
Supplementary Note 1.  1D vs 2D fitting 

For many years, the major technique of extracting self-energy effect from ARPES spectra were 

one-dimensional (1D) analysis methods using either energy distribution curves (EDCs) or 

momentum distribution curves (MDCs). However, with the presence of the strong 

renormalization effects and the superconducting gap, there are substantial discrepancies between 

the EDC and MDC methods1. In addition, with simply 1D analysis methods of MDCs or EDCs, 

it is difficult to obtain the full information in the spectral function, especially the energy-

dependent self-energy of which the real and imaginary parts adhere to causality. Moreover, slight 

warpage, doping heterogeneity2, or any other surface conditions of the sample may lead to 

undesirable broadening in the spectra, which add in more complexity for extracting the intrinsic 

broadening effects through 1D methods. These problems can be overcome with the two-

dimensional (2D) fitting of spectral function convolved with extrinsic energy and momentum 

broadening and forcing the real and imaginary parts of self-energy to have full causality. Our 2D 

fitting method also dramatically reduces the ratio of fitting parameters to data points compared 

with the 1D method, which we will discuss later.  

Supplementary Note 2.  Nambu-Gorkov form of gap and self-energy   

The entire ARPES cut as shown in Fig. 1 and Fig. 2 is fitted to a spectral function multiplied by a 

Fermi function and broadened by experimental resolution, which can be written as:   

  𝐼"#$%& = 𝐼([𝐴(𝐤, 𝜔)×𝐹(𝜔, 𝑇)] ⊗ 𝑅(𝜔, 𝐤)                    (1) 

where 𝐼( is the prefactor of spectral intensity, 𝐴 𝐤,𝜔 = −Im𝐺 𝐤,𝜔 /𝜋 is the spectral function 

(imaginary part of the Green’s function), F(w,T) is the Fermi function and R(w,k) is broadening 

function in both energy and momentum. We use the conventional Nambu-Gorkov formalism for 



superconductivity3,4 for theoretically describing these spectra. The 2´2 Green’s function matrix 

is: 

     	𝐺(𝑘, 𝜔) = >
?@A ? B@C𝐤

B@fB
𝜔 − 𝛴 𝜔 + 𝜉𝐤 −f

−f 𝜔 − 𝛴 𝜔 − 𝜉𝐤
                (2) 

The G11 term describes the electron removal portion, which is: 

  𝐺>> 𝑘, 𝜔 = ?@A ? GC𝐤
(?@A ? )B@C𝐤

B@f ? B               (3) 

where S(w) is the complex self-energy, xk is the bare band, f is defined as f = Z(w)´Dk with 

𝑍 𝜔 = 1 − A¢(?)
?

, and Dk is the superconducting pairing gap. As all the two dimensional ARPES 

spectra in this paper are taken along the (p, 0) – (p,p) direction, a parabolic function with only 

two parameters (band bottom and kF position) is used as the bare band instead of a more 

complicated tight binding model. We construct the phenomenological imaginary self-energy S¢¢ 

for each spectrum with minimal parameters and use the Kramers-Kronig relation, which is 

𝛴¢ 𝜔 = >
J

A² ?¢
?¢@?

𝑑𝜔¢	, to obtain the real part. We chose the integration range to be ±5 eV, such 

that a larger range does not change the integration result. While we allow for particle-hole 

asymmetry for the electronic structure (i.e. parabolic band dispersions), we have constrained the 

self-energies to be particle-hole symmetric. We found that eight parameters in total are sufficient 

for constructing the self-energy for any one cut. We will discuss the details of constructing the 

self-energy later. Together with the extrinsic broadening terms (one for energy resolution and 

one for momentum broadening accounting for surface condition and sample heterogeneity), 

superconducting gap (real constant, but also checked for a complex energy-dependent option – 

Supplementary Note 7), bare band dispersion (two parameters), and the prefactor for the spectral 

function, there are only 14 fitting parameters in total for the two dimensional ARPES spectra 

below TC. Each two-dimensional ARPES spectrum in this paper has over 105 data points. The 



ratio of fitting parameters to data points is therefore ~1/6000. In a typical EDC or MDC analysis, 

a functional form of about 5 parameters is used to fit each EDC or MDC that contains about 300 

to 400 data points (parameters to data points ~1/60). Therefore, the ratio of parameters to data 

points in our 2D fitting method is two orders of magnitudes smaller than the 1D analysis 

technique. Some previous studies have simulated ARPES spectra with a theory based or 

phenomenological self-energy to achieve reasonably good simulation result that resemble the 

experimental data taken from cuprates well below the superconducting transition5,6. Our analysis 

technique is the first fitting method that applies to the ARPES spectra with temperature ranging 

from well below the superconducting transition to well above it and with spectra taken from the 

node to the antinode.  

Supplementary Note 3. Impact of the form of the self-energy 

To show the construction of the self-energy, Supplementary Fig.2a-f demonstrates how the 

gapped imaginary self-energy and the kink in the real part of the self-energy affect the ARPES 

spectra. All spectra in Supplementary Fig. 2 are simulated with the same superconducting gap 

and bare dispersion with the parameters extracted from fitting to spectra in Fig. 2 panel d. 

Supplementary Fig. 2a shows a simulated spectrum with self-energy of the Marginal Fermi 

liquid form7 (more specifically the Power Law Liquid form8 as shown in Supplementary Fig.2b, 

which can be written as: 

𝛴² 𝜔 = 𝜆 𝜔M + 𝜋𝑘N𝑇 M+𝛤(           (4) 

where l is set to 0.5, G0 is 80 meV, and T is 15 K.  The real part of the self-energy is obtained 

from the Kramers-Kronig relation. Compared with the ARPES data (Fig. 2d in the main paper), 

the example spectrum of Supplementary Fig. 2a shows little feature from the superconducting 

gap (even though the gap has been input to the simulation) and it lacks the sharp feature near EF 



as well as a strong band renormalization. Then in Supplementary Fig. 2c, we replaced S¢ with 

one equivalent to the one extracted from our 2D fitting method (Supplementary Fig. 2d). 

Because we haven’t yet adjusted S²,  S² and Sʹ	 no longer adhere to the Kramers-Kronig relation. 

Although the spectrum shows a strong band renormalization from the S¢, there is still no sharp 

spectral peak and little feature from the superconducting gap due to the large S² that broadens 

the quasiparticle coherence peak and heavily fills in the superconducting gap. In the next step 

(Supplementary Fig. 2e), we put in the full self-energy that is extracted from our 2D fitting 

method, which especially includes a strong drop in the scattering rate S² at low frequencies.  The 

simulated spectral function in panel e now very closely resembles the experimental spectra, 

including the clear superconducting gap, the strong spectral weight near EF, the kink and peak-

dip-hump features, etc., all of which originate from the form of the self-energy. 

In the final step (Supplementary Fig. 2g), we convolve the spectrum with an energy and 

momentum broadening function. The energy broadening is the measured energy resolution that 

is calibrated from the gold Fermi edge taken near the sample position with the same 

experimental conditions as the data from the superconductor. For this spectrum taken with 24 eV 

photons, the total energy resolution is 10.5 meV. The momentum broadening is added in to 

account for various intrinsic and extrinsic broadening factors, such as the angular-resolution of 

the electron analyzer, the imperfections of the cleaved surface (like surface warpage), and the 

doping heterogeneity of the single crystal sample that has been commonly observed in scanning 

tunneling spectroscopy2. This extrinsic momentum broadening can vary slightly with different 

samples, cleaved surfaces or even different photoemission spots on the same cleaved surface. 

Thus, we put in the momentum broadening as one of the fitting parameter for the low 

temperature spectrum and then hold this constant for all fits as a function of temperature.  For the 



spectrum shown in Supplementary Fig. 2g, the momentum broadening is 25 mÅ-1. In 

Supplementary Fig. 2h, we compare the two different MDC cuts from the spectrum with (red) 

and without (blue) additional momentum broadening. 

Supplementary Note 4.  Terms in the self-energy 

As discussed in Supplementary Note 2, 8 terms are utilized to parameterize the self-energy for 

each slice, and two terms (kF and the band bottom) are used to parameterize the bare band 

structure.  Along with the energy and momentum broadening terms, the superconducting gap, 

and the prefactor for the spectral function, the experimental spectra can be very well fit. 

In our study, we used the 8 terms to parameterize S²(w) for each experimental cut, letting the 

energy dependence of S¢(w) to be fully determined by the Kramers-Kronig relations. We found 

that as long as the 8 terms give enough freedom to the fits, the exact functional form of S²(w) is 

not so important, indicating the overall robustness of the fitting procedure. 

Two forms of S²	that we utilized are:        

 𝛴² 𝜔 = 𝜆 𝜔M + 𝜋𝑘N𝑇 M + PQ

R
STUQ
VQ G>

+ 𝐼M𝑒
T STUB B

BVB
B +Γ(                (5) 

𝛴² 𝜔 = (𝜆 𝜔M + 𝜋𝑘N𝑇 M+Γ()×(
PQ

R
STUQ
VQ G>

+ 1 − 𝐼> + 𝐼M𝑒
T STUB B

BVB
B ).         (6) 

Each of these is essentially a Marginal Fermi Liquid together with a step function at E1 and a 

Gaussian function peak at E2.  All of the fits shown in the main paper were obtained using the 

form of Supplementary Eq. (5), while the Supplementary Fig. 3 shows a comparison of results 

obtained using the two functional forms. 



Supplementary Eq. (5) and (6) contain the 8 parameters l, G0, I1, E1, W1, I2, E2, and W2.  An 

extensive study of the temperature and energy dependence of the scattering rates in the normal 

state of the cuprates indicated that l for nodal states of optimally doped samples should be near 

0.5 [8]. We found that this value worked well for the temperature dependence set of data shown in 

Fig. 1, thus we set it to 0.5 for the momentum dependent set of data at 15 K shown in Fig. 2.   

An additional term we utilized is a cutoff energy ωc that brings S²(w) to zero at high frequencies, 

which is necessary for the Kramers-Kronig transformation to work. Kordyuk et al. 9  have 

reported the cutoff energy scale to be around 500meV - our finding of the cutoff energy is 

consistent with that result.  

Supplementary Note 5. Energy-dependent complex order parameter and superconducting 

gap 

In conventional strongly coupled superconductors, it is found that the pairing interaction can be 

strongly retarded, which brings in an energy dependence to the pairing order parameter (related 

to the superconducting gap D). Because of causality (the Kramer’s-Kronig relations), any energy 

dependence of the order parameter necessitates that it be complex, having both real and 

imaginary parts.  

To explore this physics, we performed fits with an energy-dependent complex superconducting 

order parameter.  In this case we write f(w) = f¢(w) +if²(w), which then corresponds to an 

energy-dependent complex superconducting gap D(𝜔) = f(𝜔)/(1 − A Y
?
). We utilized 5 terms 

to allow for the energy dependence of f²(w) as:  

f² = Z

[
w-U]
V] G>

+ Z

[
-w^U_
V_ G>

     (7) 



and utilized the Kramer’s-Kronig transformation to obtain f¢(w). As is typical, we also enforced 

f² to be odd in w and f¢ to be even.  

Supplementary Fig. 4 shows a comparison between the fits obtained with the complex energy-

dependent f (complex energy-dependent D) and the one with a real-only f, where f=Z(w)´D, 

and D is a real constant. The results for f¢ and f² are shown in panel e.  Even though there are 

many more parameters, the results and qualities of the fits with the real-only and the complex f 

are almost identical.  These results clearly show that the energy dependence of f and D is much 

less important than the energy dependence of S, i.e. any energy dependence of the pairing 

interaction is a second-order effect.  

Supplementary Note 6.  Comparison of 1D and 2D fit results 

Supplementary Fig. 5 shows the comparison of the data and the fit in 1D cuts (EDCs and MDCs) 

from the temperature dependent set of data that is shown in Fig. 1 in the main paper. Three 

different temperatures of data and fit that lie in different regions of the phase diagram are shown 

as typical examples. The EDCs and MDCs of the data and fit indicate a very high fitting quality 

of our 2D fitting method that is comparable to those using phenomenological model fitting to 

only EDCs or MDCs10, 11 ,12 ,13 ,14,15 ,16,17, though the fitting using the 2D method effectively 

contains 100 times fewer fitting parameters.  

Supplementary Fig. 6 shows a quasiparticle peak view from kF EDCs.  As a complimentary tool 

to the false color scale spectra, the kF EDCs from spectra of various temperatures in Fig. 1 show 

the evolution of quasiparticle coherence. The quasiparticle peaks sharply emerge between Tpair 

and TC – behavior that has been qualitatively described in a previous study16 and attributed to the 

onset of the superfluid density (a property of the 2-particle pairs) in the superconducting state. 



Here, we understand that this is due to the strong evolution of the single particle self-energies 

S¢(w) and S²(w). 

Supplementary Note 7. Energy dependent superconducting gap in previous ARPES studies 

A previous ARPES study15 reported a significant energy dependence to the complex 

superconducting gap and a complex order parameter. This contrasts with our results 

(Supplementary Fig. 4), which are equally well fit with a simpler real static gap.  Here we 

discuss a few other differences between the two studies: 

- The previous study was limited to the near-node and mid-zone regions, where the kink 

strengths are much weaker. 

- The previous study exclusively utilized the conventional 1D MDC fitting method, since the 

2D method was not available to them at that time. This includes momentum cuts inside the 

gap region which do not have any true poles and where there are many fewer constraints. The 

self-energies extracted in this gap region showed a very strong or even dominant peak that 

they attribute to impurities15,18.  However, unlike the ~55 meV kink feature, this strong low-

energy feature in the self-energy cannot be observed directly from the corresponding ARPES 

spectrum. Such an extra peak is not present in the self-energies that we extract with the 2D 

fitting method.  

Our results show that the single particle self-energy and its energy dependence are much more 

important than any effects of the energy dependence of the superconducting gap or order 

parameter, and that these self-energy effects are in general critical to the physics of the cuprates.   

 



Supplementary Note 8. Kinks and electron-boson coupling from previous ARPES studies 

Previous ARPES studies of cuprates have discovered dispersion “kinks” or mass enhancements 

near the Fermi level in the near-nodal 19 , 20 , 21  and antinodal regime11,12,13 which have been 

generally interpreted as indicating electron-boson coupling, with the debate centering on whether 

the boson is phononic or magnetic in origin, or both22,23,24.  It is important to distinguish the near-

nodal and antinodal regimes, as these behave quite differently - the near-nodal kinks are 

generally significantly weaker, are at slightly higher energy, and have only a weak temperature 

dependence.  The case for electron-boson coupling, and electron-phonon coupling in particular, 

for these near-nodal states is relatively strong, including an isotope effect study on the near-nodal 

kinks21. In contrast, the mid-zone and antinodal kinks discussed in the present work are much 

stronger than these nodal kinks, with a renormalization factor (6.5 at the antinode, as shown in 

Fig. 3c) that is so strong we argue that it is beyond what is possible from perturbative physics 

such as is at the heart of the Eliashberg equations that are typically used for the description of 

electron-boson coupling in conventional strongly-coupled superconductors.  

Supplementary Note 9. Particle-hole symmetry  

To justify our assumption of particle-hole symmetry on the self-energy (S² (w) to be even and 

S¢ (w) to be odd over EF), in Supplementary Fig. 7, we show a set of 2D fitting results with the 

self-energy that is enforced to be particle-hole asymmetric. The intensity on the hole side of the 

S² (w) is forced to be larger or smaller than the particle side (Supplementary Fig. 7a). The 

goodness of the fits – the chi-squared values shown in Supplementary Fig. 7c indicate that the fit 

with particle-hole symmetry has the best fit quality (the smallest chi-square value). On the other 

hand, Supplementary Figs. 7a-b show that even under different conditions of particle-hole 

asymmetry in the self-energy, both S² (w) and S¢ (w) (inset in Supplementary Fig. 7b) reveal an 



energy-dependent behavior that is quantitatively robust on the particle (occupied) side, except for 

a constant shift in S¢ (w). The extracted spectral gap sizes in Supplementary Fig. 7d also show a 

small variation (the standard deviation is only 0.7meV for the average 20meV gap size). In 

Supplementary Fig. 7e-k, we show the corresponding fit results of different particle-hole 

symmetric and asymmetric conditions together with the bare band dispersion. The extracted bare 

band dispersion (Supplementary Fig. 7l) shows a shift in energy, which compensates the shift in 

S¢ (w).  

As ARPES only probes the particle (occupied) side of the spectral function, the particle-hole 

symmetry has long been an assumption in the analysis of ARPES spectra, especially in the 

commonly used symmetrized EDC method10 that proved to be a useful technique to extract the 

spectral gap size and the scattering rate. In the symmetrized EDC method, both the density of 

states and self-energy is assumed to be symmetric, whereas our 2D fitting technique only 

assumes the symmetry on self-energy but not on the density of states. Based on the discussion 

above, we can conclude that the particle-hole asymmetry on self-energy only brings in minor 

effects to our results, where the behavior of both S¢ (w) and S² (w) is quantitatively robust. And 

the particle-hole symmetry assumption is justified as judged by the minimization of the chi-

square value. 

Our result shows the assumption of particle-hole symmetry gives the best goodness of fit. We 

note that DMFT calculations have predicted some particle-hole asymmetry appearing in the self-

energy 25. To our knowledge, our result is the first experimental data able to address this question, 

with our finding in opposition to this prediction. 

  



Supplementary Note 10. Momentum range of pairing interactions  

The effective momentum range of particle-hole mixing shown in Fig. 3 is the full width at half 

maximum (FWHM) of the particle-hole mixing probability 𝑢𝐤M𝑣𝐤M =
DB

b(c𝐤
BGDB)

, where 𝑣𝐤M =
>
M
(1 −

c𝐤
B

c𝐤
BGDB

), and 𝑢𝐤M =
>
M
(1 + c𝐤

B

c𝐤
BGDB

) are the coherence factors for particles and holes respectively, in 

which 𝜀k is the ungapped electron dispersion, and D	is the superconducting gap. The value of 

uk
2vk

2 indicates the probability of particle-hole mixing. As uk
2vk

2 peaks at kF, where ek = 0, the 

FWHM of uk
2vk

2 is where	 ek =±D, thus the electron energy at the half maximum is  𝐸𝐤 =

	𝜀𝐤M + DM = 2D. Considering the renormalization effect, ek is then equal to xk/Z, where xk is 

the bare electron band dispersion and Z is the renormalization factor discussed in the paper and 

in Supplementary Note 11 below. The particle-hole mixing range of the full Brillouin zone 

shown in Fig. 3d is calculated with the xk, Z and D extracted from the 2D fitting of the ARPES 

spectra shown in Fig. 2, after interpolating the parameters of those five cuts to the whole 

Brillouin zone.  

Supplementary Note 11. Renormalization factor and quasiparticle residue   

The renormalization factor and quasiparticle residue are both commonly denoted by Z, even 

though they are actually inverses of each other. In this paper, we call the renormalization factor 

𝑍 = 1 − A¢
?

 , or, for the limit of w®0, 𝑍 = 1 − gA¢
g? ?→(

. The renormalization factor represents the 

strength of the band renormalization effect at the kF, which is consistent with the mass 

enhancement value in a metal. In this terminology, the quasiparticle residue would have weight 

1/Z. 



Supplementary Note 12. Pseudogap  

In underdoped cuprates, a commonly known feature “pseudogap” that can be observed at much 

higher temperature scale well above the Tpair has attracted a lot of interest in high-TC 

superconductivity research26. Though the pseudogap is presented in the (underdoped) sample we 

studied, its presence is a relatively minor effect, which is why we don’t discuss it prominently in 

the paper. Supplementary Fig. 8 shows a comparison of spectra taken at the mid-zone and near 

the antinode with temperature below and above TC.  The symmetrized kF EDC of the high 

temperature (150 K) spectrum taken near the antinode displays a spectral weight depletion with 

weak coherence peak near the Fermi level (pseudogap) that is absent in the mid-zone.  This k-

dependence is consistent with previous reports27. This pseudogap feature is observable up to a 

temperature scale T* that is much higher than the pairing temperature scale Tpair mentioned in the 

present paper. This difference in these two temperature scales is consistent with other recent 

findings28,29,30. On the other hand, both the mid-zone and the near antinodal spectra exhibit a 

similar trend when moving into the superconducting state. At high temperature (150 K), they 

both have broad and incoherent spectra, whereas at temperatures well below TC (50 K), the 

spectra display sharp and strongly renormalized quasiparticle peaks. This is also revealed by the 

strong quasiparticle peaks in the symmetrized kF EDCs at low temperature compared to the 

broad curves at high temperature. The change in the general behavior is observed to begin at Tpair 

(Fig. 3a), i.e. it is dominated by the pairing physics rather than the pseudogap physics. 

  



 

 
 
 
 
 
 
 
 
 

 
 

Supplementary Figure 1 | Energy dependent background subtraction. Example spectrum 
without (panel a) and with (panel b) background subtraction. (c) The energy-dependent 
background, which is the averaged and smoothed EDC within the red box in panel a. 
 

  

Extended Data Fig. 3 Energy dependent background subtraction. Example spectrum without (a) 
and with (b) background subtraction. (c) The energy-dependent background, which is the averaged 
and smoothed EDC within the red box in panel a. 
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Supplementary Figure 2 | Phenomenological construction of the self-energy. Simulated 
spectra illustrating the effect of various forms of self-energy (see Supplementary Note 3 for 
details). The self-energies of panel d are not causally self-consistent, and are shown for 
illustrative purposes only. Color scales are the same for spectrum in panel a to g. h, The 
comparison of MDCs with (red) and without (blue) extrinsic broadening. 
  

Extended Data Fig. 4 Phenomenological construction of the self energy. Simulated spectra 
illustrating the effect of various forms of self energy (see supplementary information for details). The 
self energies of panels d are not causally self-consistent, and are shown for illustrative purposes 
only. Color scales are the same for spectrum in panel a to g. h, The comparison of MDCs with (red) 
and without (blue) extrinsic broadening.
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Supplementary Figure 3 | Self-energy constructed with different functional forms. (a) Data 
and the fits with two different functional form (see Supplementary Note 4 for details) to 
construct the imaginary self-energy. (b, c) The imaginary part of the self-energy extracted from 
the fittings. (d, e) The real part of the self-energy that extracted from the fitting. 
  

Extended Data Fig. 5 Self-energy constructed with different functional forms. a, Data and the fits from the midzone 
!=22.5 degree with two different functional form (see supplementary information for details) to construct the imaginary self-
energy. b and c, The imaginary part of the self-energy extracted from the fittings. d and e, The real part of the self-energy that 
extracted from the fitting. 
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Supplementary Figure 4 | Fitting with a complex superconducting order parameter. (a) 
Fitting the spectrum of Fig. 1a in the main text with a complex superconducting order parameter 
f (see Supplementary Note 5 for details).  (b) The fit result with only a real f (what we used for 
all other fitting in the paper), the color scale is the same with panel a. (c, d) Imaginary and real 
part of self-energy for these two different fittings. (e) The complex order parameter for the 
spectrum in panel a. (f) The kF EDC of spectra in panel a and b and the experiment data that they 
fit to. 

  

Extended Data Fig. 6 Fitting with a complex superconducting order parameter, a, Fitting the spectrum of Fig. 1 panel a1 in main 
text with a complex superconducting order parameter ɸ.  b, The fit result with only a real ɸ (what we used for all other fitting in the 
paper), the color scale is the same with panel a. (C and D) Imaginary and real part of self-energy for these two different fitting. (E) the 
complex order parameter for the spectrum in panel A. (F)  The kF EDC of spectra in panel A and B and the experiment data that they 
fit to. 
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Supplementary Figure 5 | MDC and EDC line cuts from the experimental data (red solid) 
and fits (black dashed) from the mid-zone q=22.5° color scale plot of Fig. 1 and Supplementary 
Fig. 3. In contrast to the standard method in which all EDCs and MDCs are individually fit and 
individually scaled in amplitude, all spectra for one temperature were fit simultaneously, with no 
additional amplitude scaling or other modifications. This is a much more severe constraint than 
utilized in previous fitting studies of ARPES data.   
 
 

  

Extended Data Fig. 1 MDC and EDC line cuts from the raw experimental data (red solid) and fits (black dashed) from the 
midzone !=22.5 degree color scale plot of Fig. 1 and Extended Fig. 5. In contrast to the standard method in which all EDCs and MDCs 
are individually fit and individually scaled in amplitude, all spectra for one temperature were fit simultaneously, with no additional 
amplitude scaling or other modifications. This is a much more severe constraint than utilized in previous fitting studies of ARPES data.  
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Supplementary Figure 6 | Temperature dependence of the quasiparticle peaks, from the 
mid-zone q=22.5° cut. (a, b) 2D ARPES spectra at two extreme temperatures. (c) EDCs (red 
solid) from these and similar plots at k=kF, i.e. along the vertical black dashed line in panel a and 
b. Line cut through the 2D fits to these data are shown as the blue dashed lines in panel c. The 
quasiparticle peak sharply emerges between Tpair and TC. 
  

Extended Data Fig. 2. Temperature dependence of the quasiparticle peaks, from the midzone, Fermi surface 
angle !=22.5 degree cut. (a and b) 2D ARPES spectra at two extreme temperatures. (c) EDCs (red solid) from these 
and similar plots at k=kF, i.e. along the vertical black dashed line. Line cut through the 2D fits to these data are shown 
as the black blue lines. The quasiparticle peak sharply emerges between Tpair and Tc.
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Supplementary Figure 7 | 2D fitting with enforcing particle-hole asymmetry. (a) The 
extracted imaginary part of the self-energy S²(w) from 2D fitting, with the intensity of 
S²(w) on the hole side enforced to be 130%, 110%, 100% (particle-hole symmetric), 90%, 
70%, and 50% of the particle (occupied) side. (b) The correspondent real part of the self-
energies S¢(w), where the inset shows the S¢(w) with the offset to be S¢(0) = 0. (c) The 
statistical chi-square value of each fit, indicating the goodness of the fit (the smaller the 
chi-square value, the better the fit). (d) The spectral gap size from each 2D fitting, which 
shows a small variation with standard deviation to be 0.7 meV comparing with the average 
gap size of 20 meV. (e) ARPES spectrum of the mid-zone cut taken at 50 K (same as in 
Fig. 1a). (f-k) The fit spectra with different particle-hole symmetry and asymmetric 
condition, where f is the same fit as in Fig. 1a with the assumption of particle-hole 
symmetry, g to k are the spectra with particle hole asymmetry where the intensity of S²(w) 
at the hole side is 130%, 110%, 90%, 70%, 50% of the particle side respectively. The 
colored curves are the correspondent bare band dispersions. (l) The extracted bare band 
dispersions.  
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Supplementary Figure 8 | Comparing spectra at mid-zone and near antinodal region. (a, b) 
Low temperature spectra (T=50 K) taken at the mid-zone (Fermi surface angle at 22.5 degree) 
and near the antinode (32 degree). (c, d) The same set of spectra taken at 150 K. (e, f) 
Symmetrized kF EDCs of the mid-zone and near antinodal spectra at 50 K and 150 K. The 
correspondent symmetrized EDC of the near antinodal spectrum at 150 K shows a strong 
depletion of the spectral weight near Fermi level (pseudogap), whereas the mid-zone one doesn’t 
show any gap feature at 150 K. 
  

Extended Data Fig. 7 Comparing spectra at midzone and near antinodal region (A and B) Low temperature spectra (T=50 K) 
taken at the midzone (Fermi surface angle at 22.5 degree) and near the antinode (32 degree). (C and D)  The same set of spectra 
taken at 150 K. (E and F) Symmetrized kF EDCs of the midzone and near antinodal spectra at 50 K and 150 K. The correspondent 
symmetrized EDC of the near antinodal spectrum at 150 K shows a strong depletion of the spectral weight near Fermi level 
(pseudogap) and the gap size is not smaller than the one well below TC, whereas the mid-zone one doesn’t show any gap feature at 
150 K. 
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