 03	3.30
202	MGC12916	3.90	4.61	1 93	3.25
200	HTR2C	3 95	7 93	1 58	2 74
285	DUSP8	3 94	6 54	3 76	4 88
286	ADRA1A	3 94	6 19	1 02	1.36
287	PTPRT	3 93	4 97	2 17	3 99
288	PPP2R2C	3 92	5 93	2 43	5 46
289	NEUROG1	3.92	5.35	0.85	1.30
290	FOSL1	3.91	5.41	2.50	5.35
291	KCNK4	3.91	3.91	2.40	3.58
292	BAD	3.90	3.34	2.40	3.03
293	GFI1	3.89	5.38	2.28	4.26
294	SVEP1	3.88	8.02	0.60	0.40

#	Gene	Kelly rel AUC EZH2 (ranking score)	Kelly rel AUC H3K27me3	LAN-1 rel AUC EZH2	LAN-1 rel AUC H3K27me3
295	BAIAP3	3.88	7.16	1.56	2.90
296	DLX3	3.88	5.68	3.13	6.67
297	НВМ	3.86	6.74	3.26	8.62
298	CACNA1E	3.86	5.71	1.82	4.82
299	MMEL1	3.84	6.59	2.77	6.20
300	CRIM1	3.83	4.87	1.29	2.58

Supplemental Table 3. (B) Custom neuroblastoma	PRC2 signature consisting	g of the top 300 H3K27	'me3 ChIP-seq target
genes in Kelly cells.			

#	Gene	Kelly rel AUC H3K27me3	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC
		(ranking score)	EZH2	H3K2/me3	EZHZ
1	NFATC1	23.21	32.51	11.65	8.52
2	SIGIRR	18.72	13.33	2.04	1.50
3	PAX2	13.13	18.04	11.36	9.27
4	ATHL1	12.57	9.17	1.63	1.56
5	PDGFA	12.54	17.82	9.41	6.60
6	SOX8	12.54	16.45	11.05	5.57
7	FLT4	12.36	9.28	7.02	2.97
8	SORCS3	11.54	12.35	6.60	3.49
9	FOXL2	10.62	12.53	6.50	4.23
10	HOXC12	10.61	12.26	7.43	4.52
11	TNFRSF18	10.59	8.31	7.59	2.88
12	LHX5	10.54	12.77	7.65	5.23
13	GATA4	10.44	12.04	5.17	3.35
14	LBX1	10.41	17.76	8.45	5.29
15	EN2	10.34	12.41	9.53	6.53
16	ZIC1	10.24	12.60	0.39	0.88
17	HES4	10.22	11.41	0.49	1.18
18	CXCL16	10.12	6.44	7.32	3.15
19	LMX1B	10.09	12.23	9.23	6.93
20	RELN	9.95	5.90	3.82	1.72
21	GBX2	9.71	10.23	1.74	1.19
22	TCF21	9.71	5.10	4.65	1.84
23	ZMYND15	9.62	6.18	7.36	3.15
24	C1ORF94	9.61	6.11	5.73	2.77
25	PPL	9.56	7.71	5.44	2.13
26	EVX1	9.50	10.74	7.78	3.28
27	SLC24A4	9.46	6.64	5.48	2.18
28	FIBCD1	9.20	6.78	11.43	5.36
29	SOX21	9.13	9.15	5.47	2.51
30	SLC32A1	9.07	7.47	5.10	2.24
31	OLIG2	9.01	10.30	8.13	4.33
32	ZFYVE28	9.01	3.56	5.62	2.95
33	OLIG1	8.98	5.21	4.63	1.96
34	LHX1	8.95	7.46	7.60	5.24
35	MUC5B	8.93	6.04	9.44	3.85
36	KLK6	8.93	3.80	4.82	2.37
37	NKX1-1	8.88	17.14	3.80	2.30
38	TBX15	8.77	10.94	6.40	3.14
39	ALDH1A2	8.75	4.77	1.97	1.29
40	SOX14	8.74	8.04	5.51	2.79
41	KLF2	8.67	7.66	5.26	2.82
42	CBFA2T3	8.67	6.95	10.05	4.14
43	MRGPRX3	8.67	4.08	1.53	1.09
44	FOXB1	8.62	8.04	6.34	2.70
45	PRDM12	8.51	15.81	6.50	5.55
46	VENTX	8.51	8.56	11.58	5.50
47	ICAM5	8.51	5.80	0.54	1.33
48	GPR123	8.41	7.18	5.83	3.10
49	OTX2	8.40	9.36	5.81	2.81
50	EMX1	8.39	9.97	8.53	5.55
51	HOXA11	8.34	7.81	9.05	4.68
52	EFNA2	8.34	6.51	1.50	1.27
53	IRX4	8.30	7.61	10.81	6.13
54	SALL3	8.20	8.15	4.52	1.79
55	ITGB4	8.19	4.94	5.52	2.05
56	UTF1	8.17	7.39	6.89	2.56
57	SCN4B	8.17	4.78	5.22	1.95
58	CSMD2	8.14	5.11	5.74	2.74
59	ITGB2	8.13	5.47	8.17	3.50
60	PRDM13	8.12	7.89	3.95	2.00
61	FGFRL1	8.12	6.15	2.00	1.69
62	ALX4	8.11	8.59	7.03	3.48
63	AJAP1	8.11	6.22	8.24	3.91
64	EBF2	8.07	7.34	8.26	4.17
65	LOC284379	8.07	2.84	5.71	1.53
66	THPO	8.06	6.57	2.76	2.02
67	LHX2	8.05	9.36	5.21	3.08
68	SVEP1	8.02	3.88	0.40	0.60
69	EGR3	8.00	9.29	3.47	2.30
70	SHH	7.95	7.02	7.17	4.44
71	HTR2C	7.93	3.95	2.74	1.58
72	NKX2-8	7.92	7.59	7.71	3.05
73	PRDM16	7.89	8.72	15.23	8.90

#	Gana	Kelly rel AUC H3K27me3	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC
#	Gene	(ranking score)	EZH2	H3K27me3	EZH2
74	IRX2	7.85	10.20	6.33	3.54
75	FOXF2	7 84	12.04	6.86	4 29
76	710/1 2	7.84	7 82	0.58	0.89
70		7.04	0.41	5 20	0.05
70		7.00	5.41	0.52	2.07
70	HOXBO	7.03	6.94	9.53	4.51
79	HOXB5	7.83	6.94	9.53	4.51
80	FBLN5	7.83	4.17	2.75	1.55
81	NKX2-5	7.82	8.84	5.01	3.05
82	CHRD	7.82	6.37	2.94	2.22
83	IRX1	7.80	11.30	7.59	3.52
84	DGKQ	7.79	5.77	0.74	1.26
85	OVOL1	7 78	8.56	6.07	2 62
86	GATA6	7 77	0.63	8 26	4.69
00		7.77	3.00	4.24	4.03
07	FFAF2C	7.77	4.90	4.34	1.91
88	RIPK4	1.11	4.51	5.85	2.22
89	2102	7.69	11.22	9.76	6.31
90	ATAD3C	7.68	5.37	0.98	1.28
91	ROBO3	7.66	4.01	5.18	1.46
92	PRDM14	7.58	6.72	1.96	1.70
93	BACE2	7.57	4.22	6.38	2.44
94	MN1	7 56	9 51	12 22	6 66
95	TBX1	7 56	7 40	9.21	5 43
96	HOYC13	7 55	5.67	5.08	1 03
90 07	FOXE1	7.53	10.12	0.00	1.95 5 56
97	FUXFI	7.55	12.13	0.73	5.50
98	GATAS	7.51	8.28	9.10	4.87
99	LHX6	7.47	6.90	4.31	2.69
100	PRKCZ	7.47	5.89	7.65	3.29
101	KRT85	7.46	3.50	3.01	1.36
102	GCGR	7.45	7.69	3.03	1.23
103	ESPN	7.44	6.37	6.65	2.99
104	HOXB8	7.42	10.05	12.41	8.66
105	BNC1	7 42	8.38	3 49	2 35
106	HOXB7	7 41	8 92	12 16	7 55
100	MVO5R	7.41	4 14	7.61	3 30
107		7.40	4.14	7.01 E 01	0.10
100	ATPZAS	7.30	5.00	5.91	2.13
109	HOXA6	7.37	8.04	6.71	3.08
110	HOXA5	1.37	8.04	6.71	3.08
111	HOXA7	7.37	8.04	6.71	3.08
112	GPC4	7.36	5.77	6.04	2.91
113	INHBB	7.35	6.99	8.34	5.49
114	DMRTA2	7.32	7.70	3.30	1.51
115	HTRA1	7.30	5.67	4.04	2.40
116	KIRREI	7 30	3 03	2 98	1 4 1
117	SI C30A3	7 27	5.84	0.63	1 25
118	SIX1	7.25	5 40	4 73	2.66
110	COMP	7.20	6.40	5.70	2.00
119		7.23	0.40	3.72	3.43
120	2105	7.21	8.54	7.10	3.91
121	NRK	7.20	5.04	1.75	1.04
122	FOXL1	7.18	5.10	5.11	1.88
123	COL12A1	7.17	5.81	1.07	0.81
124	SLC1A1	7.16	4.47	4.99	2.12
125	RAX	7.16	4.38	0.67	0.70
126	BAIAP3	7.16	3.88	2.90	1.56
127	GAD1	7.14	6.18	5.26	2.02
128	HOXB4	7 13	6 61	5 82	2 95
129	SLITRK2	7 13	4 48	7 34	2.35
120	DAV7	7.10	9.40	8 03	5.99
130	CAR2	7.11	0.40	0.95	5.00
131	GAD2	7.11	0.23	0.00	2.79
132	PVALB	7.10	3.03	5.90	2.48
133	NKX2-3	7.07	8.14	9.02	5.10
134	CACNA1H	7.06	6.89	2.00	1.75
135	ONECUT1	7.06	6.77	4.11	1.84
136	KRTAP10-12	7.05	4.58	4.25	2.06
137	C210RF90	7.05	4.58	4.25	2.06
138	KRTAP10-11	7.05	4.58	4.25	2.06
139	PDPN	7.05	3.12	4,31	1.60
140	SI C6A20	7 05	2 87	2 27	1 47
141	HOXB9	7 04	7 13	2.27 8 07	4 66
140	FAM110C	7.04	1.10	2 11	1.00
142		7.04	T.01	J.44 1 OE	0.40
143		7.03	D.04	4.00	2.42
144		7.01	9.70	9.46	5.16
145	DMR13	7.01	6.77	8.10	3.36
146	NFE2L3	7.01	3.56	1.06	1.24
147	CD1D	6.99	2.90	5.29	2.24
148	IL27	6.99	2.18	1.86	1.41
149	FOXA1	6.96	6.56	2.21	1.37

#	Cono	Kelly rel AUC H3K27me3	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC
#	Gene	(ranking score)	EZH2	H3K27me3	EZH2
150	BARX2	6.93	6.94	5.40	3.52
151	IGF2BP2	6.92	4.81	3.60	1.67
152	DENB31	6.92	3.37	2 14	0.94
153	40551	6 90	5.01	3.88	1 88
154	SIM2	6.87	8 78	5.00	3 54
155	MSV1	6.97	6.42	4.67	2.60
155		6.91	10.02	5.29	2.03
150	DARX I	0.01	10.02	5.30	2.71
157	TPSD1	6.81	5.31	1.57	1.66
158	PRDM6	6.81	4.87	4.10	2.25
159	PAX3	6.80	6.23	6.17	3.34
160	FOXP2	6.79	6.49	4.56	2.95
161	TCF15	6.79	3.26	2.39	1.42
162	TLX1	6.76	6.43	6.68	3.29
163	NOG	6.75	5.15	6.11	2.74
164	НВМ	6.74	3.86	8.62	3.26
165	XKR4	6.72	3.49	3.23	1.39
166	KI HDC7B	6 71	5 88	2 95	1 71
167	FZD10	6 68	5.72	6.25	2 64
168	HMX2	6 65	5 22	6 95	3 79
160	HOXA10	6.64	5 39	6.33	2.80
170	H02976	6.64	5.33	4.82	2.00
170	CDD79	6.64	2.04	4.02	2.23
171		0.04	3.04	3.00	1.44
172	V5/G2	0.03	2.69	2.59	1.35
173	SERPINA9	6.63	2.54	2.12	1.10
174	SCNN1G	6.63	2.49	3.72	1.68
175	THBD	6.61	4.16	2.91	1.35
176	CDC42EP5	6.61	4.01	4.96	2.36
177	FOXQ1	6.59	5.21	9.51	4.25
178	MMEL1	6.59	3.84	6.20	2.77
179	HES2	6.57	5.92	8.22	3.95
180	OSR1	6.57	5.14	4.65	1.85
181	OVOL2	6 56	6 03	5 27	2 42
182	PAPIN	6 54	4 26	2 32	2.05
183	DUSP8	6 54	3 94	4 88	3 76
184	PTRE	6.52	5.00	5.68	3.08
104	EAM20A	6.52	1.00	0.00	1 17
100	SI C16A6	6.52	4.04	2.30	1.17
100	SLCTOAD	0.52	4.04	2.30	1.17
187	WIPIT	0.52	4.04	2.38	1.17
188	MAF	6.50	4.97	5.02	2.05
189	PPP1R1A	6.49	2.81	4.18	1.79
190	NEUROD2	6.48	6.45	9.43	6.29
191	TMPRSS2	6.48	3.55	3.37	1.59
192	TTLL10	6.47	6.57	5.85	2.62
193	WNT7B	6.44	5.34	7.47	4.23
194	AIRE	6.43	3.55	3.17	1.71
195	GSC	6.41	5.81	4.98	2.56
196	GRTP1	6.41	4.26	1.07	1.05
197	GALP	6.41	3.38	1.58	0.80
198	RIPK3	6 4 1	3 10	4 32	1 61
199	SOX3	6 40	8 83	5 20	3 18
200	ATP10A	6 40	3.81	4 31	1 60
201	MT1G	6 39	4 21	5 74	1 97
201		6.36	5 43	6.21	2.61
202		6.34	3.15	1 99	1 36
203		6.22	2 02	1.00	0.70
204		0.00	3.62	2.02	0.79
205		0.31	4.22	4.27	2.41
206	TPSG1	6.30	6.75	1.40	1.86
207	MSLN	6.29	3.72	4.73	1.72
208	FAM83H	6.27	4.72	3.78	2.36
209	PTHLH	6.26	3.05	3.36	1.70
210	IQGAP2	6.26	2.35	1.57	1.14
211	KRT5	6.23	2.70	3.45	1.32
212	RDH8	6.22	3.64	4.38	1.51
213	GABRD	6.21	5.45	10.95	4.40
214	ADAMTS8	6.21	2.99	2.36	1.41
215	GNGT2	6.21	2.88	5.79	2.46
216	NEUROG3	6.19	5.08	6.91	3.22
217	MAD2L2	6 19	4 14	2 27	1 69
218	ADRA1A	6 10	3 04	1 36	1.00
210	MRGPRX4	6 10	0.04 2 14	2 30	1 10
220	FOXE1	6 18	5.03	2.00	1 12
220		0.10 6.10	0.00	2.04	1.15
221		0.10	2.10	0.05	1.07
222	I KEML4	0.18	2.07	3.05	1.34
223	CALOR	0.1/	3.34	1.40	1.26
224	SYCN	6.17	3.24	3.65	1.42
225	SLC26A1	6.17	3.20	3.33	1.69

ш	Cana	Kelly rel AUC H3K27me3	Kelly rel AUC	LAN-1 rel AUC	LAN-1 rel AUC
#	Gene	(ranking score)	EZH2	H3K27me3	EZH2
226	NKX3-1	6.16	3.10	1.01	1.02
227		6 15	2.87	0.73	0.89
229	DASSET	6.14	5 55	4.68	2.50
220	NB2E1	6.12	5.55	4.00	2.50
229	MUCO	6.10	4 59	5.00	2.45
230	M0C2	0.12	4.50	0.04	2.27
231	KLK10	6.11	3.60	4.32	2.03
232	VDR	6.11	2.20	2.91	0.93
233	DRD4	6.10	6.02	0.59	1.38
234	PAX8	6.10	3.72	3.18	1.67
235	MUC6	6.09	3.96	5.90	2.84
236	DNMT3L	6.09	2.83	3.11	1.37
237	НСК	6.08	3 02	2 75	1 07
238	GRIN3B	6.07	4 78	3.06	1.61
230	II 22RA1	6.07	2 28	5.00	2 15
240	NPCN	6.06	2.20	1 01	1 / 1
240	EOVC2	6.05	2.50	5.54	0.25
241		0.05	0.01	5.54	2.33
242	KCNTT	6.05	3.46	10.73	4.40
243	LOC442028	6.04	2.60	2.38	0.71
244	PIGR	6.04	1.89	4.93	2.24
245	OTP	6.02	6.02	5.32	2.48
246	GPR50	6.02	4.12	1.29	1.03
247	NPTX1	6.01	5.89	10.93	6.66
248	SLC5A5	6.01	3.41	2.28	1.18
249	ATP12A	6.00	3.00	4.69	1.84
250	NHSI 1	6.00	2 73	0.37	0.62
251	ATP842	5 99	4 45	8 23	3 18
257	CACNEE	5.00	3 51	4 15	2.53
252	CXCNGO	5.99	0.07	4.15	2.55
253		5.99	2.37	3.32	1.17
254	IMCO4	5.98	3.40	3.77	1.55
255	LONRF3	5.97	4.63	3.04	1.59
256	PRSS22	5.97	3.21	4.53	2.05
257	GADD45B	5.96	4.21	1.37	1.07
258	COL5A3	5.96	3.34	4.81	1.64
259	ACRC	5.96	2.52	0.65	0.78
260	GJB1	5.96	2 52	0.65	0.78
261	ITGB1BP2	5.96	2 52	0.65	0.78
262	TAE1	5.00	2.52	0.65	0.78
202		5.50	2.52	0.05	0.78
203	UGI	5.96	2.52	0.65	0.78
264	NONO	5.96	2.52	0.65	0.78
265	MMP25	5.95	5.18	4.96	2.74
266	FFAR2	5.95	2.78	3.73	1.54
267	PPP2R2C	5.93	3.92	5.46	2.43
268	RREB1	5.92	6.63	4.45	2.33
269	NPR3	5.92	4.26	1.06	0.93
270	UST	5.92	3.76	1.41	0.81
271	ACOXL	5.92	3.76	2.77	0.93
272	FAM43B	5 90	4 30	0 40	1 22
273	SERP2	5 90	3.67	2.08	1 48
274	NTNI	5.89	5 78	5 38	2.09
275	PIK3CD	5.05	4 10	3.00	1 51
275	CNP2	5.07	2.51	2.01	1.51
270		5.07	2.51	2.02	1.72
277		5.60	0.17	4.09	2.23
210	GRADIO	5.80	2.30	1./1	1.0/
279	CACNG2	5.84	4.11	4.34	1.57
280	IFAP2A	5.83	5.75	6.21	3.45
281	PFKFB3	5.83	4.16	0.87	1.59
282	RGL3	5.83	4.12	2.51	1.67
283	MLXIPL	5.83	3.15	4.13	1.48
284	SIM1	5.82	5.01	3.10	1.34
285	HEY2	5.81	4.48	3.64	1.68
286	I HX4	5 80	6 22	3 66	2.08
287	EAM3B	5 79	2.98	6 64	2.00
207		5.79	5.53	5.01	2.49
200		5.10 E 70	0.00	1.81	J.ZI
209		5.70	2.90	1.00	1.22
290		5./ŏ	2.91	2.45	1.10
291	TCPTUL	5.//	3.71	2.67	1.50
292	IL1RL2	5.76	3.12	2.57	1.04
293	NOTCH2	5.74	3.51	2.46	1.69
294	KLK11	5.74	2.36	5.36	2.24
295	CST9	5.74	2.16	2.68	1.15
296	BARHL1	5.73	5.38	8.60	5.29
297	ATP8B1	5.73	3.09	1.58	0.91
298	NOTCH1	5 72	7 30	11 09	5 71
299	CACNA1E	5 71	3.86	4 82	1.82
300	NR5A2	5 71	3 14	3 98	1 94
000		V./ I	v .1 4	0.00	1.04

_

_

Supplemental Table 3. (C) Custom neuroble	astoma PRC2 signature cons	isting of the top 300 EZH2 ChIP-se	eq target
genes in LAN-1 cells.			

0				Kolly rol ALIC	Kolly rol ALIC
#	Gene	(renking coore)	LAN-TIELAUC		H2K27mo2
		(ranking score)	H3K27IIIe3	EZHZ	H3K2/IIIe3
1	CDX2	11.43	19.24	6.12	5.20
2	PAX2	9.27	11.36	18.04	13.13
3	PRDM16	8.90	15.23	8.72	7.89
4	HOXB8	8.66	12.41	10.05	7.42
5	NEATC1	8 52	11.65	32 51	23.21
6	TMEM132E	7.84	13.22	0.94	0.27
0		7.04	10.22	0.94	0.27
/	HUXB/	7.55	12.10	8.92	7.41
8	EBF3	7.49	11.34	3.11	4.15
9	LMX1B	6.93	9.23	12.23	10.09
10	HOXC9	6.85	10.57	0.95	0.63
11	SERPINA2	6 66	16 44	1 36	4 4 1
12	MN1	6 66	12.22	9.51	7.56
12		6.66	10.03	5 80	6.01
13		6.00	0.41	17.09	10.01
14	PDGFA	0.00	9.41	17.02	12.54
15	EN2	6.53	9.53	12.41	10.34
16	SP8	6.33	11.39	4.90	5.50
17	ZIC2	6.31	9.76	11.22	7.69
18	NEUROD2	6.29	9.43	6.45	6.48
19	IRX4	6 13	10.81	7 61	8.30
20	PAY7	5.88	8 93	8 40	7 11
20		5.00	11.00	7.20	5 70
21		5.71	11.09	7.30	5.72
22	SOX8	5.57	11.05	16.45	12.54
23	FOXF1	5.56	8.73	12.13	7.53
24	EMX1	5.55	8.53	9.97	8.39
25	PRDM12	5.55	6.50	15.81	8.51
26	KLK12	5.50	12.51	2.39	5.49
27	VENTX	5 50	11.58	8.56	8.51
28	INHBB	5 49	8 34	6 99	7 35
20		5.40	0.04	0.99	7.55
29		5.43	9.21	7.40	7.50
30	ZNF469	5.42	12.27	1.07	0.75
31	HOXC10	5.37	10.33	4.28	5.17
32	FIBCD1	5.36	11.43	6.78	9.20
33	BARHL1	5.29	8.60	5.38	5.73
34	LBX1	5.29	8.45	17.76	10.41
35	I HX1	5 24	7.60	7 46	8 95
36		5.23	7.65	12 77	10.54
30		5.25	7.05	0.70	7.04
37	NKX2-2	5.10	9.46	9.70	7.01
38	NKX2-3	5.10	9.02	8.14	7.07
39	CDH4	4.99	8.46	1.37	1.04
40	GATA5	4.87	9.10	8.28	7.51
41	PDGFB	4.84	7.90	3.69	3.76
42	GATA6	4.69	8.26	9.63	7.77
43	HOXA11	4 68	9.05	7 81	8.34
44	HOXB9	4 66	8 97	7 13	7 04
44		4.00	7 42	12.15	10.61
45		4.52	7.43	12.20	10.01
46	HOXB6	4.51	9.53	6.94	7.83
47	HOXB5	4.51	9.53	6.94	7.83
48	CBX4	4.50	5.24	3.71	2.98
49	SHH	4.44	7.17	7.02	7.95
50	CLCNKB	4.41	9.42	0.70	0.23
51	GABRD	4,40	10 95	5,45	6.21
52	KCNT1	4 40	10.73	3 46	6.05
52		4.22	0.10	10.20	0.00
55		4.00	0.13	10.30	9.01
54	GRIK3	4.31	6.58	0.86	0.34
55	FOXF2	4.29	6.86	12.04	7.84
56	TTYH1	4.27	8.53	2.97	5.03
57	KIAA0125	4.26	10.03	1.67	0.97
58	HIC1	4.26	5.13	3.00	3.96
59	FOXQ1	4 25	9 51	5 21	6 59
60	NUDT14	4 23	10 15	1.52	1 97
61		4.22	7 47	F 24	6.44
01		4.23	7.47	5.34	0.44
62	FUXL2	4.23	0.50	12.53	10.62
63	CDH15	4.22	10.54	2.88	4.81
64	EBF2	4.17	8.26	7.34	8.07
65	PKNOX2	4.16	9.10	1.40	0.92
66	PAX9	4.15	6.77	5.67	5.27
67	CBFA2T3	4 14	10.05	6 95	8.67
62	EOXD3	4 1A	7 56	4 75	5 4 3
60		T. IT 4 40	7.50 6.45	7.15	J. 4 J
09		4.13	0.40	3.04	4.11
70	WIN 17	4.12	8.96	4.54	5.06
71	SOHLH1	4.08	9.91	3.47	5.48
72	HOXB13	4.07	8.80	3.97	5.13
73	SLC9A3	4.05	8.47	3.60	4.52

#	Gene	LAN-1 rel AUC EZH2	LAN-1 rel AUC	Kelly rel AUC	Kelly rel AUC
#	Gene	(ranking score)	H3K27me3	EZH2	H3K27me3
74	BAHCC1	4.02	6.37	1.20	0.39
75	SOX18	3.98	7.65	3.42	2.69
76	HES2	3.95	8.22	5.92	6.57
77	CYP26B1	3.95	6.69	3.22	3.81
78	COL18A1	3.94	7.79	2.07	1.54
79	FGF3	3.92	7.28	5.14	4.72
80	AJAP1	3.91	8.24	6.22	8.11
81	ZIC5	3.91	7.16	8.54	7.21
82	KLHDC7A	3.86	8.71	0.70	0.22
83	MUC5B	3.85	9.44	6.04	8.93
84	HOXA2	3.84	7.46	4.68	4.71
85	HMX2	3.79	6.95	5.22	6.65
86	LHX3	3.77	4.98	5.22	3.61
87	DUSP8	3.76	4.88	3.94	6.54
88	KCNK9	3.72	5.60	2.69	2.66
89	SDK2	3.70	8.36	1.35	1.34
90	CDKN1C	3 70	6 60	2 03	2 21
91	WI7	3 69	2.08	1 31	1 50
92	RUNX1	3 67	7 49	1 90	4 04
93	POU3E3	3 63	7 20	3.82	3 87
94	PAX1	3.62	7 48	4 29	5 65
95	IRS4	3.62	6.51	3 31	4 81
96	MAGEA11	3.60	6.89	0.81	2 18
97		3 57	8.03	4 74	4 56
98		3 54	7 98	0.83	0.71
99	IBX2	3 54	6 33	10.20	7.85
100	SIM2	3 54	5.86	8 78	6.87
100	IBX1	3 52	7 59	11 30	7.80
101	BARX2	3.52	5 40	6 94	6.93
102	ARC	3.52	8 25	1 24	0.00
103	EEZE2	3 51	6.40	4 82	5 55
104	ITGR2	3 50	8 17	5.47	8 13
105	ITPR3	3.00	7.83	2.61	3 90
100	SORCS3	3.49	7.85 6.60	12 35	11 54
107	COL 13A1	3 48	8.46	0.94	1 39
100	AI X4	3.48	7 03	8 59	8 11
100	NCKIPSD	3 48	1.68	0.84	0.17
110	IAG2	3.47	9.45	0.04	0.22
112	ΤΔΙ 1	3.46	6 4 9	3.62	3 44
112	TEAP2A	3 45	6.21	5.02	5.83
114	COMP	3 43	5 72	6 40	7 23
115	TPPP	3 41	1 49	1.85	0.43
116	DMRT3	3 36	8 10	6 77	7 01
117	GATA4	3 35	5 17	12 04	10 44
118	HSPB7	3 34	7 55	0.90	0.42
119	PAX3	3.34	6.17	6.23	6.80
120	FI T1	3 33	7 03	3 55	4 22
121	NKX6-1	3 32	7 17	1 21	0.79
122	MY05B	3 30	7 61	4 14	7 40
123	PRKCZ	3.29	7.65	5.89	7.47
124	NTF3	3.29	7.23	2.45	3.69
125	TI X1	3 29	6 68	6 43	6 76
126	FVX1	3 28	7 78	10 74	9 50
127	DSP	3 27	5 91	5 53	5 78
128	HBM	3 26	8 62	3.86	6 74
129	HOXC11	3 26	5 74	5.67	5 50
130	NEUROG3	3 22	6.91	5.08	6 19
131	VMO1	3 22	4 75	2 37	4 02
132	ACTRT2	3 21	9.03	2.88	5 14
133	CHST1	3 21	7 33	0.91	0.97
134	ADSSL1	3 21	2 44	3.61	1 87
135	EN1	3 19	6 39	5 94	5.66
136	ATP842	3 18	8 23	4 45	5 99
137	PI CH2	3 18	7 48	1 10	0.36
138	CABP7	3 18	6.08	2 10	1 80
139	NETO1	3 18	5.92	0.89	0 41
140	SOX3	3 18	5 20	8 83	6 40
141	SI C22A18	3 16	4 51	2 09	2 20
142	ZMYND15	3 15	7.36	6 18	9.62
143	CXCI 16	3 15	7 32	6 44	10 12
144	NTNG2	3 14	7 77	1 11	1 01
145	TBX15	3 14	6 40	10 94	8 77
146	DI X3	3 13	6 67	3.88	5.68
147	SEMBT2	3 11	6 59	3 10	4 49
148	GPR101	3 11	6.05	3 80	5 63
149	I SP1	3 10	7.06	0.65	0.00
140		0.10		0.00	V I

#	Gene	LAN-1 rel AUC EZH2	LAN-1 rel AUC	Kelly rel AUC	Kelly rel AUC
	Selie	(ranking score)	H3K27me3	EZH2	H3K27me3
150	TBX5	3.10	6.09	4.26	4.34
151	GPR123	3.10	5.83	7.18	8.41
152	NEU2	3.09	6.82	1.62	3.26
153	HOXA6	3.08	6.71	8.04	7.37
154	HOXA5	3.08	6.71	8.04	7.37
155	HOXA7	3.08	6.71	8.04	7.37
156	GALN 19	3.08	6.61	3.46	4.51
157	PIRF	3.08	5.68	5.00	6.52
158	LHX2	3.08	5.21	9.36	8.05
159	KR135	3.07	7.05	0.73	0.34
160	METRNL	3.07	3.89	2.09	2.00
101	NKX2-8	3.05	7.71 E 70	7.59	7.92
162	EMX2US	3.05	5.72	5.41	5.62
103		3.05	5.48		2.33
104	NKA2-5 BCI 11B	3.00	5.01	0.04	1 16
166	GUS	3.02	7 17	4.06	5.52
167	HOYCS	3.02	6.43	0.95	0.26
168	ESCN2	3.00	6 90	2 77	3 40
169	TNNI2	2 99	7 27	2.36	1 00
170	ESPN	2.99	6.65	6.37	7.44
171	CYP24A1	2.99	6.11	1.88	3.55
172	FLT4	2.97	7.02	9.28	12.36
173	KCNK16	2.96	7.11	0.73	0.78
174	APOC3	2.96	1.32	0.96	0.28
175	HOXB4	2.95	5.82	6.61	7.13
176	ZFYVE28	2.95	5.62	3.56	9.01
177	LOC284930	2.95	4.89	0.72	1.15
178	FOXP2	2.95	4.56	6.49	6.79
179	CPNE9	2.95	2.12	1.30	1.15
180	CEACAM21	2.94	9.33	1.97	4.36
181	EGFL7	2.92	8.03	1.54	1.27
182	CD300C	2.91	6.96	0.75	0.43
183	GPC4	2.91	6.04	5.77	7.36
184	KIR2DS4	2.91	4.54	2.15	5.14
185	PACS2	2.91	2.02	1.30	0.54
186	BIBD6	2.91	2.02	1.30	0.54
187	KNDC1	2.90	8.44	3.05	5.69
188	VGF	2.90	2.66	1.05	1.14
189	SMAD7	2.90	0.95	1.07	0.35
190	SLC22A 10AS	2.09	6.29	3.90	3.20
191	OTOS	2.09	0.38 E 40	1.07	0.70
192	TNERSE18	2.09	7 59	2.41	4.20
104	OUG3	2.88	7.35	5.62	5 29
195	BMP6	2.88	5 72	4 46	5 44
196	GDF10	2.86	6.87	0 79	0.79
197	l IF	2 85	7 74	0.72	0.41
198	AGPAT2	2.85	6.53	1.13	0.50
199	COL15A1	2.85	5.76	2.44	4.27
200	ABTB1	2.85	1.98	0.75	0.29
201	MUC6	2.84	5.90	3.96	6.09
202	ST14	2.83	1.00	2.46	2.72
203	HOXB3	2.82	6.31	4.42	5.69
204	HOXB2	2.82	6.31	4.42	5.69
205	KLF2	2.82	5.26	7.66	8.67
206	FLNA	2.82	1.97	1.35	1.06
207	FMNL1	2.81	6.76	1.41	1.73
208	SLC8A3	2.81	6.54	1.01	0.60
209	CDH22	2.81	6.11	1.12	1.10
210	01X2	2.81	5.81	9.36	8.40
211	SIGLEC9	2.80	8.14	2.31	5.12
212	EPHA2	2.80	6.86	0.79	0.52
213		2.80	0.33	5.39	0.64
214		∠.ŏU 2.°0	0.11	1.17	0.07
210	DME1	2.00	0.90 0.90	4.01 2.07	0.10
∠10 217		2.00	2.20	2.07	0.09
∠17 21₽	RASSE5	2.19 2.70	0.00 6 50	1 02	7.11 3.13
210	SOX14	2.73	5 51	8 04	8.15 8.74
220	KCNAB2	2.73	1 10	0.72	0.21
221	FPHA8	2 78	6.90	1 21	0.70
222	FTV4	2 78	6 68	1.63	2 51
223	WNT3	2.78	5.56	1.25	1.27
224	C10RF159	2.78	4.50	3.32	3.10
225	CYP26A1	2.77	6.30	4.68	5.70

#	Gene	LAN-1 rel AUC EZH2 (ranking score)	LAN-1 rel AUC H3K27me3	Kelly rel AUC	Kelly rel AUC H3K27me3
226			6.20	2 94	6.50
220		2.77	6.20	3.64	0.59
227	BAIT	2.77	6.02	0.95	0.19
228	C10RF94	2.77	5.73	6.11	9.61
229	FGF9	2.77	5.51	0.84	0.90
230	KCND3	2.76	5.82	1.56	2.43
231	SLC24A3	2.76	5.65	2.61	4.32
232	CARD10	2.75	6.60	2.39	2.76
233	NOG	2 74	6 11	5 15	6 75
234	CSMD2	2 74	5 74	5 11	8 14
235	MMP25	2.74	4 96	5 18	5 95
200		2.74	4.50	4.16	4.20
230		2.75	0.11	4.10	4.30
237	DSCAML1	2.71	6.18	1.50	1.98
238	BARX1	2.71	5.38	10.02	6.81
239	GPR26	2.71	5.19	0.80	0.66
240	FOXB1	2.70	6.34	8.04	8.62
241	ZBTB7A	2.70	2.30	1.43	1.72
242	MT1M	2.69	6.93	4.01	5.43
243	MSX1	2.69	4.67	6.42	6.87
244	I HX6	2 69	4 31	6.90	7 47
245	CLEC11A	2.69	3.76	1 25	0.13
246		2.60	5.82	0.80	0.10
240		2.00	5.02	0.09	1 95
247		2.00	5.01	0.99	1.05
248	FLIT	2.67	6.99	2.62	5.01
249	DMRT1	2.67	6.43	3.60	4.89
250	GALR2	2.67	5.49	3.28	3.12
251	TFAP2C	2.67	5.29	9.41	7.83
252	SLC30A2	2.67	5.27	2.89	4.33
253	HTR5A	2.66	6.35	2.50	5.16
254	SI C17A7	2.66	5 71	1 85	3 17
255	SIX1	2.66	4 73	5 40	7 25
255	NOTUM	2.00	3.60	3.50	2.86
250		2.00	3.00	5.52	2.00
257		2.00	2.07	0.87	1.01
258	KCNG2	2.66	2.30	2.35	4.27
259	DGKG	2.65	5.88	1.93	3.38
260	GLIS3	2.65	5.03	3.37	3.31
261	NFIX	2.65	4.57	5.20	5.28
262	SP6	2.64	7.86	1.99	3.90
263	FZD10	2.64	6.25	5.72	6.68
264	WEDC1	2 63	7 14	3.00	5 52
265	FIN	2.63	5.82	1 24	0.37
266		2.63	5 32	1 17	2 36
200		2.00	5.52	1.17	2.50
207	PIPRE	2.03	5.25	1.29	0.00
268	NR2F1	2.63	4.95	0.59	0.53
269	CORO2B	2.62	6.28	1.14	1.15
270	OVOL1	2.62	6.07	8.56	7.78
271	TTLL10	2.62	5.85	6.57	6.47
272	CACNA1A	2.62	5.81	2.94	4.23
273	PLXDC2	2.62	4.54	0.87	0.71
274	SOX13	2 61	6 43	3 72	4 80
275	DI X4	2.61	6.21	5 4 3	6.36
276	C3ORE22	2.61	2.67	0.84	0.64
270		2.01	6.94	1.07	1 02
211		2.00	0.04	1.21	1.90
278	UMUDL1	2.60	6.78	1.67	2.44
279	C210RF128	2.60	6.78	1.67	2.44
280	CISD	2.60	4.26	1.10	0.37
281	MAPK15	2.59	4.58	2.12	5.02
282	COL5A1	2.58	7.59	0.91	0.82
283	UNC93B1	2.58	5.95	1.59	1.65
284	CACNA1S	2.58	5.62	0.94	0.69
285	ARHGEE16	2 58	5 12	1 66	2 58
286	SI EN5	2 58	5 11	2 35	4 77
200	MAG	2.00	7 0/	2.00	1 01
207		2.57	7.04	2.12	4.04
200	HOXA1	2.57	5.60	3.97	5.21
289	ETNKZ	2.5/	3./1	1.55	2.58
290	UIF1	2.56	6.89	7.39	8.17
291	GSC	2.56	4.98	5.81	6.41
292	HSPA12A	2.56	4.21	1.67	1.36
293	CALML6	2.56	3.44	1.51	2.85
294	SLC6A18	2.55	7.39	1.72	2.18
205	HOXD11	2 55	6 12	1.35	1 78
200	KRTAP5-0	2.55	3 65	0.04	2 50
200		2.00	0.00 0.00	U.34 1 25	2.30
291		2.33	3.20	4.00	4.17
298		2.55	1.23	1.18	0.33
299	PFKP	2.54	4.24	1.24	1.55
300	HIPK4	2.54	2.56	1.11	2.34

Supplemental Tal	ole 3. (D) Custom neuroblastoma P	PRC2 signature consisting	of the top 300 H3K27me	3 ChIP-seq target
genes in LAN-1 ce	lls.			

U #	Gene	LAN-1 rel AUC H3K27me3	LAN-1 rel AUC	Kelly rel AUC	Kelly rel AUC
	Gene	(ranking score)	EZH2	H3K27me3	EZH2
1	CDX2	19.24	11.43	5.20	6.12
2	SERPINA2	16.44	6.66	4.41	1.36
3	PRDM16	15.23	8.90	7.89	8.72
4	TMEM132E	13.22	7.84	0.27	0.94
5	KLK12	12.51	5.50	5.49	2.39
6	HOXB8	12.41	8.66	7.42	10.05
7	ZNF469	12.27	5.42	0.75	1.07
8	MN1	12.22	6.66	7.56	9.51
9	HOXB7	12.16	7.55	7.41	8.92
10	NFATC1	11.65	8.52	23.21	32.51
11	VENTX	11.58	5.50	8.51	8.56
12	FIBCD1	11 43	5.36	9.20	6 78
13	SP8	11 39	6 33	5 50	4 90
14	PAX2	11.35	9.27	13 13	18 04
15	FRE3	11.30	7 49	10.10	3 11
16		11.04	5 71	4.15 5.72	7 30
10	SOVE	11.05	5.71	12 54	16.45
10		10.05	3.57	6.21	5 45
10		10.95	4.40	0.21	5.45
19		10.93	0.00	0.01	5.69
20	IRX4 KONTA	10.81	6.13	8.30	7.01
21	KUNTT	10.73	4.40	6.05	3.46
22	HUXU9	10.57	6.85	0.63	0.95
23	CDH15	10.54	4.22	4.81	2.88
24	HOXC10	10.33	5.37	5.17	4.28
25	NUDT14	10.15	4.23	1.97	1.52
26	CBFA2T3	10.05	4.14	8.67	6.95
27	KIAA0125	10.03	4.26	0.97	1.67
28	SOHLH1	9.91	4.08	5.48	3.47
29	ZIC2	9.76	6.31	7.69	11.22
30	EN2	9.53	6.53	10.34	12.41
31	HOXB6	9.53	4.51	7.83	6.94
32	HOXB5	9.53	4.51	7.83	6.94
33	FOXQ1	9.51	4.25	6.59	5.21
34	NKX2-2	9.46	5.16	7.01	9.70
35	JAG2	9.45	3.47	0.22	0.98
36	MUC5B	9 44	3 85	8 93	6.04
37	NEUROD2	9 43	6 29	6 48	6 4 5
38	CLCNKB	9.40	4 41	0.23	0.70
30	PDGEA	9.41	6.60	12 54	17.82
40	CEACAM21	0.33	2 04	4 36	1 97
40		0.23	6.03	10.00	12.22
42		0.21	5 43	7 56	7.40
42		9.21	J.43 4 97	7.50	0.00
43	BKNOV2	9.10	4.07	0.02	0.20
44		9.10	4.10	0.92	7.40
45	HUXATI	9.05	4.00	0.34	7.01
46	ACTR12	9.03	3.21	5.14	2.88
47	NKX2-3	9.02	5.10	7.07	8.14
48	HOXBA	8.97	4.66	7.04	1.13
49	WIN I 1	8.96	4.12	5.06	4.54
50	PAX7	8.93	5.88	7.11	8.40
51	HOXB13	8.80	4.07	5.13	3.97
52	FOXF1	8.73	5.56	7.53	12.13
53	KLHDC7A	8.71	3.86	0.22	0.70
54	НВМ	8.62	3.26	6.74	3.86
55	BARHL1	8.60	5.29	5.73	5.38
56	EMX1	8.53	5.55	8.39	9.97
57	TTYH1	8.53	4.27	5.03	2.97
58	SLC9A3	8.47	4.05	4.52	3.60
59	CDH4	8.46	4.99	1.04	1.37
60	COL13A1	8.46	3.48	1.39	0.94
61	LBX1	8.45	5.29	10.41	17.76
62	KNDC1	8.44	2.90	5.69	3.05
63	SDK2	8.36	3.70	1.34	1.35
64	INHBB	8.34	5 49	7 35	6.99
65	GATA6	8 26	4 69	7 77	9.63
66	EBE2	8 26	4 17	8.07	7 34
67	ARC	0.20 9.25	2.51	0.07	1 0/
69	ΔΙΔΡ1	0.20 Q 0/	2.01	Q 11	1.2 4 6.00
60		0.2 4 9.00	J.J. 2 10	5.00	0.22
09	AIFOAZ	0.23	3.10 2.05	5.99 6.57	4.45
70		ö.22	3.95	0.57	5.92
/1		8.1/	3.50	8.13	5.47
72	SIGLEC9	8.14	2.80	5.12	2.31
73	OLIG2	8.13	4.33	9.01	10.30

#	Gono	LAN-1 rel AUC H3K27me3	LAN-1 rel AUC	Kelly rel AUC	Kelly rel AUC
#	Gene	(ranking score)	EZH2	H3K27me3	EZH2
74	DMRT3	8.10	3.36	7.01	6.77
75	ICOSLG	8.03	3.57	4.56	4.74
76	FGFL7	8 03	2 92	1 27	1 54
77	DAAM2	7.98	3.54	0.71	0.83
78	PDGFB	7.90	4.84	3.76	3.69
79	SP6	7.86	2 64	3 90	1 99
80	ITPR3	7.83	3 49	3 90	2 61
81	COL 18A1	7.00	3 94	1 54	2.07
82	EVV1	7.79	3.29	0.50	10.74
92		7.70	3.20	1.01	1 1 1
0.0		7.76	2.42	0.95	0.01
04		7.70	2.42	0.85	0.31
00		7.74	2.65	0.41	0.72
80	NKXZ-8	7.71	3.05	7.92	7.59
87		7.05	5.23	10.54	12.77
88	PRKCZ	7.65	3.29	7.47	5.89
89	SUX18	7.65	3.98	2.69	3.42
90	SLC38A3	7.64	2.47	0.65	0.87
91	MYO5B	7.61	3.30	7.40	4.14
92	LHX1	7.60	5.24	8.95	7.46
93	IRX1	7.59	3.52	7.80	11.30
94	TNFRSF18	7.59	2.88	10.59	8.31
95	COL5A1	7.59	2.58	0.82	0.91
96	FOXD3	7.56	4.14	5.43	4.75
97	HSPB7	7.55	3.34	0.42	0.90
98	RUNX1	7.49	3.67	4.04	1.90
99	PAX1	7.48	3.62	5.65	4.29
100	PLCH2	7.48	3.18	0.36	1.10
101	WNT7B	7.47	4.23	6.44	5.34
102	HOXA2	7.46	3.84	4.71	4.68
103	HOXC12	7.43	4.52	10.61	12.26
104	SLC6A18	7.39	2.55	2.18	1.72
105	ZMYND15	7.36	3.15	9.62	6.18
106	OLIG3	7.35	2.88	5.29	5.62
107	SLITRK2	7.34	2.35	7.13	4.48
108	C200RF166	7 33	2 41	2 12	1 37
109	CHST1	7 33	3.21	0.97	0.91
110	CXCI 16	7 32	3 15	10 12	6 44
111	EGE3	7.28	3.92	4 72	5 14
112		7.20	2 99	1.00	2 36
113	NTE3	7.23	3 29	3 69	2.00
114	POUSES	7.20	3.63	3.87	3.82
115	снн ССС3, 5	7.20	4 44	7 95	7.02
116	GU3	7.17	3.02	5 52	4.06
117	GLIS NKVE 1	7.17	3.02	0.70	4.00
112	7105	7.17	3.02	7.21	9.54
110		7.10	2.63	5.52	3 00
120	KONK16	7.14	2.05	0.78	0.73
120		7.11	2.90	0.78	0.73
121		7.07	2.47	0.36	0.50
122	LOPI	7.00	3.10	0.21	0.05
123	KR135	7.03	3.07	0.34	0.73
124	MAG	7.04	2.07	4.04	2.12
120		7.03	3.40	8.11	0.09
120		7.03	3.33	4.22	3.55
127		7.02	2.97	12.30	9.20
120	FLII CD200C	0.99	2.07	5.01	2.02
129		0.90	2.91	0.43	0.75
130		6.95	3.79	0.05	5.22
131	MIIM	6.93	2.69	5.43	4.01
132	NEUROG3	6.91	3.22	6.19	5.08
133	FSCN2	6.90	3.00	3.40	2.77
134	EPHA8	6.90	2.78	0.70	1.21
135	UTF1	6.89	2.56	8.17	7.39
136	MAGEA11	6.89	3.60	2.18	0.81
137	HAS1	6.87	2.15	4.46	2.36
138	GDF10	6.87	2.86	0.79	0.79
139	FUXF2	6.86	4.29	7.84	12.04
140	GAD2	6.86	2.79	7.11	6.23
141	EPHA2	6.86	2.80	0.52	0.79
142	MYH7	6.84	2.60	1.93	1.27
143	NEU2	6.82	3.09	3.26	1.62
144	CYP11B2	6.78	2.34	5.59	2.82
145	UMODL1	6.78	2.60	2.44	1.67
146	C210RF128	6.78	2.60	2.44	1.67
147	PAX9	6.77	4.15	5.27	5.67
148	FMNL1	6.76	2.81	1.73	1.41
149	CLEC10A	6.75	2.02	3.49	1.61

#	Gono	LAN-1 rel AUC H3K27me3	LAN-1 rel AUC	Kelly rel AUC	Kelly rel AUC
#	Gene	(ranking score)	EZH2	H3K27me3	EZH2
150	CHRNA4	6.72	2.30	3.34	1.93
151	HOXA6	6.71	3.08	7.37	8.04
152	HOXA5	6 71	3.08	7 37	8 04
153	HOXAZ	6 71	3.08	7 37	8 04
154	CVP26B1	6.69	3.00	3.81	3 22
155		6.68	3.35	6.76	6.43
155		0.00	3.29	2.51	1 62
150		0.00	2.70	2.51	1.03
157	DLX3	6.67	3.13	5.68	3.88
158	ESPN	6.65	2.99	7.44	6.37
159	MUC2	6.64	2.27	6.12	4.58
160	FAM3B	6.64	2.49	5.79	2.98
161	GALNT9	6.61	3.08	4.51	3.46
162	CCRL2	6.61	2.24	3.25	1.39
163	SORCS3	6.60	3.49	11.54	12.35
164	CARD10	6.60	2.75	2.76	2.39
165	CDKN1C	6.60	3.70	2.21	2.03
166	I CN1	6 60	2 11	4 40	2 01
167	SEMBT2	6 59	3 11	4 49	3 10
168	RASSES	6 59	2 79	3 13	1 98
160	1002400043	6.58	2.43	0.44	1.00
170	CPIK2	6.58	4 31	0.34	0.86
170		0.50	4.51	0.34	0.00
171		0.50	2.20	0.32	0.71
172		0.50	2.20	0.32	0.71
173	HOXC6	6.56	2.26	0.32	0.71
174	SLC8A3	6.54	2.81	0.60	1.01
175	FGF17	6.54	2.24	0.91	0.72
176	AGPAT2	6.53	2.85	0.50	1.13
177	IRS4	6.51	3.62	4.81	3.31
178	PRDM12	6.50	5.55	8.51	15.81
179	FOXL2	6.50	4.23	10.62	12.53
180	TAL1	6.49	3.46	3.44	3.62
181	C90RF62	6 46	2 36	0.45	0.88
182	MADCAM1	6.45	4 13	4 11	3 64
183	SOX13	6.43	2 61	4.80	3 72
184	DMPT1	6.43	2.01	4.80	3.60
195		6.43	2.07	4.09	0.05
100		0.43	2.01	2.26	0.95
100	5LU22A 10A5	0.41	2.09	3.20	3.90
187	IBX 15	6.40	3.14	8.77	10.94
188	FEZF2	6.40	3.51	5.55	4.82
189	EN1	6.39	3.19	5.66	5.94
190	IRF8	6.39	2.22	4.30	2.76
191	PDYN	6.39	2.31	3.77	1.50
192	BACE2	6.38	2.44	7.57	4.22
193	WNT10A	6.38	2.89	0.70	1.07
194	BAHCC1	6.37	4.02	0.39	1.20
195	HTR5A	6.35	2.66	5.16	2.50
196	FOXB1	6.34	2.70	8.62	8.04
197	FXYD5	6.34	2.32	5.54	2.79
198	IRX2	6 33	3 54	7 85	10.20
199	HOXA10	6.33	2.80	6 64	5 39
200	PTPN3	6.33	2 11	2 64	1 84
201	HOXB3	6 31	2.82	5.69	4 42
201	HOXB2	6.31	2.02	5.69	1.12
202	CVP2611	6.30	2.02	5.09	4.42
203	COBO28	6.00	2.11	1 15	4.00
204		0.20	2.02	1.15	1.14 E 70
205		0.25	2.04	0.00	5.72
206	ZBIBIC	6.23	2.42	1.52	1.23
207	TFAP2A	6.21	3.45	5.83	5.75
208	DLX4	6.21	2.61	6.36	5.43
209	MMEL1	6.20	2.77	6.59	3.84
210	USH1G	6.20	2.34	5.69	3.56
211	KLK2	6.20	2.21	1.17	0.96
212	DSCAML1	6.18	2.71	1.98	1.50
213	PAX3	6.17	3.34	6.80	6.23
214	LOC200772	6.17	2.27	0.31	0.98
215	MUC12	6.14	2.52	4.14	2.05
216	HOXD11	6.12	2.55	1.78	1.35
217	HS3ST4	6 12	2 20	0.85	0 72
217	NOG	6 11	2.20	6 75	5 15
210	NKD2	6 11	2.17	1 20	1 16
218	CVD24A4	6 11	2.15	4.00	4.10
220	00000	0.11	2.99	3.33	1.00
221		0.11	2.80	0.57	1.17
222	CDH22	6.11	2.81	1.10	1.12
223	IBX2	6.09	3.10	4.34	4.26
224	CABP7	6.08	3.18	1.80	2.10
225	OVOL1	6.07	2.62	7.78	8.56

#	Gene	LAN-1 rel AUC H3K27me3	LAN-1 rel AUC	Kelly rel AUC	Kelly rel AUC
#	Gene	(ranking score)	EZH2	H3K27me3	EZH2
226	GPR101	6.05	3.11	5.63	3.80
227	GPC4	6.04	2.91	7.36	5.77
228	TFF1	6.04	2.04	2.34	1.07
229	BAI1	6.02	2.77	0.19	0.95
230	HMHA1	5.96	2.80	5.16	4.01
231	UNC93B1	5.95	2.58	1.65	1 59
232	PHI DA2	5 94	2.00	3 95	4 19
232	KIK12	5.03	2.02	1 58	1 73
200		5.95	2.22	4.58	1.75
234	ALUX 15	5.92	2.49	4.49	2.02
235	NETOT ATROAD	5.92	3.18	0.41	0.89
236	ATP2A3	5.91	2.13	7.38	5.66
237	DSP	5.91	3.27	5.78	5.53
238	MUC6	5.90	2.84	6.09	3.96
239	PVALB	5.90	2.48	7.10	3.03
240	DGKG	5.88	2.65	3.38	1.93
241	SIM2	5.86	3.54	6.87	8.78
242	TTLL10	5.85	2.62	6.47	6.57
243	RIPK4	5.85	2.22	7.77	4.51
244	CD22	5.84	2.25	3.73	1.32
245	FLJ12825	5.84	2.06	0.25	0.72
246	GPR123	5.83	3.10	8.41	7.18
247	HOXB4	5.82	2.95	7.13	6.61
248	KCND3	5 82	2 76	2 43	1 56
249	FLN	5.82	2.63	0.37	1 24
250	GPR20	5.82	2.00	0.38	0.94
250		5.82	2.14	0.30	0.89
251		5.02	2.00	0.21	0.09
252		5.01	2.01	4.22	9.50
200	CNCT2	5.01	2.02	4.23	2.94
254	GNG12	5.79	2.40	6.21	2.88
255		5.78	2.17	3.85	2.80
256	SLC13A5	5.77	2.14	3.32	1.53
257	TINAGL1	5.77	2.35	0.37	1.12
258	COL15A1	5.76	2.85	4.27	2.44
259	HOXC11	5.74	3.26	5.50	5.67
260	CSMD2	5.74	2.74	8.14	5.11
261	MT1G	5.74	1.97	6.39	4.21
262	FGF4	5.74	2.42	2.80	2.60
263	TMPRSS6	5.74	1.90	0.61	0.79
264	C1ORF94	5.73	2.77	9.61	6.11
265	COMP	5.72	3.43	7.23	6.40
266	EMX2OS	5.72	3.05	5.62	5.41
267	BMP6	5 72	2.88	5 44	4 46
268	7103	5 72	2 21	0.69	0.94
269	SI C2243	5 71	2 35	4 41	3 4 9
270	100284379	5 71	1 53	8.07	2.84
271	SI C1747	5 71	2.66	3 17	1 85
271	SIRPA	5.71	2.00	0.42	0.80
272		5.71	2.30	2.05	1.00
273		5.09	2.33	5.95	1.90
274		5.00	3.00	0.52	5.00
275	WIN12	5.07	2.40	5.52	3.24
270	SLC24A3	5.05	2.70	4.32	2.01
277		5.03	2.30	0.42	0.74
278		5.62	2.95	9.01	3.50
279	CACINATS	5.62	2.58	0.69	0.94
280	KR113	5.62	1.92	0.34	0.76
281	ALPI	5.61	2.07	2.78	1.31
282	PITPNM3	5.61	2.68	1.85	0.99
283	HOXA1	5.60	2.57	5.21	3.97
284	VSX1	5.60	2.45	3.81	2.71
285	KCNK9	5.60	3.72	2.66	2.69
286	FGF6	5.57	1.75	4.21	1.76
287	BCL11B	5.57	3.03	1.16	1.42
288	CACNA2D3	5.57	2.50	0.46	0.73
289	SKAP1	5.56	1.62	4.00	1.77
290	WNT3	5.56	2.78	1.27	1.25
291	CYP11B1	5.55	1.96	3.05	1.57
292	CACNA2D2	5.55	2.45	0.68	1.10
293	TMEM115	5.55	2 45	0.68	1 10
294	FOXC2	5 54	2.35	6.05	6.81
205	SMOC2	5.54	2.00	2.00	2 21
200	ITGR4	5.55	2.21	0.00 Q 10	1 0/
200	SOV14	0.0Z E E1	2.00	0.13	4.34 0 01
231		0.01 E E4	2.13	0.74	0.04
290		0.01 E E 4	2.41	4.00	2.31
299		5.51	2.30	3.32	2.09
300	ГGГУ	5.51	2.11	0.90	0.84

Supplemental Table 4. Top 60 significant GSEA hits for EZH2 and H3K27me3 ChIP-seq target genes in Kelly and LAN-1 cells using the MSigDB v5.1 c5 collection of 25 Gene Ontology (GO) gene sets related to biological processes. For each gene set hit the table shows if the gene set is related to any of the 15 Neural Development signatures available in the MSigDB c5 collection (1= yes, 0=no), the size of the gene set, the GSEA normalized enrichment score (NES), *P* and false discovery rate (FDR). The significance cut-offs were 0.05 for *P* and 0.25 for FDR. The top 60 gene set hits are ranked in decreasing order based on the NES.

(A) Top 60 GSEA hits for EZH2 ChIP-seq target genes in Kelly cells. Neural Development related gene sets are significantly over-represented in the collection of GSEA hits (odds-ratios = 51.03, P < 0.001, according to the two-tailed Fisher exact test).

I DEURON DIFFERENTIATION DEURONS 1 7 1 8 0.0000 0.1721 3 NEURON DEVELOPMENT 1 57 0.0000 0.1231 4 ACONOCENESIS 1 20 1.75 0.0001 0.1261 5 AXON_GUIDANCE 1 20 1.75 0.0014 0.0754 6 NEUROSCHENSIS 1 20 1.75 0.0014 0.0754 9 CELLULAR_MORPHOCENESIS_DURING_DIFFERENTIATION 0 48 0.0000 0.1485 9 CELLULAR_MORPHOCENESIS_DURING_DIFFERENTIATION 0 48 0.0000 0.1495 9 CELLULAR_MORPHOCENESIS 0 32 1.66 0.0000 0.1291 10 HERVIDIN_CELLOTINELIDILID_LEVELS 0 34 1.57 0.0010 0.1281 11 REGULATION_OF_CALLIDIN_EXTRUCTURE_MORPHOGENESIS 0 302 1.51 0.0000 0.4232 12 REGULATION_OF_CALLULAR_STRUCTURE_MORPHOGENESIS 0 302 1.5	Rank	, Gene Set	Neural Development	Size	NES	Р	FDR
2 EXERPTION OF NEURONS 1 76 0.0000 0.1206 4 AXONOGENESIS 1 40 1.75 0.0001 0.1206 4 AXONOGENESIS 1 40 1.75 0.0014 0.0754 6 NEUROGENESIS 1 40 1.75 0.0014 0.0754 7 POSITIVE, REGULATION_OF_CELL_DIFFERENTIATION 1 45 1.66 0.0002 0.1403 8 NEURITE_DEVELOPMENT 1 48 1.66 0.0000 0.1403 10 HEART_DEVELOPMENT 1 48 1.66 0.0000 0.1403 11 REGULATION_OF_BODY_FLUD_LEVELS 0 38 1.62 0.0000 0.3083 12 NERVOLS_SYSTEM_DEVELONMENT 0 34 1.50 0.0000 0.4273 12 BLCELL_ACTIVALO_OF_ADURAL_STRUCTURE_MORPHOGENESIS 0 32 1.51 0.0010 0.4273 13 BLCELL_ACTIVALO_OF_ADURAL_STRUCTURE_ORGANIZATION_AND_BLOGENESIS 0 32 1.51	1	NEURON DIFFERENTIATION	1	70	1 82	0.0000	0 1167
3 NEURON DEVELOPMENT 1 1 1 1 1 1 1 1 1 1 0 0.0013 0.0013 0.0014 0.0734 0.0014 0.0734 0.0014 0.0734 0.0014 0.0734 0.0737 NOBINCE 1 20 1.75 0.0014 0.0737 NOBINCE 1 20 1.68 0.0042 0.1389 NEURDITE DEVELOPMENT 1 40 1.67 0.0013 0.1495 9 CELLULAR, MORPHOGENESIS, DURING, DIFFERENTIATION 48 1.62 0.0068 0.1328 10 HEAGULATION, OF, CELLUPLENCOMENT 0 34 1.62 0.0068 0.1328 11 REGULATION, OF, CELL, DIFFERENTIATION 0 48 1.51 0.0010 0.4333 15 CELL CELL, SIGNALING 0 22 1.61 0.0010 0.4333 16 REGULATION, OF, CELL, DIFFERENTIATION 0 48 1.51 0.0000 0.4432 17 NAATOMICAL, STRUCTURE, ORGANIZATION, A	2	GENERATION OF NEURONS	1	76	1.02	0.0000	0.1721
4 AXONOGENESIS 1 40 1.75 0.0013 0.0013 6 AXONOGENESIS 1 85 1.70 0.0000 0.1869 7 POSITIVE, REGULATION, OF_CELL, DIFFERENTIATION 1 49 1.67 0.0013 0.1493 8 NEURITE, DEVELOPMENT 1 49 1.67 0.0013 0.1493 9 CELLULAR, MORPHOGENESIS, DURING, DIFFERENTIATION 0 44 1.68 0.0000 0.1403 10 HEART, DEVELOPMENT 0 32 1.66 0.0000 0.3008 11 REGULATION, OF, GANTOMICAL, STRUCTURE, MORPHOGENESIS 0 24 1.57 0.0116 0.3008 15 CELL, CELL, SIGNALING 0 22 1.51 0.0101 0.4435 16 BLOD, COAGULATION, OF, CANUEL, MORPHOGENESIS 0 0 1.60 0.3038 17 BLOD, COAGULATION COASULATION, AND, BIOGENESIS 0 0 0.4452 18 BLOD, COAGULATION CASUTORE, ORGANIZATION, AND, BIOGENESIS	3		1	57	1.75	0.0000	0.1206
6 AXON_GUIDANCE 1 20 1.75 0.0014 0.0784 6 NEURORENESIS 1 85 1.70 0.0000 0.1287 7 POSITVE, REGULATION, OF, CELL, DIFFERENTIATION 0 20 1.68 0.0042 0.1389 9 CELLULAR, MORPHOGENESIS, DURING, DIFFERENTIATION 0 46 1.66 0.0068 0.1328 11 REGULATION, OF, BODY, FLUID, LEVELS 0 38 1.82 0.0066 0.2159 12 NERGULATION, OF, CALL, DIFFERENTIATION 0 48 1.51 0.0102 0.3089 13 REGULATION, OF, CELL, DIFFERENTIATION 0 48 1.51 0.0102 0.4223 1.51 0.0102 0.4213 1.51 0.0102 0.4213 0.0142 1.47 0.0413 0.445 1.41 0.4414 1.41 0.0414 0.4223 1.61 0.0182 0.4213 0.0014 0.4423 21 B_CCELL_SIGNALINE MORPHOGENESIS 0 0.16 1.47 0.0414 0.5624	4	AXONOGENESIS	1	40	1 75	0.0013	0.0918
6 NEUROGENESIS 1 85 1.70 0.0000 0.1287 POSITVE, REGULATION, OF, CELL, DIFFERENTIATION 0 40 1.67 0.0013 0.1493 8 NEURITE, DEVELOPMENT 1 49 1.67 0.0013 0.1493 10 HEART, DEVELOPMENT 0 32 1.66 0.0000 0.1403 10 HEART, DEVELOPMENT 0 32 1.66 0.0000 0.3008 11 REGULATION, OF, DATOMICAL, STRUCTURE, MORPHOGENESIS 0 348 1.58 0.0110 0.4733 12 NERVOUS, SYSTEM, DEVELOPMENT 0 22 1.51 0.0100 0.4737 13 REGULACTURE, MORPHOGENESIS 0 30 1.50 0.0240 0.4422 14 BLOOD, COAGULATION 0 28 1.47 0.0418 0.5022 14 BLOOD, COAGULATION 0 28 1.47 0.0416 0.5022 15 BLOOD, COAGULATION 0 28 1.47 0.004952 <td>5</td> <td>AXON GUIDANCE</td> <td>1</td> <td>20</td> <td>1 75</td> <td>0.0014</td> <td>0 0754</td>	5	AXON GUIDANCE	1	20	1 75	0.0014	0 0754
7 POSITIVE_REGULATION_OF_CELL_DIFFERENTIATION 0 20 1.68 0.0042 0.1485 9 NEURITE_DEVELOPMENT 0 46 1.66 0.0000 0.1495 9 CELLULAR_MORPHOGENESIS_DURING_DIFFERENTIATION 0 46 1.66 0.0006 0.1326 11 REGULATION_OF_BODY_FLUID_LEVELS 0 38 1.62 0.0006 0.2136 12 NERVOUS_SYSTEM_DEVELOPMENT 0 348 1.58 0.0006 0.3089 13 REGULATION_OF_CELL_DIFFERENTIATION 0 48 1.51 0.0101 0.4733 16 REGULATION_OF_CELL_DIFFERENTIATION 0 48 1.51 0.0001 0.4273 17 ANATOMICA_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 302 1.51 0.0001 0.4422 18 EXTRACELLULAR_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 30 1.60 0.4432 21 BLCOD_COAGULATION 0 1.61 1.47 0.0440 0.4452 22 BLATIVATION	6	NEUROGENESIS	1	85	1 70	0.0000	0 1267
B Intermet Intermet <thintermet< th=""> <thintermet< th=""> <thinter< td=""><td>7</td><td>POSITIVE REGULATION OF CELL DIFFERENTIATION</td><td>0</td><td>20</td><td>1.68</td><td>0.0042</td><td>0 1369</td></thinter<></thintermet<></thintermet<>	7	POSITIVE REGULATION OF CELL DIFFERENTIATION	0	20	1.68	0.0042	0 1369
0 CELULAR. MORPHOGENESIS DURING_DIFFRENTIATION 0 48 168 0.0008 0.1403 11 REGULATION, OF. BODY, FLUID_LEVELS 0 38 162 0.0068 0.1216 12 NERVOUS, SYSTEM, DEVELOPMENT 0 348 158 0.0008 0.3008 13 REGULATION, OF_ANATOMICAL_STRUCTURE_MORPHOGENESIS 0 242 157 0.01010 0.4733 16 REGULATION, OF_CELL, DIFFERENTIATION 0 48 151 0.0000 0.4455 17 ANATOMICAL_STRUCTURE, ORGANIZATION_AND_BIOGENESIS 0 30 150 0.02040 0.4442 28 E.CELL_OTITRE MORPHOGENESIS 0 30 150 0.02040 0.4442 29 B.CELL_ACTIVATION 0 28 147 0.0416 0.5622 21 BLOD_COAGULATION 0 28 147 0.0406 0.5227 22 ANATOMICAL_STRUCTURE_DEVELOPMENT 1 45 1.630 0.5022 23 BRAIN, DEVELOPMENT 1 </td <td>8</td> <td></td> <td>1</td> <td>49</td> <td>1 67</td> <td>0.0013</td> <td>0 1495</td>	8		1	49	1 67	0.0013	0 1495
10 HEART_DEVELOPMENT 0 32 166 0.0088 0.1326 11 REGULATION, OF_RODY_FLUD, LEVELS 0 38 158 0.0000 0.3089 12 NERVOUS_SYSTEM_DEVELOPMENT 0 348 158 0.0000 0.3089 13 REGULATION, OF_ACIL_DIFFERENTIATION 0 44 151 0.0101 0.4733 14 READULATION, OF_ACIL_DIFFERENTIATION 0 48 151 0.0100 0.4273 15 EXTRUCTURE_UNDREPORTINAL_ORD_BIOGENESIS 0 302 151 0.0000 0.4273 16 BLODO_COAGULATION 0 28 1.47 0.0476 0.5146 21 BLODO_COAGULATION 0 28 1.47 0.0408 0.4552 23 BRAIN_DEVELOPMENT 1 45 1.0000 0.4522 24 DEVELOPMENT 0 107 1.45 0.0151 0.5266 25 CENTRAL_NERYOUS_SYSTEM_DEVELOPMENT 0 107 1.45 0.0000<	9	CELLULAR MORPHOGENESIS DURING DIFFERENTIATION	0	46	1 66	0 0000	0 1403
11 REGULATION OF BODY FLUID LEVELS 0 38 162 0.0086 0.2159 13 REGULATION OF ANATOMICAL_STRUCTURE_MORPHOGENESIS 0 24 1.57 0.0182 0.3008 13 REGULATION, OF ANATOMICAL_STRUCTURE_MORPHOGENESIS 0 292 1.51 0.0000 0.4333 16 REGULATION, OF CELL, DIFFERENTIATION 0 48 1.51 0.0000 0.4473 17 ANATOMICAL_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 30 1.50 0.0200 0.4442 2 B_CCEL_ACTIVATION 0 28 1.47 0.0416 0.5662 2 ANATOMICAL_STRUCTURE_DEVELOPMENT 1 45 1.46 0.0333 0.4949 2 SYSTEM DEVELOPMENT 1 45 1.46 0.0333 0.5167 2 CANATOMICAL_STRUCTURE_DEVELOPMENT 0 16 1.43 0.0501 0.5167 2 REGULATION, OF CION_POTENTIAL 0 16 1.43 0.0501 0.5167 2 REGULATI	10	HEART DEVELOPMENT	0	32	1.66	0.0068	0.1326
12 NERVOUS_SYSTEM_DEVELOPMENT 0 348 158 0.0000 0.3088 13 REGULATION_OF_ANATOMICAL_STRUCTURE_MORPHOGENESIS 0 242 1.51 0.0182 0.3088 15 CELL_CELL_SIGNALING 0 48 1.51 0.0183 0.4455 17 ANATOMICAL_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 302 1.51 0.0000 0.4273 18 EXTRACELLULAR_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 302 1.51 0.00240 0.4442 20 BCELL_ACTUNATION 0 28 1.47 0.0418 0.562 21 BAIND_DEVELOPMENT 0 28 1.47 0.0000 0.5227 22 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 107 1.45 0.0000 0.5226 24 SYSTEM_DEVELOPMENT 0 103 1.44 0.0233 0.5167 25 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 103 1.44 0.023 1.44 0.023 1.44 0.0251 <	11	REGULATION OF BODY FLUID LEVELS	0	38	1.62	0.0066	0.2159
13 REGULATION, OF_AÑATOMICAL_STRUCTURE_MORPHOGENESIS 0 24 1.57 0.0112 0.0101 0.4733 16 CELL_CELL_SIGNALING 0 48 1.51 0.0101 0.4733 16 REGULATION_OF_CELL_DIFFERENTIATION 0 48 1.51 0.0104 0.4423 17 ANATOMICAL_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 30 1.50 0.0240 0.4423 28 CELL_ACTIVATION 0 28 1.47 0.0476 0.5145 29 E_CELL_ACTIVATION 0 28 1.47 0.0476 0.5145 21 BLOOD_COAGULATION 0 28 1.47 0.0476 0.5242 21 BLOUD_COAGULATION 0 28 1.47 0.0482 0.538 22 BRAIN_DEVELOPMENT 1 45 1.46 0.0303 0.4492 23 TISSUE_DEVELOPMENT 0 132 1.44 0.0233 0.5167 29 TUBE_DEVELOPMENT 0 12	12	NERVOUS SYSTEM DEVELOPMENT	0	348	1.58	0.0000	0.3089
15 CELL CELL_SIGNALING - - 0 292 1.51 0.0010 0.4733 16 REGULATION OF CELL DIFFERENTATION 0 48 1.51 0.0010 0.4425 17 ANATOMICAL_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 302 1.51 0.00240 0.4442 28 B_CELL_ACTIVATION 0 28 1.47 0.0418 0.562 21 BLOOD_COAGULATION 0 28 1.47 0.0000 0.4522 23 BRAIN_DEVELOPMENT 1 45 1.46 0.0339 0.4493 23 BRAIN_DEVELOPMENT 0 706 1.45 0.0000 0.5227 25 CENTRAL_NERVOUS SYSTEM DEVELOPMENT 0 93 1.44 0.0015 0.5262 26 TISSUE DEVELOPMENT 0 16 1.43 0.0603 0.5227 26 TOSUE DEVELOPMENT 0 15 1.43 0.0510 0.5241 27 TUBE_DEVELOPMENT 0 15 1.43 0.0510 0.5125 21 HUMORAL_IMMUNE_RESPONSE	13	REGULATION OF ANATOMICAL STRUCTURE MORPHOGENESIS	0	24	1.57	0.0182	0.3008
16 REGULATION 0 48 151 0.0183 0.4465 16 RATACCELLULAR.STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 30 1.50 0.0240 0.4273 18 EXTRACELLULAR.STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 16 1.47 0.0478 28 CELL_ACTIVATION 0 28 1.47 0.0478 0.5345 21 BLOOD_COAGULATION 0 28 1.47 0.0418 0.5022 24 ANATOMICAL_STRUCTURE_DEVELOPMENT 0 28 1.44 0.0333 0.4949 24 SYSTEM_DEVELOPMENT 0 107 1.45 0.0161 0.5227 25 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 107 1.45 0.0161 0.5226 26 TISSUE_DEVELOPMENT 0 107 1.45 0.0010 0.5227 27 CECUELOMMENT 0 107 1.45 0.0010 0.5227 28 TUBE_DEVELOPMENT 0 16 1.43 0.0501	15	CELL CELL SIGNALING	0	292	1.51	0.0010	0.4733
17 ANATOMICAL_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 0 302 1.51 0.0000 0.4272 18 EXTRACELLULAR_DRGANIZATION_AND_BIOGENESIS 0 16 1.47 0.0476 0.5145 29 B_COLL_ACTIVATION 0 16 1.47 0.0476 0.5145 21 BLOOD_CONGULATION 0 28 1.47 0.0000 0.4922 23 BRAIN_DEVELOPMENT 1 45 1.46 0.0303 0.4949 23 SYSTEM_DEVELOPMENT 0 706 1.45 0.0101 0.5227 25 CENTRAL_INERVOUS_SYSTEM_DEVELOPMENT 0 93 1.44 0.0201 0.5127 26 TISSUE_DEVELOPMENT 0 93 1.44 0.0201 0.5127 27 PROTEIN_OLIGOMERIZATION 0 12 1.44 0.0261 0.5125 28 REGULATION_OF_ACTION_POTENTIAL 0 16 1.43 0.0501 0.5221 29 TUBE_DEVELOPMENT 0 15 1.43 0.0501 0.5221 29 TUBE_DEVELOPMENT 0	16	REGULATION OF CELL DIFFERENTIATION	0	48	1.51	0.0183	0.4455
18 EXTRACELLUÂR, STRUCTÛRE, ORGANIZATION_AND_BIOGENESIS 0 30 150 0.0240 0.4442 29 E_CELL_ACTIVATION 0 28 147 0.0476 0.5145 21 BLOOD_COAGULATION 0 28 147 0.0400 0.4952 22 ANATOMICAL_STRUCTURE_DEVELOPMENT 0 26 146 0.0303 0.4949 22 STREM_DEVELOPMENT 0 706 1.45 0.0161 0.5229 23 CENTRAL_NERVOUS SYSTEM_DEVELOPMENT 0 707 1.45 0.0161 6.239 24 SYSTEM_DEVELOPMENT 0 714 0.0151 6.239 0.5167 25 CENTRAL_NERVOUS SYSTEM_DEVELOPMENT 0 15 1.43 0.0603 0.5221 26 TUBE_DEVELOPMENT 0 15 1.43 0.0516 5.241 30 COAGULATION 0 16 1.43 0.0508 0.5241 31 CAUATION 0 16 1.43 0.0508 <td>17</td> <td>ANATOMICAL STRUCTURE MORPHOGENESIS</td> <td>0</td> <td>302</td> <td>1.51</td> <td>0.0000</td> <td>0.4273</td>	17	ANATOMICAL STRUCTURE MORPHOGENESIS	0	302	1.51	0.0000	0.4273
20 B_CELL_ACTIVATION D D 1 47 0.0476 0.5145 21 BLOOD COAGULATION 0 28 1.47 0.0000 0.4952 23 BRAIN_DEVELOPMENT 0 829 1.47 0.0000 0.4952 23 BRAIN_DEVELOPMENT 0 107 1.45 0.0151 0.5296 24 SYSTEM_DEVELOPMENT 0 107 1.45 0.0151 0.5296 25 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 107 1.45 0.0151 0.5296 26 TISSUE_DEVELOPMENT 0 32 1.44 0.0230 0.5167 27 REGULATION OACTION POTENTIAL 0 16 1.43 0.0601 0.5167 28 REGULATION OACTION POTENTIAL 0 16 1.43 0.0601 0.5241 20 COAGULATION 0 21 1.44 0.055 0.5241 31 HUMORAL IMMUNE, RESPONSE 0 18 1.43 0.0650	18	EXTRACELLULAR STRUCTURE ORGANIZATION AND BIOGENESIS	0	30	1.50	0.0240	0.4442
12 BLOOD_COAGULATION 0 28 1.47 0.0418 0.5062 23 BRAIN_DEVELOPMENT 0 829 1.47 0.0000 0.4923 24 SYSTEM_DEVELOPMENT 1 45 1.46 0.0333 0.4949 24 SYSTEM_DEVELOPMENT 0 107 1.45 0.0151 0.5227 25 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 93 1.44 0.0233 0.5109 26 TUSE_DEVELOPMENT 0 16 1.43 0.0603 0.5252 27 TUBE_DEVELOPMENT 0 15 1.43 0.0510 0.5112 30 COAGULATION OF_ACTION_POTENTIAL 0 16 1.43 0.0501 0.5125 31 HUMORAL_IMMUNE_RESPONSE 0 18 1.43 0.0505 0.4747 36 ADEVILATE_OVALABE_ACTIVATION 0 21 1.42 0.0655 0.4787 37 ADEVILATE_OVCABE_ACTIVATION 0 15 1.42 0.0864	20	B CELL ACTIVATION	0	16	1.47	0.0476	0.5145
22 ANATOMICAL_STRUCTURE_DEVELOPMENT 0 829 1.47 0.0000 0.4952 23 BRAIN_DEVELOPMENT 1 45 1.46 0.0393 0.4949 24 SYSTEM_DEVELOPMENT 0 107 1.45 0.0000 0.5227 25 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 107 1.45 0.0151 0.5296 26 TISSUE_DEVELOPMENT 0 32 1.44 0.0303 0.5167 27 PROTEIN_OLICOMERIZATION 0 32 1.44 0.0303 0.5224 28 REGULATION OF_ACTION_POTENTIAL 0 16 1.43 0.0601 0.5241 20 COAGULATION 0 14 0.0755 0.5241 30 SULUE_COMPOUND_BIOSYNTHETIC_PROCESS 0 19 1.43 0.0601 0.4969 31 ADENYLATE_CYCLOSMENT 0 64 1.42 0.0864 0.4786 32 SULUE_COMPOUND_OF_HEART_CONTRACTION 0 14 1.40 0.0454 <td>21</td> <td>BLOOD COAGULATION</td> <td>0</td> <td>28</td> <td>1.47</td> <td>0.0418</td> <td>0.5062</td>	21	BLOOD COAGULATION	0	28	1.47	0.0418	0.5062
23 BRAIN_DEVELOPMENT 1 45 1.45 0.0393 0.4949 24 SYSTEM_DEVELOPMENT 0 706 1.45 0.0000 0.5227 25 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 93 1.44 0.0233 0.5197 26 TUSUE_DEVELOPMENT 0 16 1.43 0.0601 0.5167 27 PROTEIN_OLIGOMERIZATION 0 15 1.43 0.0601 0.5527 20 TUBE_DEVELOPMENT 0 16 1.43 0.0601 0.55241 30 COAGULATION 0 29 1.43 0.0610 0.55241 30 COAGULATION 0 18 1.43 0.0601 0.55241 31 HUMORAL_IMMUNE RESPONSE 0 18 1.43 0.0610 0.56241 32 SULFUR_COMPOND_BIOSYNTHETIC_PROCESS 0 18 1.43 0.0630 0.44683 33 REGULATION_OF_HEART_CONTRACTION 0 165 1.42 0.0656 0.47749 34 CELL_CELL_ADLALADEVELOPMENT 0 165 1.	22	ANATOMICAL STRUCTURE DEVELOPMENT	0	829	1.47	0.0000	0.4952
24 SYSTEM_DEVELOPMENT 0 706 1.45 0.0000 0.5227 25 CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT 0 107 1.45 0.0151 0.5296 26 TISSUE_DEVELOPMENT 0 32 1.44 0.0233 0.5109 27 PROTEIN_OLIGOMERIZATION 0 32 1.44 0.0603 0.5252 28 TUBE_DEVELOPMENT 0 16 1.43 0.0603 0.5252 29 TUBE_DEVELOPMENT 0 15 1.43 0.0510 0.5125 31 HUMORAL_IMMUNE_RESPONSE 0 19 1.43 0.0650 0.4787 32 SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS 0 18 1.43 0.0665 0.4787 34 CELL_CELL_ADHESION 0 64 1.42 0.0864 0.4786 35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0864 0.4786 36 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0	23	BRAIN DEVELOPMENT	1	45	1.46	0.0393	0.4949
25 CENTRAI_NERVOUS_SYSTEM_DEVELOPMENT 0 107 1.45 0.1511 0.5280 26 TISSUE_DEVELOPMENT 0 32 1.44 0.0233 0.5109 27 PROTEIN_OLIGOMERIZATION 0 32 1.44 0.0501 0.5524 28 TUBE_DEVELOPMENT 0 15 1.43 0.0603 0.5224 30 COAGULATION_OF_ACTION_POTENTIAL 0 15 1.43 0.0510 0.5241 30 COAGULATION 0 29 1.43 0.0501 0.5241 31 COMONAL_INUNE_RESPONSE 0 18 1.43 0.0508 0.4883 32 REGULATION_OF_HEART_CONTRACTION 0 21 1.42 0.0369 0.4744 33 REGULATION_OF_HEART_CONTRACTION 0 64 1.42 0.0369 0.4744 34 ADENTLATE_CYCLASE_ACTIVATION 0 857 1.42 0.0369 0.4744 37 PROTEOGUÇAAN_METABOLIC_PROCESS 0 19 1.41	24	SYSTEM DEVELOPMENT	0	706	1.45	0.0000	0.5227
26 TISSUE_DÉVELOPMENT 0 93 1.44 0.0233 0.5109 27 PROTEIN_OLIGOMERIZATION 0 32 1.44 0.0501 0.5167 28 REGULATION_OF_ACTION_POTENTIAL 0 16 1.43 0.0603 0.5252 29 TUBE_DEVELOPMENT 0 15 1.43 0.0675 0.5241 14 COAGULATION 0 29 1.43 0.0680 0.5125 31 HUMORAL_INMUNE_RESPONSE 0 19 1.43 0.0680 0.4868 32 SULFUR_COMPONDE DIOSYNTHETIC_PROCESS 0 18 1.43 0.0680 0.4787 34 CELL_CALSE_ACTIVATION 0 15 1.42 0.0864 0.4786 35 SKELETAL_DEVELOPMENT 0 857 1.42 0.0800 0.4744 36 MULTICELL_ADHESION 0 15 1.42 0.0800 0.4744 37 RACEDAL_ADRESION_IC_PROCESS 0 19 1.41 0.092 <	25	CENTRAL NERVOUS SYSTEM DEVELOPMENT	0	107	1.45	0.0151	0.5296
27 PROTEIN_OLIGOMERIZATION 0 32 1.44 0.0501 0.5167 28 REGULATION_OF_ACTION_POTENTIAL 0 16 1.43 0.0603 0.5252 29 TUBE_DEVELOPMENT 0 15 1.43 0.0755 0.5241 30 CCAGULATION 0 29 1.43 0.0603 0.5525 31 HUMORAL_IMMUNE_RESPONSE 0 19 1.43 0.0608 0.4868 32 SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS 0 18 1.43 0.0665 0.4787 34 ADENYLATE_CYCLASE_ACTIVATION 0 64 1.42 0.0386 0.4748 36 MULTCELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 83 1.40 0.0244 0.5057 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G.POTEIN_SIGNALING_ADENVLATE_CYCLASE_ACTIVATING_PA	26	TISSUE DEVELOPMENT	0	93	1.44	0.0233	0.5109
28 REGULATION_OF_ACTION_POTENTIAL 0 16 1.43 0.0603 0.5252 29 TUBE_DEVELOPMENT 0 15 1.43 0.0755 0.5241 30 COAGULATION 0 29 1.43 0.0601 0.5125 31 HUMORAL_IMMUNE_RESPONSE 0 19 1.43 0.0605 0.4868 32 SULUR_COMPOND BIOSYNTHETIC_PROCESS 0 18 1.43 0.0505 0.4787 34 CELL_CELL_ADHESION 0 21 1.42 0.0655 0.4787 34 CELL_CELL_ADHESION 0 15 1.42 0.0854 0.4783 35 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0864 0.4744 36 SKELETAL_DEVELOPMENT 0 83 1.40 0.0224 0.5066 37 FROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0484 0.50057 40 G.PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 17	27	PROTEIN OLIGOMERIZATION	0	32	1.44	0.0501	0.5167
29 TUBE_DEVELOPMENT 0 15 1.43 0.0755 0.5241 30 COAGULATION 0 29 1.43 0.0510 0.5125 31 HUMORAL_IMMUNE_RESPONSE 0 19 1.43 0.0601 0.4969 32 SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS 0 18 1.43 0.0508 0.4486 33 REGULATION, OF_HEART_CONTRACTION 0 21 1.42 0.0655 0.4787 34 CELL_CELL_ADHESION 0 64 1.42 0.0389 0.4749 35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0854 0.4744 36 MULTCELLULAR_ORGANISMAL_DEVELOPMENT 0 83 1.40 0.0244 0.5066 37 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5056 41 G.PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0462 0.5050 43 TRANSMISSION_OF_NERVE_IMPULSE 0 445 1.38 0.0010 0.4944 44 RESOPONSE_TO_EXTEN	28	REGULATION OF ACTION POTENTIAL	0	16	1.43	0.0603	0.5252
30 COAGULATION 0 29 1.43 0.0510 0.5125 31 HUMORAL_IMMURE_RESPONSE 0 19 1.43 0.0601 0.4969 32 SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS 0 18 1.43 0.0508 0.4868 33 REGULATION_OF_HEART_CONTRACTION 0 21 1.42 0.0655 0.4787 34 CELL_CELL_ADHESION 0 64 1.42 0.0864 0.4749 35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0804 0.4786 36 MULTICELUULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0004 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 46 1.40 0.0459 0.5057 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0294 0.5058 41 G.PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.38 0.0499 42 POTASSIUM_ION_TRANSPORT	29	TUBE DEVELOPMENT	0	15	1.43	0.0755	0.5241
31 HUMORAL_IMMUNE_RESPONSE 0 19 1.43 0.0801 0.4969 32 SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS 0 18 1.43 0.0508 0.4868 33 REGULATION_OF_HEART_CONTRACTION 0 21 1.42 0.0655 0.4787 34 CELL_CELL_ADHESION 0 64 1.42 0.0890 0.4744 35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0864 0.4786 36 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0024 0.5066 38 SKELETAL_DEVELOPMENT 0 46 1.40 0.0494 0.5067 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 ORGAN_DEVELOPMENT 0 445 1.38 0.0132 0.5073 42 POTASSIUM_ION_TRANSPORT 0 445 <td< td=""><td>30</td><td>COAGULATION</td><td>0</td><td>29</td><td>1.43</td><td>0.0510</td><td>0.5125</td></td<>	30	COAGULATION	0	29	1.43	0.0510	0.5125
32 SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS 0 18 1.43 0.0508 0.4868 33 REGULATION_OF_HEART_CONTRACTION 0 21 1.42 0.0655 0.4787 34 CELL_CELL_ADHESION 0 64 1.42 0.0369 0.4749 35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0000 0.4744 36 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 83 1.40 0.0424 0.5067 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.38 0.0462 0.5050 42 POTSSIUM_JON_TRANSPORT 0 445 1.38 0.0013 0.5024 43 TRANSMISSION_OF_NERVE_IMPULSE	31	HUMORAL IMMUNE RESPONSE	0	19	1.43	0.0801	0.4969
33 REGULATION_OF_HEART_CONTRACTION 0 21 1.42 0.06655 0.4787 34 CELL_CELL_ADHESION 0 64 1.42 0.0369 0.4749 35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0369 0.4749 36 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 83 1.40 0.0249 0.5057 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 GRAN_DEVELOPMENT 0 49 1.39 0.0462 0.56050 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0000 0.4941 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RESPONSE_TO_STIMULUS 0 30	32	SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS	0	18	1.43	0.0508	0.4868
34 CELL_CELL_ADHESION 0 64 1.42 0.0369 0.4749 35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0054 0.4784 36 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 46 1.40 0.0459 0.5057 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0462 0.5050 42 POTASSIUM_ION_TRANSPORT 0 49 1.38 0.0012 0.5073 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0012 0.5024 44 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0856 0.4887 47 RECEPTOR_MEDIATED_ENDOCYTOSIS	33	REGULATION_OF_HEART_CONTRACTION	0	21	1.42	0.0655	0.4787
35 ADENYLATE_CYCLASE_ACTIVATION 0 15 1.42 0.0854 0.4766 36 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 83 1.40 0.0244 0.5066 39 EMBRYONIC_DEVELOPMENT 0 46 1.40 0.0459 0.5057 41 G.PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0938 0.4999 42 POTASSIUM_ION_TRANSPORT 0 445 1.38 0.0122 0.5057 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0122 0.5057 44 ORGAN_DEVELOPMENT 0 445 1.38 0.0000 0.4994 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 </td <td>34</td> <td>CELL_CELL_ADHESION</td> <td>0</td> <td>64</td> <td>1.42</td> <td>0.0369</td> <td>0.4749</td>	34	CELL_CELL_ADHESION	0	64	1.42	0.0369	0.4749
36 MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0 857 1.42 0.0000 0.4744 37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 83 1.40 0.0244 0.5066 39 EMBRYONIC_DEVELOPMENT 0 46 1.40 0.0459 0.5057 40 SYLAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0938 0.4999 42 POTASSIUM_ION_TRANSPORT 0 445 1.38 0.0132 0.5057 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0132 0.5073 44 ORGAN_DEVELOPMENT 0 445 1.38 0.0075 0.5024 47 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0777 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 28 1.38 0.0866 0.4850 48	35	ADENYLATE_CYCLASE_ACTIVATION	0	15	1.42	0.0854	0.4786
37 PROTEOGLYCAN_METABOLIC_PROCESS 0 19 1.41 0.0922 0.4960 38 SKELETAL_DEVELOPMENT 0 83 1.40 0.0244 0.5067 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G_PROTEIN_SIGNALINC_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0938 0.4999 42 POTASSIUM_ION_TRANSPORT 0 445 1.38 0.0132 0.5057 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0000 0.4994 45 RESULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 22 1.37 0.0952 0.4949 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.37 0.0952 0.4949	36	MULTICELLULAR_ORGANISMAL_DEVELOPMENT	0	857	1.42	0.0000	0.4744
38 SKELETAL_DEVELOPMENT 0 83 1.40 0.0244 0.5066 39 EMBRYONIC_DEVELOPMENT 0 46 1.40 0.0459 0.5057 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0938 0.4999 42 POTASSIUM_ION_TRANSPORT 0 49 1.39 0.0462 0.5050 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.00120 0.5073 44 ORGAN_DEVELOPMENT 0 445 1.38 0.0000 0.4994 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.00462 0.4984 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 22 1.37 0.0924 0.4845 50 </td <td>37</td> <td>PROTEOGLYCAN_METABOLIC_PROCESS</td> <td>0</td> <td>19</td> <td>1.41</td> <td>0.0922</td> <td>0.4960</td>	37	PROTEOGLYCAN_METABOLIC_PROCESS	0	19	1.41	0.0922	0.4960
39 EMBRYONIC_DEVELOPMENT 0 46 1.40 0.0459 0.5057 40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0938 0.4999 42 POTASSIUM_ION_TRANSPORT 0 49 1.39 0.0462 0.5050 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.000 0.4994 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0924 0.4845 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 78 1.35 0.0585 0.5371<	38	SKELETAL_DEVELOPMENT	0	83	1.40	0.0244	0.5066
40 SYNAPTIC_TRANSMISSION 0 144 1.39 0.0209 0.5058 41 G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0938 0.4999 42 POTASSIUM_ION_TRANSPORT 0 49 1.39 0.0462 0.5050 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0000 0.4994 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0856 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 78 1.35 0.0585 0.5391 54 PROTEIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 18 1.34 0.1196 0.5672	39	EMBRYONIC_DEVELOPMENT	0	46	1.40	0.0459	0.5057
41 G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 0 17 1.39 0.0938 0.4999 42 POTASSIUM_ION_TRANSPORT 0 49 1.39 0.0462 0.5050 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0132 0.5050 44 ORGAN_DEVELOPMENT 0 445 1.38 0.0075 0.5024 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4886 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 18 1.34 0.1196 0.5672 <	40	SYNAPTIC_TRANSMISSION	0	144	1.39	0.0209	0.5058
42 POTASSIUM_ION_TRANSPORT 0 49 1.39 0.0462 0.5050 43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0132 0.5073 44 ORGAN_DEVELOPMENT 0 445 1.38 0.0000 0.4994 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4886 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0924 0.4845 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 18 1.34 0.1196 0.5672 54 PROTEIN_POLYMERIZATION 0 18 1.33 0.0125 0.5795 56	41	G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY	0	17	1.39	0.0938	0.4999
43 TRANSMISSION_OF_NERVE_IMPULSE 0 158 1.38 0.0132 0.5073 44 ORGAN_DEVELOPMENT 0 445 1.38 0.0000 0.4994 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 28 1.38 0.0856 0.4850 49 ANION_TRANSPORT 0 22 1.37 0.0922 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 28 1.35 0.0585 0.5391 54 PROTEIN_POLYMERIZATION 0 78 1.35 0.1029 0.5795 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 58 </td <td>42</td> <td>POTASSIUM_ION_TRANSPORT</td> <td>0</td> <td>49</td> <td>1.39</td> <td>0.0462</td> <td>0.5050</td>	42	POTASSIUM_ION_TRANSPORT	0	49	1.39	0.0462	0.5050
44 ORGAN_DEVELOPMENT 0 445 1.38 0.0000 0.4994 45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 28 1.38 0.0856 0.4850 49 ANION_TRANSPORT 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 18 1.34 0.1196 0.5672 54 PROTEIN_POLYMERIZATION 0 18 1.33 0.1245 0.5705 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_	43	TRANSMISSION_OF_NERVE_IMPULSE	0	158	1.38	0.0132	0.5073
45 RESPONSE_TO_EXTERNAL_STIMULUS 0 202 1.38 0.0075 0.5024 46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 28 1.38 0.0856 0.4850 49 ANION_TRANSPORT 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 78 1.35 0.0585 0.5991 54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0124 0.5707 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1393 0.5658 58	44	ORGAN_DEVELOPMENT	0	445	1.38	0.0000	0.4994
46 REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION 0 17 1.38 0.0844 0.4986 47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 28 1.38 0.0824 0.4885 49 ANION_TRANSPORT 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.10525 0.4949 53 CELL_MIGRATION 0 22 1.35 0.10585 0.5391 54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0454 0.5527 59 CATION_TR	45	RESPONSE_TO_EXTERNAL_STIMULUS	0	202	1.38	0.0075	0.5024
47 RECEPTOR_MEDIATED_ENDOCYTOSIS 0 30 1.38 0.0727 0.4887 48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 28 1.38 0.0856 0.4850 49 ANION_TRANSPORT 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 22 1.35 0.1029 0.5372 54 PROTEIN_POLYMERIZATION 0 78 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1245 0.5707 58 METAL_ION_TRANSPORT 0 15 1.33 0.1393 0.5658 59 CATION_TRANSPORT 0	46	REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION	0	17	1.38	0.0844	0.4986
48 POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0 28 1.38 0.0856 0.4850 49 ANION_TRANSPORT 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 78 1.35 0.0585 0.5391 54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5227 60 HEMOSTASIS 0 32	47	RECEPTOR_MEDIATED_ENDOCYTOSIS	0	30	1.38	0.0727	0.4887
49 ANION_TRANSPORT 0 22 1.37 0.0924 0.4845 50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 78 1.35 0.0585 0.5391 54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1245 0.5707 58 METAL_ION_TRANSPORT 0 15 1.33 0.1393 0.5658 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5277 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139	48	POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS	0	28	1.38	0.0856	0.4850
50 SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0 22 1.37 0.0952 0.4949 51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 78 1.35 0.0585 0.5391 54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1245 0.5707 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5227 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.02424 61 MEISSNER_NPC_HCP_WITH_DESTONNET_TO_ADDESTERDANE </td <td>49</td> <td>ANION_TRANSPORT</td> <td>0</td> <td>22</td> <td>1.37</td> <td>0.0924</td> <td>0.4845</td>	49	ANION_TRANSPORT	0	22	1.37	0.0924	0.4845
51 ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 0 22 1.35 0.1029 0.5372 53 CELL_MIGRATION 0 78 1.35 0.0585 0.5391 54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5527 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 61 MEISSNER_NPC_HCP_WITH_DEFENDENE CHURTER 4 0 402 2020 0.0220 0.0220 <td>50</td> <td>SYNAPSE_ORGANIZATION_AND_BIOGENESIS</td> <td>0</td> <td>22</td> <td>1.37</td> <td>0.0952</td> <td>0.4949</td>	50	SYNAPSE_ORGANIZATION_AND_BIOGENESIS	0	22	1.37	0.0952	0.4949
53 CELL_MIGRATION 0 78 1.35 0.0585 0.5391 54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5527 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 61 MEISSNER_NPC_HCP_WITH_DESTONNE_TO_PROFESTERONE_CHUSTER_4 0 455 0.2020 0.2020 0.2020 0.2020	51	ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION	0	22	1.35	0.1029	0.5372
54 PROTEIN_POLYMERIZATION 0 18 1.34 0.1196 0.5672 55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5527 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 61 MEISSNER_NPC_HCP_WITH_DESTEDONE_COUNCESTERDONE 0 139 0.2020 0.20202 <td>53</td> <td></td> <td>0</td> <td>/8</td> <td>1.35</td> <td>0.0585</td> <td>0.5391</td>	53		0	/8	1.35	0.0585	0.5391
55 NEUROLOGICAL_SYSTEM_PROCESS 1 293 1.33 0.0125 0.5795 56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5527 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 62 VAO_TEMPORAL DESTONNET TO PROCESTERONE CLUSTER 4 0 455 2.222 0.2222 2.2222	54		0	18	1.34	0.1196	0.5672
56 MESODERM_DEVELOPMENT 0 15 1.33 0.1245 0.5707 57 EMBRYONIC_MORPHOGENESIS 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5227 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 62 VAO_TEMPORAL DESTORNET TO PROCESTERIONE CLUSTER 4 0 45 2.202 2.2022 2.2022	55		1	293	1.33	0.0125	0.5795
57 EMBRITONIC_MORPHOGENESIS 0 15 1.33 0.1393 0.5658 58 METAL_ION_TRANSPORT 0 98 1.33 0.0596 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5527 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 62 VAO_TEMPORAL_RESTONNE_TO RECENTED ONE CLUSTER 4 0 45 202 20222 20222	00 57		U	15	1.33	0.1245	0.5/0/
50 MELTAL_TON_TRANSPORT 0 98 1.33 0.0596 0.5590 0.5590 59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5527 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 62 VAO_TEMPORAL DESTONNE_TO PROFESTIONNE_CLUSTER 4 0 45 2.20 0.2022 0.2022	5/		U	15	1.33	0.1393	0.5058
59 CATION_TRANSPORT 0 121 1.33 0.0454 0.5527 60 HEMOSTASIS 0 32 1.33 0.1148 0.5495 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0242 62 VAD_TEMPORAL DESTONNE_TO PROCESTIONE CLUSTER 4 0 45 0.2020 0.2020 0.2020	50		0	90 101	1.00	0.0090	0.0090
60 1 139 2.21 0.000 0.0222 61 MEISSNER_NPC_HCP_WITH_H3K4ME3_AND_H3K27ME3 1 139 2.21 0.0000 0.0222 62 X40_TEMPORAL_RESTORNE 0 45 0.0000 0.0222	59		0	1∠1 20	1.00	0.0404	0.0027
	61		1	120	1.00 0.01	0.1140	0.0490
	62	VAN TEMPARAL RESPANSE TA PRACESTEDANE ALLISTED /	і О	159	2.21	0.0000	0.0242
63 MEISSNER NPC HCP WITH H3 UNMETHYLATED 1 505 2 19 0 0000 0.0200	63	MEISSNER NPC HCP WITH H3 UNMETHYLATED	1	505	2.19	0.0000	0.0301

Supplemental Table 4. (B) Top 60 GSEA hits for EZH2 ChIP-seq target genes in LAN-1 cells. Neural Development related gene sets are significantly over-represented in the collection of GSEA hits (odds-ratios = 39.73, P < 0.001, according to the two-tailed Fisher exact test).

Rank	Gene Set	Neural Development	Size	NES	Р	FDR
1	SKELETAL_DEVELOPMENT	0	83	1.87	0.0000	0.1256
2	ION_TRANSPORT	0	150	1.82	0.0000	0.1276
3	ANION_TRANSPORT	0	22	1.81	0.0017	0.0899
4	NEURON_DIFFERENTIATION	1	70	1.78	0.0000	0.1125
5	GENERATION_OF_NEURONS	1	76	1.77	0.0000	0.1053
6	SYSTEM_DEVELOPMENT	0	706	1.76	0.0000	0.0948
7	MONOVALENT_INORGANIC_CATION_TRANSPORT	0	78	1.75	0.0000	0.0878
8	NEURON_DEVELOPMENT	1	57	1.73	0.0000	0.1125
9	POTASSIUM_ION_TRANSPORT	0	49	1.72	0.0016	0.1116
10	ANATOMICAL_STRUCTURE_DEVELOPMENT	0	829	1.72	0.0000	0.1019
11	NEURITE_DEVELOPMENT	1	49	1.71	0.0000	0.0936
12	REGULATION_OF_HEART_CONTRACTION	0	21	1.71	0.0072	0.0942
13	ORGAN_DEVELOPMENT	0	445	1.71	0.0000	0.0876
14	MULTICELLULAR_ORGANISMAL_DEVELOPMENT	0	857	1.70	0.0000	0.0860
15	NERVOUS_SYSTEM_DEVELOPMENT	0	348	1.70	0.0000	0.0852
16	LIPID_TRANSPORT	0	21	1.69	0.0114	0.0836
17	METAL_ION_TRANSPORT	0	98	1.64	0.0015	0.1565
18	CATION_TRANSPORT	0	121	1.61	0.0029	0.2012
19	NEUROGENESIS	1	85	1.60	0.0015	0.2087
20	ECTODERM_DEVELOPMENT	0	54	1.59	0.0093	0.2001
21	MUSCLE_DEVELOPMENT	0	83	1.59	0.0031	0.2038
22	EPIDERMIS_DEVELOPMENT	0	47	1.55	0.0227	0.2680
23	SYSTEM_PROCESS	0	440	1.55	0.0000	0.2598
24	HUMORAL_IMMUNE_RESPONSE	0	19	1.55	0.0297	0.2621
25	CELLULAR_MORPHOGENESIS_DURING_DIFFERENTIATION	0	46	1.54	0.0182	0.2590
26	RESPONSE_TO_EXTERNAL_STIMULUS	0	202	1.52	0.0027	0.2952
27	AXONOGENESIS	1	40	1.51	0.0190	0.3104
28	INSULIN_RECEPTOR_SIGNALING_PATHWAY	0	18	1.51	0.0374	0.3019
29	TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_SIGN	0	74	1.51	0.0201	0.3050
30	CELL_CELL_SIGNALING	0	292	1.50	0.0013	0.3118
31	NEUROLOGICAL_SYSTEM_PROCESS	1	293	1.50	0.0000	0.3042
32	ORGAN_MORPHOGENESIS	0	112	1.49	0.0124	0.3167
33	ANATOMICAL_STRUCTURE_MORPHOGENESIS	0	302	1.49	0.0013	0.3083
34	TISSUE_DEVELOPMENT	0	93	1.48	0.0118	0.3359
35	WOUND_HEALING	0	36	1.47	0.0378	0.3569
36	RESPONSE_TO_NUTRIENT	0	16	1.46	0.0673	0.3492
37	PROTEOGLYCAN_METABOLIC_PROCESS	0	19	1.46	0.0506	0.3408
38	REGULATION_OF_G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIG	0	22	1.46	0.0565	0.3467
39	SULFUR_METABOLIC_PROCESS	0	36	1.46	0.0571	0.3412
40	RESPONSE_TO_CHEMICAL_STIMULUS	0	232	1.46	0.0054	0.3336
41	SYNAPTIC_TRANSMISSION	0	144	1.45	0.0099	0.3425
42	HEART_DEVELOPMENT	0	32	1.45	0.0570	0.3401
43	BLOOD_COAGULATION	0	28	1.45	0.0600	0.3365
44	DEVELOPMENTAL_MATURATION	0	16	1.44	0.0584	0.3450
45	PATTERN_SPECIFICATION_PROCESS	0	25	1.43	0.0637	0.3595
46	CELL_SURFACE_RECEPTOR_LINKED_SIGNAL_TRANSDUCTION_GO	0	481	1.42	0.0000	0.3716
47	TRANSMISSION_OF_NERVE_IMPULSE	0	158	1.41	0.0240	0.3921
48	SYNAPTOGENESIS	0	18	1.41	0.0829	0.4007
49	PROTEIN_AMINO_ACID_DEPHOSPHORYLATION	0	59	1.41	0.0579	0.3940
50	EXOCYTOSIS	0	20	1.40	0.0786	0.3917
51	G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIGNALING_PATHWA	0	238	1.40	0.0067	0.3917
52	RESPONSE_TO_EXTRACELLULAR_STIMULUS	0	30	1.40	0.0759	0.3890
53	RESPONSE_TO_WOUNDING	0	116	1.39	0.0377	0.4037
54	DEPHOSPHORYLATION	0	66	1.39	0.0402	0.3965
55	SODIUM_ION_TRANSPORT	0	16	1.38	0.0904	0.4093
56	STEROID_METABOLIC_PROCESS	0	48	1.38	0.0648	0.4057
57	NEGATIVE_REGULATION_OF_MAP_KINASE_ACTIVITY	0	16	1.38	0.1082	0.4007
58	COAGULATION	0	29	1.38	0.0935	0.3954
59	HEMOSTASIS	0	32	1.37	0.0880	0.4081
60	SENSORY_PERCEPTION	0	135	1.37	0.0188	0.4154

Supplemental Table 5. The shRNA sequences and the CRISPR-Cas9 sgRNA sequences targeting *MYCN* and *EZH2* that were used in this study.

	Designation	Cione ID	Clone Name	Target Sequence
1	shNT			CCTAAGGTTAAGTCGCCCTCGC
2	sh <i>LUC</i>			CTTCGAAATGTCCGTTCGGTT
3	shMYCN1	TRCN0000020694	NM_005378.3-2000s1c1	GCCAGTATTAGACTGGAAGTT
4	shMYCN3	TRCN0000020696	NM_005378.3-230s1c1	CGGACGAAGATGACTTCTACT
5	shMYCN5	TRCN0000020698	NM_005378.3-919s1c1	CTGAGCGATTCAGATGATGAA
6	sh <i>EZH2</i> -4	TRCN0000040073	NM_004456.3-2582s1c1	CGGAAATCTTAAACCAAGAAT
7	sh <i>EZH2</i> -5	TRCN0000040076	NM_004456.3-324s1c1	TATTGCCTTCTCACCAGCTGC
8	sgNT			TAGCGAACGTGTCCGGCGT
9	sg <i>EZH2</i> -1			TTATCAGAAGGAAATTTCCG
10	sg <i>EZH2</i> -2			TTATGATGGGAAAGTACACG
11	sg <i>EZH2</i> -3			AGAAGGGACCAGTTTGTTGG
12	sg <i>EZH2</i> -4			CTGCTGCTCTCACCGCTGAG