
Supplementary Information

Small-Molecule Ligand Docking into Comparative Models with
Rosetta

Steven A. Combs1,2,*, Samuel L. DeLuca1,3,*, Stephanie H. DeLuca1,3,*, Gordon H. Lemmon1,3,*,

David P. Nannemann1,2,*, Elizabeth D. Nguyen1,3,*, Jordan R. Willis1,3,*, Jonathan H.
Sheehan1,*, Jens Meiler1,2 ,3,4,5†

Affiliations:
1 Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
2 Department of Chemistry, Vanderbilt University, Nashville, TN, USA
3 Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA
4 Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
5 Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA

*These authors contributed equally.

Authors’ Email:
Steven A. Combs: steven.combs@vanderbilt.edu
Samuel L. DeLuca: samuel.l.deluca@vanderbilt.edu
Stephanie H. DeLuca: stephanie.h.deluca@vanderbilt.edu
David P. Nannemann: david.p.nannemann@vanderbilt.edu
Elizabeth D. Nguyen: e.dong.nguyen@vanderbilt.edu
Gordon H. Lemmon: gordon.h.lemmon@vanderbilt.edu
Jordan R. Willis: jordan.r.willis@vanderbilt.edu
Jonathan H. Sheehan: jonathan.sheehan@vanderbilt.edu

† Correspondence should be addressed to:
Jens Meiler
Email: jens.meiler@vanderbilt.edu
Telephone: +1 615 936 5662
Fax: +1 615 936 2211

Included:
Supplemental Discussion S1: Clustering using Rosetta. A description of how to perform
clustering in Rosetta 3.4. Clustering can be performed using a variety of other programs (see
text).
Supplemental Discussion S2: Using Constraints as Filters in RosettaScripts. Instructions on
how to include experimental data as restraint filters during modeling with RosettaScripts. This
may be easier than filtering models post hoc (see text).
Supplemental Method: Installing Rosetta 3.4. Instructions on how to install the current
released version of Rosetta on Linux and Mac OS X operating systems.
Supplemental Discussion S3: Testing Rosetta. An example of how benchmarking of Rosetta
is typically performed.

Nature Protocols: doi: 10.1038/nprot.2013.074

Supplemental Glossary: A list of terms and definitions commonly used in describing modeling
with Rosetta.
Supplemental Tutorial: A zipped file that contains example input files, command lines, and
output files that the user can download. This tutorial is provided to allow the user to gain hands-
on experience with docking small molecules into comparative models with Rosetta.

Supplemental Methods
Installing Rosetta 3.4
The Rosetta modeling suite is free of cost to all academic users after registration. The package
comes with a user’s guide; a database containing pertinent files for applications in Rosetta; the
Rosetta source code, and a fragments directory containing a peptide fragment database of
proteins for known structures. In addition, the modeling suite comes with FoldIt3, an interactive
graphical interface that manually folds proteins using the Rosetta scoring function and structure
prediction algorithm. ProteinTools (rosetta_tools/protein_tools), a collection of ancillary
tools commonly used in conjunction with the Rosetta software suite, is also included. Lastly,
Rosetta comes with a software construction tool called SCons (http://www.scons.org/), which
analyzes the source code and builds specified binary files using multiple processors. SCons
interfaces with the standard GNU gcc compiler to build the source code.

1. Installing Rosetta version 3.4

(i) Rosetta is free to academic users. For an academic license, apply here:
http://depts.washington.edu/uwc4c/express-licenses/assets/rosetta+pyrosetta/
(ii) After obtaining a username and password, source code for Rosetta 3.4 can be
downloaded here: https://www.rosettacommons.org/software/academic or
https://www.rosettacommons.org/software/commercial
(iii) Create a new directory called rosetta (mkdir rosetta), and copy
rosetta3.4_bundles.tgz from your downloads directory to rosetta/ (cp
rosetta3.4_bundles.tgz rosetta/)
(iv) In the rosetta directory, unpack the tar file by typing the following: tar -zxvf
rosetta3.4_bundles.tgz. This will unpack multiple files, including the Rosetta
source code (rosetta3.4_source.tgz) and the Rosetta database
(rosetta3.4_database.tgz).
(v) Unpack the database and source code using the following:
 tar -zxvf rosetta3.4_database.tgz
 tar -zxvf rosetta3.4_source.tgz
(vi) Change directories into the newly created rosetta3.4_source (cd
rosetta3.4_source), and build the binaries using the following command:
external/scons-local/scons.py mode=release bin/

CRITICAL: Make sure you have the GNU gcc3.4 compiler or higher (by typing
gcc -v) and that a working copy of Python2.5 or higher installed. Access a
Python executable by /usr/bin/env python or explicitly type the path to your
python executable. Additionally, you must have zlib installed, if you see errors
referencing a missing –lz library, install the zlib-dev libraries for your operating
system.

Note for Mac OS X Users: the compiler “clang” is recommended for compiling
Rosetta in OS X. Make sure you have the OS X Developer tools installed, and

Nature Protocols: doi: 10.1038/nprot.2013.074

then compile using the following build command: external/scons-
local/scons.py cxx=clang mode=release bin/

If an error similar to KeyError: "Unknown version number 4.1 for compiler
'clang'" occurs, open the file rosetta_source/tools/build/options.settings
and modify the line:
"clang" : ["1.7", "2.1", "2.0", "2.8", "2.9", "3.0", "3.1","*"],

To instead read:
"clang" : ["1.7", "2.1", "2.0", "2.8", "2.9", "3.0", "3.1","4.1","*"],

Executables compiled in this way will have the suffix “.macosclangrelease”

(vii) Change directory into bin/ (cd bin), and confirm that all 166 binaries have
been built.

The Rosetta modeling suite comes with a set of python scripts, which can greatly simplify the
analysis of Rosetta models. These scripts are used throughout this tutorial. The scripts rely on
several python dependencies, which need to be installed. BioPython and numpy, which are freely
available python packages, are required to use these scripts. The specific installation instructions
for BioPython (http://biopython.org/wiki/Biopython) and numpy (http://numpy.scipy.org/) will
vary based on your specific operating system details. Consult the documentation for these
packages for installation instructions.

Rosettautil is a python module with a number of useful functions for handling Rosetta output.
The installation package for this Python module is located in
<rosetta_dir>/rosetta_tools/protein_tools. To install this module, and the associated scripts,
first change directories to the <rosetta_dir>/rosetta_tools/protein_tools directory. If you
have root access and want to install the module so that it is usable by all users on the system,
enter the following command: python setup.py --install-
scripts=/path/to/scripts/directory. This command will install the python module, and then
copy the scripts into the directory you specify. If you do not have root access, use this command:
python setup.py --user --install-scripts=/path/to/scripts/directory.

Supplemental Discussion
S1: Clustering Using Rosetta (OPTIONAL)
Predicted structures generated by comparative modeling are often clustered to help identify
structurally similar models. Clustering is performed with the assumption that the deepest energy
well, and hence the global energy minimum, will also be the widest2. As a result, it is expected
that the largest clusters will potentially contain the predicted model that is closest to the native
structure. Rosetta includes a tool for clustering protein models. The cluster application avoids the
memory requirements associated with computing a complete distance matrix for large numbers
of models. The Rosetta clustering method starts by computing a distance matrix for the first 400
input models. Each model in the distance matrix is assigned to the cluster to which it is nearest
(typically in terms of RMSD). If the model is not within a specified radius of any cluster, it is
assigned to a new cluster.

Nature Protocols: doi: 10.1038/nprot.2013.074

Because the Rosetta clustering application outputs most of its statistical information in its log
file, a script has been provided to run the clustering application and produce a clear summary of
the results. Given a set of PDB or Rosetta silent files and a Rosetta options file, clustering.py
will produce a set of clustered PDBs, a histogram file showing the distribution of pairwise
RMSDs between models, and a summary file showing which models are in which clusters. The
Rosetta options file can contain a number of options that control the behavior of the cluster
application. The acceptable options are listed below. For more information on Rosetta options
file formatting, see the Experimental design section in the main text.

• -run:shuffle - Input structures in a random order. Use this if you have reason to believe
that the output models are not in random order

• -cluster:gdtmm - cluster using GDTMM (global distance test) instead of RMSD
distances

• -cluster:radius <float> - The maximum radius of each cluster in Å (RMSD mode) or
inverse GDT_TS (GDTMM mode)

• -cluster:input_score_filter <float> - do not cluster scores above a given energy
• -cluster:exclude_res <int> <int> ….<int> - do not include the listed residues in

distance calculation
• -cluster:limit_cluster_size <int> - maximum number of models in each cluster
• -cluster:limit_clusters <int> - maximum number of clusters
• -cluster:limit_total_structures <int> - maximum number of models to cluster
• -cluster:sort_groups_by_energy - sort clusters by total energy during output

S2: Using Constraints as Filters in RosettaScripts (OPTIONAL)
Filters can be used to guide a RosettaScripts1 protocol in producing only high quality models that
pass constraints specified by the user. These filters can take on a variety of forms, where the
protocol can be repeated until a certain score is met (filter by score), continuing the protocol until
the model converges on another structure (filter by RMSD), or continuing the protocol until
atomic contacts are made which agree with experimental observations (filter by experimental
constraints). For example, an atomic contact or residue contact constraint is essentially a distance
constraint that can be derived from several types of experimental data, such as NMR nuclear
Overhauser effects (NOEs), distances determined by electron paramagnetic resonance (EPR),
distances derived from cysteine mutagenesis, etc. The protocol repeats for all or specified
movers until the experimental constraints are satisfied. In the XML script used by RosettaScripts,
all filters are specified in the FILTERS section as shown below:

<FILTERS>
 <filter1/>
 <filter2/>
 ...
</FILTERS>

Then, in the PROTOCOLS section:

<PROTOCOLS>
 ...

<Add mover_name=mover1 filter_name=filter1>
 <Add filter_name=filter2/>

Nature Protocols: doi: 10.1038/nprot.2013.074

 ...
</PROTOCOLS>

The general format for a filter placed in the XML script is:

<"filter_name" name="your_filter_name" ..parameter_name=<parameter_value>,

where "filter_name" is one of a predefined set of filters recognized by RosettaScripts, and name
is a unique identifier for this particular filter, followed by the parameters that the specific filter
needs to be defined. In the example, mover1 would continue until the constraints given in filter1
are satisfied. For filter2 that is not specified with a mover, the entire protocol would repeat up
to filter2, until the constraints defined by the filter are met.

An example of an AtomicContact filter is:

<AtomicContact name=”res32_res45_noe” residue1=32 residue2=45 sidechain=0
backbone=1 protons=0 distance=10 confidence=0.25/>

This filter will check if the model generated by Rosetta satisfies the specified constraint between
residues 32 and 45. If any pair of backbone residues between the two residues is within 10Å of
each other, the filter will return TRUE 75% of the time. When the filter returns a TRUE value,
the protocol is continued from where the filter is called. In addition, the “sidechain” and
“protons” options have designated values of 0 (as opposed to 1), which means they are turned
off. The side chain and hydrogen atoms are not taken into account, and only the main chain
backbone atoms will be evaluated in this filter example.

If the confidence is 1.0 then the filter is evaluated as either true or false. When the confidence
value is less than 0.999, the filter will return TRUE in (1.0 – confidence) fraction of the times it
is evaluated. This so-called “fuzzy” filter is useful for instances of ambiguous or uncertain
experimental data.

A less sophisticated type of constraint filter conceptually similar to the AtomicContact constraint
filter is the ResidueDistance filter. This filter queries the distance between the beta-carbons of
two specified residues. An example similar to the AtomicContact filter is:

<ResidueDistance name=”res32_res45_noe” res1_res_num=32 res2_res_num=45
distance=10.0 confidence=0.25/>

Finally, a DisulfideFilter can be applied, in which Rosetta tries to select models that position the
specified residues such that they can potentially form a disulfide bond:

<DisulfideFilter name=disulfide targets=32,45,46 confidence=1.0/>

Notice that “targets” is defined as a comma-separated list of residues, which means that all
numbers in the comma-separated list are considered when searching for a disulfide bond. For
more information on using constraints in RosettaScripts1, including constraint-type filters, go to:
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/RosettaScripts.html

Nature Protocols: doi: 10.1038/nprot.2013.074

S3: Testing Rosetta
Rosetta is often used to recapitulate known experiments. In such studies, several Rosetta options
or protocol steps are changed carefully and methodically until the computational and
experimental results correlate. Before conducting experiments with Rosetta, it is advised to test,
or benchmark, the proposed protocol on known experimental data.

The definition of a successful benchmark varies and depends on the protocol. For a loop
modeling benchmark, if the Rosetta model has a sub-angstrom RMSD to the experimental
structure and is in the top ten lowest-scoring models built, the benchmark is considered to be
successful4. For ligand docking, success is achieved when one of the top ten scoring models has
an RMSD to the native structure below 2Å5.

The data obtained from loop building for the T4-lysozyme comparative model (see the main text)
can be used as an example of benchmarking. The RMSD from the native ligand position can be
calculated across all generated models via the scripts provided with a copy of Rosetta. To
calculate the RMSD, run the provided script:

scripts/score_vs_rmsd_singleproc.py --native=target_A.pdb --
table=score_vs_rmsd_loops_ca.txt --term=total --ca_mode=ca --chain=A
loops_final_*.pdb --res=residues.ls

For more information on calculating RMSDs to a native structure, see the main text (STEP 14-
16, Figure 4) Additionally, RMSDs for the ligand-docked binding poses can be computed
(STEP 22, Figures 5).

NOTE: The InterfaceScoreCalculator’s “native” option is used for benchmarking (if the
native structure is known). To demonstrate the accuracy of the protocol in this example, the
native structure is included in the script as 2ou0_native.pdb. However, when running on a
system where the native structure is not available, this option should be omitted. For reference,
the results from this example will be compared against the experimentally determined T4-
lysozyme crystal structure (referred to below as 2ou0_native.pdb), which must also be aligned in
the same coordinate system as the homology models used for docking. To enable RMSD
calculation to the native, modify the *.xml script to include the native option:

<InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep
native="2ou0_native.pdb"/>

In your resulting score.sc file, the interface_delta_X is the score, and ligand_rms_no_super_X
is the RMSD. NOTE: The RMSDs for the lowest-energy ligand docking models for this example
are considered relatively large; however, this is not unexpected due to the small size and the
symmetry of the ligand. The binding conformation and position of this low-energy cluster of
models could be another energy minimum separate from that found in the crystal structure.
Further, Rosetta is able to sample the native ligand conformation and position in a slightly
higher-energy minimum. If the method you use is not yielding satisfactory test results, the size of
the binding pocket search space can be decreased. For example, for this ligand (1-methyl-1H-
pyrrole (MR3), a search radius of 2Å was used. In cases where the ligand is small and rigid, it is

Nature Protocols: doi: 10.1038/nprot.2013.074

better to limit the degrees of freedom in which the ligand moves around the binding pocket.
However, for larger ligands, a radius of up to 4-5Å may be needed to accommodate the ligand.

Supplement Glossary
all-atom - in the case of sampling, synonymous with fine movements and often including side

chain information; also referred to as high-resolution
benchmark – another word for a test of a method, scoring function, algorithm, etc. by

comparing results from the method to accepted methods/models
binary file – a file in machine-readable language that can be executed to do something in silico
BioPython – a set of tools for biological computing written and compatible with Python

http://biopython.org/wiki/Biopython
build – to compile the source code so it can be used as a program
centroid – in Rosetta centroid mode, side chains are represented as unified spheres centered at

the residue’s center of mass
cluster center – the geometric center of a cluster, or group, of models
clustering – in this case, grouping models with similar structure together
comparative model – a protein model where the primary sequence from one protein (target) is

placed, or threaded, onto the three dimensional coordinates of a protein of known
structure (template)language (binary)

cyclic coordinate descent (CCD) – based on robotics, CCD loop closure is used to build loops
in Rosetta by fragment assembly and close loops by decreasing the gap between two
termini in three-dimensional space6

de novo – in this case, from the sequence; also called ab initio
directory – synonymous with a folder, usually contains one or more files or other folders
distance matrix – a matrix containing the pairwise distances for every point in a set of points
Dunbrack rotamer library – a set of likely side chain conformations for the twenty canonical

amino acids based on protein structures in the Protein Data Bank (PDB)7
executable – binary file used to execute the program
force field / scoring function / energy function / potential – often used interchangeably; a

means of assessing the energy of the generated models
fragment – in Rosetta folding and loop building, a set of three-dimensional coordinates

corresponding to a given amino acid sequence
fragment database – also called the fragment library; contains the Cartesian coordinates for 200

amino acid fragments (obtained from the Vall database) for each sequence window of the
entire primary sequence of the protein

gap – in sequence alignment, a gap is inserted when the sequences are of low homology; usually
appear as a dash (-); the gaps form a sequence alignment correspond to areas where loops
are built during comparative modeling

GDT / GDT_TS – global distance test (total score); a measure of similarity between two protein
structures having the same amino acid sequence; the largest set of residues' Cα atoms in
the model structure falling within a defined distance cutoff of their position in the
experimental structure

gradient-based minimization – also known as minimization by steepest descent; in this case, a
means of energy minimization in which one takes steps proportional to the negative of
the gradient of the function (energy) at the current point

Nature Protocols: doi: 10.1038/nprot.2013.074

high-resolution – in the case of sampling, synonymous with fine movements and often including
side chain information

homology model – a more specific type of comparative model where the protein sequence of
interest (target) is a homolog of the protein of known structure (template)

interface delta - The interface delta score is defined as the contribution to the total score for
which the presence of the ligand is responsible.

kinematic loop closure (KIC) – robotics-inspired loop closure algorithm which analytically
determines all mechanically accessible conformations for torsion angles of a peptide
chain using polynomial resultants4

knowledge-based – in the case of Rosetta, based on information obtained from structures found
in the PDB

libraries – in computing, a collection of code and data (classes and functions) used by a piece of
software and is often used in software development

ligand – in this case, a small molecule that binds to a protein to serve some biological purpose;
in the presented protocol, the ligand (small molecule) is docked into the receptor
(protein).

low-resolution – a somewhat subjective term, in the case of sampling, synonymous with coarse
movements of the protein and/or ligand backbone and side chains; the individual atoms
of low-resolution structures or models cannot be resolved, or observed.

metropolis criterion – often combined with the monte carlo sampling algorithm; allows for
generation of an ensemble that represents a probability distribution; see Metropolis, et al.,
19538

model – in the case of this protocol, a structure generated by Rosetta; sometimes called a decoy
monte carlo sampling – a randomized and repetitive computational sampling method
mover - a generic class that takes as input a pose and performs some modification on that pose;

for example, a mover might take in a pose and rotate every residue
namespace – in computer science, an abstract container holding a logical grouping of unique

identifiers or symbols; in Rosetta, examples of namespaces are loops, relax, etc.
native-like – close to the experimentally determined structure; a model that is “native-like”

usually has an RMSD to the experimentally determined structure of < 2Å.
options file – often called a flags file; a file containing Rosetta options that can be passed to a

Rosetta executable after the @ symbol; can be easier to use than passing Rosetta options
over the command line

pack / repack – in Rosetta, side chains are packed/repacked by switching out rotamers and
scoring them using the Rosetta scoring function

params file – ligand file; defines the Rosetta atom-typing and internal coordinates of a small
molecule; in the manuscript, specified by *.params

path – in this case, the location in the file system of a file or directory
physics-based – in the case of scoring functions, based on Newtonian physics; for example, two

atoms are considered to be balls connected by a spring; often used in molecular
mechanics

pose – in this Rosetta protocol, a three-dimensional conformation of the ligand, protein, or
ligand/protein complex

Python – interpreted, object-oriented, high-level programming language http://www.python.org/
relax – in Rosetta, an iterative protocol of side chain repacking and gradient-based minimization;

often referred to as full-atom (or all-atom) refinement

Nature Protocols: doi: 10.1038/nprot.2013.074

Robetta – Rosetta structure prediction server http://robetta.bakerlab.org/ freely available to not-
for-profit users

RosettaCommons – a group of more than twenty labs that develop the Rosetta software suite
Rosetta energy units (REU) – not experimental energy units; these are arbitrary energy units

specific to the Rosetta scoring function
RosettaScripts – also called the Scripter or RosettaXML; an XML-like language that allows for

specifying modeling tasks in Rosetta1
rotamer – rotational conformer of an amino acid or ligand side chain
SCons – a tool for constructing software from its source code http://www.scons.org/
script - in computer programming, a script is a sequence of instructions that is interpreted or

carried out by another program rather than by the computer processor (as a compiled
program is)

source code – human-readable files that are the implementation of the program; in Rosetta, these
are written in C++.

target – in comparative, or homology, modeling, the protein for which we are generating a
model; the target sequence is the primary sequence of the protein for which we want to
make a model.

template – in comparative modeling, the protein of known structure on which the target is
threaded

threading – placing the primary sequence of one protein (target) on the three-dimensional
coordinates of a protein of known structure (template) based on a sequence alignment

Vall database – database from which amino acid fragments are picked for folding and CCD
loop building in Rosetta

XML – Extensible Markup Language; in this case, used to write protocols to pass to
RosettaScripts

Supplemental Tutorial
The Supplemental Tutorial is available for download on the Nature Protocols website.

Supplemental References
1. Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta

macromolecular modeling suite. PLoS ONE 6, e20161 (2011).
2. Shortle, D., Simons, K. & Baker, D. Clustering of low-energy conformations near the native

structures of small proteins. Proc Natl Acad Sci U S A 95, 11158–11162 (1998).
3. Callaway, E. The shape of protein structures to come. Nature 449, 765 (2007).
4. Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in protein loop

reconstruction by robotics-inspired conformational sampling. Nat Meth 6, 551–552 (2009).
5. Davis, I. W. & Baker, D. RosettaLigand docking with full ligand and receptor flexibility. J

Mol Biol 385, 381–392 (2009).
6. Canutescu, A. & Dunbrack, R., Jr Cyclic coordinate descent: A robotics algorithm for

protein loop closure. Protein Sci 12, 963 (2003).
7. Dunbrack, R. L. & Karplus, M. Backbone-dependent rotamer library for proteins.

Application to side-chain prediction. J Mol Biol 230, 543–574 (1993).
8. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation

of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21,
1087 (1953).

Nature Protocols: doi: 10.1038/nprot.2013.074

Nature Protocols: doi: 10.1038/nprot.2013.074

