SUPPLEMENTAL TEXT

Phylogeographic analysis. The ML phylogeny with branch lengths corrected for recombination was used for ancestral state reconstruction of geographic location of USA300-NAE under parsimony and likelihood. Calculations were done with Mesquite v2.75 (1) and MacClade v4.08 (Sinauer Associates, Sunderland, MA). The two most basal isolates of USA300-NAE in our sample were from Indiana and Mississippi (Fig. 1 circle 3). Mississippi was the most abundant sample of USA300-NAE at 33 isolates and was reconstructed as its origin under parsimony and with 55% likelihood. However, in 100 subsamples where the Mississippi sample was rarefied to 16 isolates (the average of 18 USA300-NAE populations with \geq 6 isolates each), Mississippi was the unambiguous origin only 42% of the time under parsimony and with an average of 26% likelihood. Mississippi was especially oversampled among early isolates, accounting for 16 of 36 (44%) isolates collected between 2001-2005, but only 17 of 229 (7.4%) isolates collected between 2007-2011. When only the recent isolates from 2007-2011 were considered, Mississippi was not reconstructed as the origin under parsimony or likelihood. Despite the phylogenomic uncertainty in origin, the distribution of US states and territories on the ML phylogeny was nonrandom (Slatkin-Maddison test, P<0.001). This signal was likely the result of "microclustering" where two or more isolates from the same US state or territory were adjacent on the phylogeny (Fig. 1 circle 3), as 443 of 515 (86%) unambiguous changes (migrations) and stasis events under parsimony were within US states and territories.

The clade distribution of the international isolates included 20 isolates of USA300-NAE (from Australia, Ireland, Germany and Denmark), all nine isolates of USA300-SAE (from Colombia and Ecuador), one Ecuador isolate of early-branching USA300, and six non-USA300 isolates (from Argentina and Denmark). Among the 20 isolates of USA300-NAE, the three isolates from Germany formed a microcluster, as did two isolates from Ireland, but the 15 remaining isolates were in separate microclusters with US isolates, consistent with prior conclusions of multiple exports of USA300 from the US to the eastern hemisphere (2,3).

Genetic and geographic outliers. Using 2599 biallelic, nonrecombinant SNPs, the average (SD) pairwise Hudson's F_{ST} between the 18 populations with sample size ≥ 6 isolates was 0.0583 (0.0472). Montana was identified as a genetic outlier population, as its average pairwise F_{ST} was

2.6x higher and it was clearly distinguished in a principal components analysis (Fig. S2). Further sample information was unavailable to assess whether the Montana isolates were from a remote host population(s), but their genetic information indicates that the differentiation was not due to unique recombination events. Puerto Rico was the second most differentiated population (Fig. S2). Hawaii and Puerto Rico were considered to be geographic outliers due to the large bodies of water separating these populations from the nearest continental US populations. For these reasons, the Montana, Hawaii and Puerto Rico populations were excluded from subsequent analysis.

Nonetheless, inclusion of the Montana, Hawaii and Puerto Rico outlier populations did not qualitatively alter our conclusion of an eastern US origin of USA300-NAE though statistical significance was affected. The isolation by distance was weaker when these three populations were included (Mantel test, r= 0.265, P= 0.106, n=153 pairs). When these three populations were included in the test for range expansion and inference of origin, New York was the most likely origin based on decrease in θ_{π} (Pearson r=-0.510, P=0.015, P_{perm}=0.14, n=18), decrease in tip-to-tip distance (Pearson r=-0.516, P=0.014, P_{perm}=0.15, n=18), and increase in Ψ with linear regression (Pearson r=0.505, P=0.016, P_{perm}=0.17, n=18) (Table S1). The nonlinear regression on Ψ gave the unsampled population of New Hampshire as the best origin (Pearson r=0.535, P_{perm}=0.15, n=18) (Table S1).

References for Supplemental text

- 1. Maddison WP & Maddison DR (2016) Mesquite: a modular system for evolutionary analysis. Version 3.10 http://mesquiteproject.org
- 2. Von Dach E, *et al.* (2016) Comparative genomics of community-associated methicillinresistant *Staphylococcus aureus* shows the emergence of clone ST8-USA300 in Geneva, Switzerland. *J Infect Dis* 213(9):1370-1379.
- **3.** Glaser P, *et al.* (2016) Demography and intercontinental spread of the USA300 community-acquired methicillin-resistant *Staphylococcus aureus* lineage. *MBio* 7(1):e02183-02115.

Figure S1. Time-stamped Bayesian phylogeny of USA300 inferred using BEAST with non-recombinant genome sequences. Branch color indicates posterior probability of tip-ward node. Bars on nodes indicate 95% credibility intervals for node ages. Three colored bars adjacent to the tree indicate the *S. aureus* clade, fluoroquinolone resistance mutation and the geographic source of isolation (see color index).

Figure S2. Principal components analysis based on the pairwise Hudson's F_{ST} between 18 populations of USA300- NAE.

Decrea	Decrease in genetic diversity (θ_{π})				ease in gene tin-to-tin di	tic diversit	У	Increase in derived allele frequency (Ψ)*				
Origin population	r	Р	P _{perm}	Origin population	r	P	P _{perm}	Origin population	r	Р	P _{perm}	
NY	-0.510	0.0154	0.142	NY	-0.516	0.0142	0.148	NY	0.505	0.0162	0.165	
MA	-0.506	0.0160		MA	-0.509	0.0155		MA	0.505	0.0163		
PA	-0.501	0.0171		PA	-0.507	0.0159		PA	0.498	0.0178		
OH	-0.491	0.0193		OH	-0.499	0.0175		OH	0.481	0.0218		
SC	-0.413	0.0443		IL	-0.430	0.0373		SC	0.418	0.0421		
IL	-0.404	0.0482		SC	-0.415	0.0436		GA	0.382	0.0589		
GA	-0.383	0.0583		IA	-0.402	0.0490		IL	0.362	0.0700		
IA	-0.371	0.0648		GA	-0.394	0.0528		PR	0.336	0.0867		
FL	-0.326	0.0935		NE	-0.345	0.0807		FL	0.335	0.0873		
MS	-0.307	0.1080		MS	-0.343	0.0820		IA	0.304	0.1102		
NE	-0.299	0.1137		FL	-0.337	0.0856		MS	0.280	0.1305		
PR	-0.294	0.1178		PR	-0.318	0.0995		NE	0.214	0.1972		
MT	-0.210	0.2019		TX	-0.248	0.1604		TX	0.155	0.2701		
TX	-0.198	0.2161		MT	-0.231	0.1782		MT	0.107	0.3361		
WA	0.036	0.5562		WA	0.034	0.5535		OR	-0.174	0.7549		
OR	0.072	0.6119		OR	0.063	0.5986		WA	-0.194	0.7795		
CA	0.135	0.7028		CA	0.100	0.6536		CA	-0.216	0.8053		
HI	0.381	0.9407		HI	0.395	0.9477		HI	-0.404	0.9519		

Table S1. Signatures of range expansion and origin of USA300-NAE with 18 population dataset.

*NH (latitude: 43.8836, longitude: -71.9776) was best with nonlinear regression of Ψ (r=0.535, P_{perm}=0.154)

Population	No. isolates	Average pairwise F _{ST}	$ heta_{\pi}$	θ_{W}	Tajima's D	P (D=0)	Average tip-to-tip distance (x10 ⁻⁵)	Sum pairwise ¥
All 15	229	0.0321	0.0118	0.1440	-2.9377	0.0033	1.2678	-
IL	27	0.0190	0.0104	0.0331	-2.7086	0.0068	1.2196	0.4737
NY	25	0.0254	0.0119	0.0311	-2.4655	0.0137	1.3919	-0.8111
CA	23	0.0465	0.0095	0.0219	-2.2983	0.0215	1.0973	1.0905
TX	19	0.0276	0.0105	0.0239	-2.3636	0.0181	1.2252	0.2931
MS	17	0.0253	0.0112	0.0231	-2.2151	0.0268	1.2836	-0.0732
OH	17	0.0311	0.0151	0.0319	-2.2684	0.0233	1.7133	-2.0332
GA	16	0.0187	0.0134	0.0278	-2.2684	0.0233	1.5136	-1.3311
PA	15	0.0224	0.0137	0.0262	-2.1131	0.0346	1.5356	-1.5834
NE	14	0.0566	0.0121	0.0194	-1.6914	0.0908	1.3468	0.1218
FL	14	0.0175	0.0096	0.0201	-2.3475	0.0189	1.0774	1.1612
IA	11	0.0256	0.0099	0.0156	-1.7511	0.0799	1.0925	0.9153
OR	11	0.0609	0.0095	0.0138	-1.5072	0.1318	1.0406	0.7772
MA	9	0.0248	0.0131	0.0183	-1.4688	0.1419	1.4067	-0.8583
SC	6	0.0381	0.0116	0.0133	-0.8322	0.4053	1.1667	-0.4173
WA	5	0.0417	0.0093	0.0096	-0.2299	0.8182	0.9058	2.2748

Table S2. Population genomic summary statistics for 15 populations of USA300-NAE (recent isolates).

Average pairwise F_{ST} , θ_{π} , θ_{W} and D was based on 2599 biallelic, non-recombinant SNPs.

Average tip-to-tip distance reflects branch lengths on a ML tree that has been corrected for recombinant sites. Sum of pairwise Ψ was based on 2595 biallelic, non-recombinant SNPs where ancestral and derived alleles were assigned.

	0 /	~ .		~ .	- .	~~		7.50						~~~				
trian	gle).																	
Tabl	le S3.	Pairwi	se Huo	lson's F	_{ST} betw	een 15 j	populati	ons of l	JSA300)-NAE	using al	ll isolate	es (lowe	er triang	gle) and	recent i	solates (u	pper

	CA	FL	GA	IA	IL	MA	MS	NE	NY	ОН	OR	PA	SC	TX	WA
CA	0.000	0.029	0.032	0.027	<mark>0.039</mark>	0.038	<mark>0.049</mark>	<mark>0.093</mark>	<mark>0.040</mark>	<mark>0.058</mark>	<mark>0.070</mark>	0.037	0.064	<mark>0.046</mark>	0.075
FL	0.026	0.000	0.007	0.008	0.001	0.010	0.007	<mark>0.053</mark>	0.006	0.024	0.036	0.009	0.030	0.006	0.036
GA	0.030	0.007	0.000	0.011	0.002	0.016	0.015	<mark>0.043</mark>	0.015	0.022	0.055	-0.007	0.019	0.014	0.037
IA	0.025	0.008	0.011	0.000	0.004	0.018	0.019	0.059	0.022	0.022	<mark>0.068</mark>	0.018	0.038	0.023	0.047
IL	<mark>0.036</mark>	0.001	0.002	0.004	0.000	0.014	0.005	<mark>0.049</mark>	0.012	0.016	<mark>0.057</mark>	0.010	0.026	0.011	0.039
MA	0.034	0.010	0.016	0.018	0.014	0.000	0.011	0.037	0.020	0.010	0.073	0.020	0.045	0.032	0.028
MS	<mark>0.070</mark>	0.028	0.026	0.032	0.020	0.006	0.000	<mark>0.053</mark>	0.015	0.022	<mark>0.061</mark>	0.021	0.037	0.018	0.046
NE	<mark>0.074</mark>	0.036	0.032	0.046	0.036	0.026	0.023	0.000	<mark>0.068</mark>	0.033	<mark>0.116</mark>	0.053	0.078	<mark>0.068</mark>	0.046
NY	<mark>0.038</mark>	0.006	0.015	0.022	0.012	0.020	<mark>0.045</mark>	<mark>0.053</mark>	0.000	<mark>0.038</mark>	0.050	0.016	0.011	0.016	0.052
OH	<mark>0.054</mark>	0.024	0.022	0.022	0.016	0.010	0.010	0.027	0.038	0.000	<mark>0.081</mark>	0.022	0.046	<mark>0.040</mark>	0.033
OR	<mark>0.071</mark>	0.036	0.055	0.068	<mark>0.057</mark>	0.073	<mark>0.102</mark>	<mark>0.099</mark>	0.050	<mark>0.081</mark>	0.000	0.055	0.072	0.045	0.074
PA	<mark>0.039</mark>	0.010	-0.005	0.017	0.009	0.020	0.030	<mark>0.041</mark>	0.019	0.019	0.061	0.000	0.031	0.022	0.029
SC	0.063	0.030	0.019	0.038	0.026	0.045	0.059	0.065	0.011	0.046	0.072	0.032	0.000	0.030	0.043
TX	<mark>0.041</mark>	0.003	0.010	0.018	0.006	0.026	<mark>0.037</mark>	<mark>0.046</mark>	0.015	0.031	0.047	0.019	0.027	0.000	0.041
WA	<mark>0.107</mark>	0.070	0.060	0.075	0.068	0.039	0.038	0.043	0.088	0.037	0.126	0.058	0.082	0.073	0.000

Pairwise F_{ST} was evaluated with 10,000 permutations. Comparisons that are significant by Bonferroni P-value are highlighted in yellow.

Table S4. Relationships between genetic differentiation (Weir and Cockerham's F_{ST}), geographic distance, and connectivity from all pairwise comparisons of 15 populations of USA300-NAE.

		All is (2001	olates -2011)	Recent (2007	isolates -2011)
Test	Predictor of genetic distance	r	Р	r	Р
	Geographic distance	0.364	0.0097	0.288	0.066
	Log total airline passengers	-0.379	0.034	-0.345	0.059
Mantel	Log total migrants	-0.237	0.113	-0.204	0.161
Dortiol	Geographic distance accounting for log total airline passengers	0.334	0.025	0.252	0.146
Mantel	Log total airline passengers accounting for geographic distance	-0.351	0.056	-0.318	0.080

Mantel and partial Mantel tests were evaluated with 10,000 permutations.

Decrea	se in gene (θ _π)	tic diversi	ty	Decrea (ti	se in gene p-to-tip di	tic diversi stance)	ty	Increase in derived allele frequency (Ψ)*				
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}	
PA	-0.697	0.0019	0.024	PA	-0.684	0.0025	0.031	PA	0.667	0.0033	0.029	
MA	-0.696	0.0020		NY	-0.683	0.0025		NY	0.664	0.0035		
NY	-0.695	0.0020		OH	-0.677	0.0028		MA	0.663	0.0035		
OH	-0.684	0.0025		MA	-0.673	0.0030		OH	0.650	0.0043		
SC	-0.558	0.0153		SC	-0.527	0.0218		SC	0.543	0.0182		
GA	-0.490	0.0320		GA	-0.479	0.0355		GA	0.471	0.0382		
IL	-0.432	0.0541		IL	-0.475	0.0367		IL	0.396	0.0718		
FL	-0.403	0.0680		FL	-0.384	0.0786		FL	0.395	0.0725		
MS	-0.262	0.1727		MS	-0.315	0.1265		MS	0.234	0.2008		
IA	-0.240	0.1950		IA	-0.306	0.1338		IA	0.200	0.2374		
NE	0.099	0.6370		NE	-0.013	0.4811		TX	-0.106	0.6461		
TX	0.126	0.6731		TX	0.029	0.5406		NE	-0.140	0.6912		
WA	0.570	0.9868		CA	0.523	0.9772		CA	-0.546	0.9824		
OR	0.578	0.9879		OR	0.555	0.9841		OR	-0.561	0.9852		
CA	0.589	0.9895		WA	0.560	0.9850		WA	-0.593	0.9901		

Table S5. Signatures of range expansion and	nd origin of USA300-NAE with 15 population dataset (all isolates).

*NY (latitude: 41.6967, longitude: -73.5591) was best with nonlinear regression of Ψ (r=0. 686, P_{perm}=0.029)

Decre	Decrease in genetic diversity (θ_{π})				se in genet o-to-tip di	tic divers stance)	ity	Increase in derived allele frequency (Ψ)*			
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}
PA	-0.748	0.0007	0.008	PA	-0.732	0.0008	0.010	PA	0.786	0.0003	0.006
ОН	-0.731	0.0010		OH	-0.719	0.0008		OH	0.766	0.0004	
NY	-0.730	0.0010		NY	-0.719	0.0013		NY	0.762	0.0005	
MA	-0.727	0.0011		MA	-0.706	0.0017		MA	0.759	0.0005	
SC	-0.596	0.0095		SC	-0.568	0.0106		SC	0.662	0.0036	
GA	-0.536	0.0196		GA	-0.526	0.0164		GA	0.600	0.0090	
IL	-0.469	0.0390		IL	-0.506	0.0230		FL	0.503	0.0279	
FL	-0.435	0.0527		FL	-0.423	0.0434		IL	0.492	0.0313	
MS	-0.363	0.0916		MS	-0.400	0.0549		MS	0.434	0.0533	
IA	-0.258	0.1767		IA	-0.312	0.1271		IA	0.235	0.1993	
NE	0.087	0.6214		NE	0.008	0.4614		TX	-0.032	0.5457	
TX	0.095	0.6321		TX	0.020	0.5303		NE	-0.161	0.7164	
WA	0.577	0.9879		CA	0.565	0.9887		CA	-0.652	0.9958	
OR	0.603	0.9913		WA	0.583	0.9909		OR	-0.656	0.9961	
CA	0.628	0.9939		OR	0.588	0.9912		WA	-0.687	0.9977	

Table S6. Signatures of range expansion and origin of USA300-NAE with 15 population dataset (recent isolates).

*PA (latitude: 41.2498, longitude: -76.9675) was best with nonlinear regression of Ψ (r=0.795, P_{perm}=0.005)

Decrea	ase in gene (θ _π)	tic diversit	У	Increase in derived allele frequency (Ψ)*						
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}			
MA	-0.694	0.0020	0.018	MA	0.544	0.0180	0.097			
PA	-0.688	0.0023		NY	0.537	0.0194				
NY	-0.687	0.0023		PA	0.530	0.0212				
OH	-0.666	0.0034		OH	0.471	0.0381				
SC	-0.556	0.0158		SC	0.442	0.0493				
GA	-0.492	0.0312		GA	0.391	0.0750				
FL	-0.411	0.0641		IL	0.337	0.1098				
IL	-0.409	0.0650		FL	0.334	0.1118				
MS	-0.266	0.1687		IA	0.245	0.1892				
IA	-0.220	0.2151		MS	0.212	0.2240				
TX	0.094	0.6305		NE	0.091	0.3741				
NE	0.115	0.6588		TX	0.022	0.4692				
WA	0.586	0.9891		CA	-0.429	0.9447				
CA	0.594	0.9903		OR	-0.465	0.9595				
OR	0.597	0.9906		WA	-0.507	0.9732				

Table S7. Signatures of range expansion and origin of USA300-NAE with 15 population dataset (non-synonymous SNPs).

*MA (latitude: 42.2787, longitude: -71.58) was best with nonlinear regression of Ψ (r=0.678, P_{perm}=0.036)

Decrea	ase in gene (θ _π)	tic diversit	У	Increase in derived allele frequency (Ψ)*						
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}			
ОН	-0.636	0.0054	0.073	PA	0.493	0.0309	0.142			
PA	-0.618	0.0070		NY	0.492	0.0313				
NY	-0.609	0.0080		MA	0.482	0.0346				
MA	-0.590	0.0103		OH	0.471	0.0383				
SC	-0.477	0.0362		IL	0.373	0.0855				
IL	-0.443	0.0492		SC	0.373	0.0857				
GA	-0.401	0.0690		GA	0.304	0.1353				
FL	-0.312	0.1292		IA	0.273	0.1625				
IA	-0.270	0.1656		FL	0.225	0.2106				
MS	-0.204	0.2328		NE	0.163	0.2810				
NE	0.024	0.5335		MS	0.149	0.2979				
TX	0.222	0.7865		TX	-0.156	0.7099				
OR	0.414	0.9374		OR	-0.302	0.8628				
WA	0.421	0.9410		WA	-0.345	0.8961				
CA	0.474	0.9628		CA	-0.352	0.9007				

Table S8. Signatures of range expansion and origin of USA300-NAE with 15 population dataset (synonymous SNPs).

*Ontario, Canada (latitude: 44.3365, longitude: -76.9676) was best with nonlinear regression of Ψ (r=0.625, P_{perm}=0.066)

	gyrA resistance allele frequency among									
FQ use in year *	All (200	isolates)1-2011)	Recent isolates (2007-2011)							
year *	r	Р	r	Р						
1999	-0.126	0.6534	-0.106	0.7074						
2009	-0.326	0.2357	-0.316	0.2513						

Table S9. Correlation between gyrA resistance allele frequency and estimates of outpatient fluoroquinolone (FQ) use in 15 states.

Estimates are defined as number of prescriptions per 1000 people (https://resistancemap.cddep.org/CountryPageSub.php?country=United+States)

Decrea	ase in gene (θ _π)	tic diversit	У	Increase in derived allele frequency (Ψ)*						
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}			
PA	-0.692	0.0021	0.025	MA	0.546	0.0176	0.070			
MA	-0.690	0.0022		NY	0.544	0.0180				
NY	-0.690	0.0022		PA	0.538	0.0193				
ОН	-0.679	0.0027		ОН	0.488	0.0324				
SC	-0.552	0.0164		SC	0.442	0.0495				
GA	-0.484	0.0336		GA	0.385	0.0782				
IL	-0.427	0.0563		IL	0.363	0.0918				
FL	-0.398	0.0707		FL	0.323	0.1204				
MS	-0.259	0.1758		IA	0.273	0.1628				
IA	-0.235	0.1996		MS	0.212	0.2238				
NE	0.100	0.6390		NE	0.121	0.3338				
TX	0.126	0.6731		TX	-0.005	0.5068				
WA	0.565	0.9859		CA	-0.424	0.9425				
OR	0.571	0.9869		OR	-0.442	0.9506				
CA	0.583	0.9887		WA	-0.487	0.9672				

Table S10. Signatures of range expansion and origin of USA300-NAE with 15 population dataset (gyrA SNP excluded).

*MA (latitude: 42.2787, longitude: -71.58) was best with nonlinear regression of Ψ (r=0.688, P_{perm}=0.030)

Decrease in genetic diversity (θ_{π})				Decreas (tip	se in gene p-to-tip di	tic divers istance)	sity	Increase in derived allele frequency (Ψ)*			
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}
OH	-0.632	0.0102	0.103	OH	-0.633	0.0101	0.167	ОН	0.635	0.0098	0.069
NY	-0.624	0.0113		PA	-0.586	0.0177		PA	0.637	0.0110	
PA	-0.622	0.0116		NY	-0.582	0.0185		NY	0.623	0.0114	
MA	-0.592	0.0166		MA	-0.546	0.0269		MA	0.603	0.0146	
IL	-0.456	0.0587		IL	-0.534	0.0300		IL	0.490	0.0447	
IA	-0.367	0.1085		IA	-0.451	0.0608		GA	0.400	0.0881	
GA	-0.351	0.1196		GA	-0.365	0.1098		IA	0.397	0.0899	
FL	-0.297	0.1621		MS	-0.332	0.1339		FL	0.350	0.1203	
MS	-0.238	0.2170		FL	-0.283	0.1749		MS	0.313	0.1491	
NE	-0.138	0.3265		NE	-0.261	0.1946		NE	0.125	0.3418	
TX	-0.050	0.4354		TX	-0.150	0.3123		TX	0.083	0.3941	
CA	0.398	0.9107		CA	0.320	0.8569		CA	-0.398	0.9109	
WA	0.510	0.9624		WA	0.462	0.9442		WA	-0.616	0.9875	

Table S11. Signatures of range expansion and origin of USA300-NAE with 13 population dataset (non-FQ-R Subclade).

*Lake Huron (latitude: 44.3365, longitude: -82.3551) was best with nonlinear regression of Ψ (r=0.629, P_{perm}=0.071)

Note: Two of the 15 sampled populations had isolates <4 in the non-FQ-R subclade, so they were excluded from this analysis.

Decrease in genetic diversity (θ_{π})				Decrea	ise in gen ip-to-tip d	etic divers listance)	ity	Increase in derived allele frequency (Ψ)*			
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}
PA	-0.613	0.0076	0.086	OH	-0.599	0.0091	0.088	PA	0.579	0.0118	0.096
NY	-0.610	0.0079		PA	-0.599	0.0092		NY	0.575	0.0124	
MA	-0.606	0.0084		NY	-0.592	0.0100		MA	0.569	0.0134	
OH	-0.598	0.0093		MA	-0.575	0.0124		OH	0.554	0.0160	
SC	-0.457	0.0433		SC	-0.436	0.0521		SC	0.437	0.0519	
GA	-0.391	0.0747		IL	-0.393	0.0737		GA	0.364	0.0911	
IL	-0.348	0.1019		GA	-0.392	0.0743		IL	0.310	0.1300	
FL	-0.300	0.1386		FL	-0.303	0.1364		FL	0.283	0.1531	
IA	-0.178	0.2635		IA	-0.233	0.2020		IA	0.140	0.3096	
MS	-0.165	0.2789		MS	-0.216	0.2200		MS	0.128	0.3243	
NE	0.110	0.6514		NE	0.030	0.5419		NE	-0.149	0.7021	
TX	0.170	0.7271		TX	0.071	0.5989		TX	-0.157	0.7116	
WA	0.464	0.9594		CA	0.445	0.9517		OR	-0.446	0.9522	
OR	0.466	0.9599		OR	0.447	0.9526		CA	-0.450	0.9538	
CA	0.495	0.9696		WA	0.457	0.9568		WA	-0.482	0.9657	

Table S12. Signatures of range expansion and origin of USA300-NAE with 15 population dataset (BratNextGen recombinations excluded).

*NY (latitude: 42.4866, longitude: -74.5487) was best with nonlinear regression of Ψ (r=0.599, P_{perm}=0.105)

Decrea	se in gene (θ_{π})	tic diversi	ity	Decrea	ise in gene p-to-tip di	tic diversi istance)	Increase in derived allele frequency (\Pu\)*				
Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}	Origin population	r	Р	P _{perm}
FL	-0.737	0.0009	0.013	FL	-0.717	0.0013	0.025	FL	0.760	0.0005	0.04
GA	-0.660	0.0037		GA	-0.644	0.0048		SC	0.704	0.0017	
SC	-0.658	0.0038		SC	-0.629	0.0060		GA	0.695	0.0020	
MS	-0.559	0.0151		MS	-0.578	0.0121		PA	0.583	0.0113	
MA	-0.526	0.0220		PA	-0.507	0.0270		MA	0.582	0.0114	
PA	-0.521	0.0232		MA	-0.503	0.0280		MS	0.567	0.0138	
NY	-0.505	0.0275		NY	-0.490	0.0318		NY	0.556	0.0156	
ОН	-0.482	0.0345		OH	-0.477	0.0362		ОН	0.538	0.0193	
IL	-0.244	0.1907		IL	-0.268	0.1674		IL	0.282	0.1540	
TX	-0.026	0.4631		TX	-0.081	0.3868		TX	0.030	0.4583	
IA	0.064	0.5891		IA	0.026	0.5359		IA	-0.050	0.5697	
NE	0.408	0.9345		NE	0.349	0.8987		NE	-0.432	0.9462	
CA	0.683	0.9975		CA	0.640	0.9949		CA	-0.716	0.9987	
OR	0.722	0.9988		OR	0.694	0.9980		OR	-0.766	0.9996	
WA	0.742	0.9992		WA	0.720	0.9988		WA	-0.812	0.9999	

Table S13. Signatures of range expansion and origin of USA300-NAE with 15 population dataset (all recombinations included).

*FL (latitude: 27.8744, longitude: -82.3551) was best with nonlinear regression of Ψ (r=0. 749, P_{perm}=0.01)