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Abstract 9 

Background: The increasing sequencing data of a wide variety of species offers an opportunity 10 

for copy number variation (CNV) detection at population level. However, the growing sample size 11 

and the divergent complexity of non-human genomes challenge the efficiency and robustness of 12 

the current human-oriented CNV detection methods.  13 

Result: Here we present CNVcaller, a read depth based method for CNV discovering of the 14 

population sequencing data. By the statistics-based signal detection and population-level noise 15 

reduction algorithms, the detection for 232 goats with complicated genome assembly takes only 16 

1.4 days on a single compute node. Besides, the false segmental duplications in reference genome 17 

assemblies can be mitigated by a simplified absolute copy number correction, which consumes 18 

only a few minutes and increases the sensitivity in CNV enriched regions. Multiple validations 19 

showed that CNVcaller achieved increased total sensitivity, high genotyping accuracy and low 20 

false discovery rate in human, livestock and crop populations.  21 

Conclusion: The fast and general detection algorithms of CNVcaller overcome prior 22 

Manuscript Click here to download Manuscript CNVcaller main.docx 
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computational barriers for detecting CNVs from large scale sequencing data with complicated 23 

genome structure. These advantages will promote the population genetic analysis of functional 24 

CNVs of more species. 25 

 26 

Keywords 27 

copy number variation (CNV), next-generation sequencing (NGS), population genetics, segmental 28 

duplication, absolute copy number. 29 

 30 

Introduction 31 

Copy number variants (CNVs) are the prevalent and important source of genetic diversity [1], 32 

which are highly correlated with diseases [2, 3], evolutions [4] and other phenotypes [5-8] for all 33 

kinds of species. Over the development for decades, the large-scale sequencing projects have 34 

provided us with enormous amount of data across the tree of life. The geometric growing sample 35 

size enables the population genetics variant association studies using the CNV regions (CNVRs) 36 

integrated from multi-sample CNVs [9, 10]. However, the increasing data size aggravates 37 

computational burden and challenges the efficiency of the current CNV detectors. In addition, the 38 

complicated genome structure of many non-human species demands more robust signal detection 39 

and noise reduction algorithms. 40 

Currently, several strategies are used to for CNV detecting of whole genome sequencing data: 41 

read-pair/split-read [11-14], local assembly [15-17] and read-depth (RD) [18-20]. Although 42 

employing multiple methods in one dataset can increase the total sensitivity [21], the efficiency 43 

and convenience would consequently become the subsequent concern. With the increasing release 44 
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of large-scale sequencing data, the population genetic information is applied to improve the 45 

detecting accuracy [22]. A typical strategy is to simultaneously scan the genomes of multiple 46 

samples, then decompose all signals into true variations and noises by priori distributions. 47 

Genome STRiP [23] is shown to be one of the best population-level CNV detectors in 1000 48 

Genome Project [24].  49 

Current human-oriented CNV detectors leave some uncertain points for application to the 50 

other species. Firstly, gaps and unplaced scaffolds are riddled with reference genome assemblies 51 

of most non-model organism [25, 26], leading to the increase of the abnormal mapping and the 52 

false positive rate of the read-pair/split-read algorithms. In comparison, the RD algorithm deduces 53 

copy number from the number of reads aligned to of a particular region, which can efficiently 54 

screen out noises by statistical hypothesis [18, 27]. In the RD based methods, CNVnator [19] 55 

which provides multi-sample genotyping function was used in yak, chicken and fish cohorts [28-56 

30]. Secondly, the alternative alleles lead to high-proportioned erroneous segmental duplications 57 

(SDs) for the animal reference genomes [31, 32]. Therefore, intensive filtering of the duplicated 58 

regions on the reference genome is recommended by many CNV detectors. However, the SDs 59 

enrich CNVs 10 times than other area of the genome [4] and contribute to the evolutionary 60 

adaptive traits [33]. A more precise solution is deducing the absolute copy number from mrsFAST 61 

alignment which reports multiple hits of a single read [34]. However, precise realignment always 62 

requires enormous time, especially for the crop plant genomes which frequently contain large 63 

duplicated regions. Therefore, this strategy was hired in very few non-human CNV researches 64 

[35]. 65 

 In this study, we introduce a super-fast and generally applicable method, CNVcaller, for 66 
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CNV discovering sequencing data of large populations. This software is based on the RD 67 

algorithm, and implies robust signal detection and noise deduction methods to increase the 68 

computational efficiency in all kinds of genomes. We applied it to the population sequencing data 69 

of human, livestock and crop to demonstrate the utility and benchmarked against the widely used 70 

and best practice CNV detectors.  71 

 72 

Materials and Methods 73 

Input data 74 

The main input of CNVcaller are the alignment files in BAM format. The following data/samples 75 

were included in the validation: 30 BAM files of human from the 1000 Genome Project Phase 3 76 

[36], including 27 normal (~ 12 X) and three deeply sequenced samples (~ 50 X); 30 BAM files of 77 

10 families from the Genomes of Netherlands (GoNL) project [37] (~ 20 X); 70 FASTQ files of 78 

domestic sheep samples (~ 10 X) from the NCBI BioProject: PRJNA160933; two maize [38] and 79 

two soybeans [8] FASTQ files (each species contain one ~5 X and one ~10 X sample). An 80 

additional table showed the downloaded files in detail (Supplementary Table1).  81 

Another 63 sheep (~10 X) and 232 goats (~12 X) data were sequenced using pair-end 82 

libraries on the Illumina HiSeq 4000 platform. The FASTQ files were aligned to their respective 83 

reference assemblies using BWA 0.7.13 to generate BAM files [35]. The version of reference 84 

genomes are: human GRCh37, maize B73 RefGen_v3, soybean Glycine_max_v2.0, sheep 85 

OAR_v3.1 and goat ARS1. The GATK v3.5 [39] pre-processing workflow is used to produce 86 

analysis-ready BAM files. After alignment, PCR duplications were marked by Picard 2.1 and the 87 
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realignment was performed by GATK. The reads with 0x504 flag (indicating unmapped, 88 

secondary mapped or PCR duplication) were removed. 89 

Individual RD processing 90 

RD Estimation.  The reference genome is segmented into overlapping sliding windows. For 5-10 91 

X sequencing data, 800 bp windows with a 400 bp overlap is recommended. The sliding windows 92 

with gaps are excluded from the computation. The windows are indexed to form a reference database 93 

which will be used in all samples. The BAM file of each individual is parsed out using SAMtools 94 

v1.3 [40]. The raw RD signal is calculated for each window as the number of placed reads with 95 

centers within window boundaries. This step consumes less than 500 Mb max memory for one BAM 96 

file, so parallel submitting is recommended.  97 

 98 

Absolute copy number correction. The standard mapping only aligns one sequencing read to one 99 

best position of the genome. For the regions with more than one assembled copy in reference 100 

genome, the reads will be split among the copies. Therefore, the deduced copy numbers are 101 

dependent to the segment number in reference genome, which is called relative copy number. 102 

CNVcaller implies a simple correction to deduce the copy number independent to the reference 103 

genome, which was called absolute copy number. 104 

To perform the absolute copy number correction, the windows with >97% sequence similarity 105 

are linked together to form a duplicated window record file before correction. This file can be 106 

generated by splitting the reference genome into non-overlapping windows and aligning them 107 

onto the reference genome using the precise aligner, e.g. BLAT v. 36X1 [41]. The windows with 108 
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more than 20 hits are excluded to remove the low complexity regions. The record files of human, 109 

livestock and main crops can be downloaded from the CNVcaller website. 110 

Based on the duplicated window record file, the raw RD located on similar windows are added 111 

together to generate the absolute RD for all the high similarity windows.  112 

1

t
i ij

absolute raw

j

RD RD


  113 

Where i is the index of the window to be corrected, t is the total number of the high similarity 114 

windows. 
ij

rawRD  is the raw RD of the window similar with the i-th window (including the i-th 115 

window itself), which is counted directly from the BWA alignment, and 
i

absoluteRD  is the 116 

corrected RD of the i-th window which can be used to deduce the absolute copy number.  117 

 118 

GC correction and normalization. Since the resequencing samples may show various GC content 119 

distribution, the GC bias is corrected individually basically as CNVnator [19] except using the RD 120 

of the windows with 40% GC as standard: 121 

40i i

corrected absolute
gc

RD
RD RD

RD
  122 

Where i is the window index, 
i

absoluteRD  is the RD after absolute copy number correction, 123 

i

correctedRD  is final corrected RD for the window, 40RD  is the mean RD of windows with 40% 124 

percent GC as standard, and gcRD is the mean RD over all windows that have the same GC 125 

content with the i-th window.  126 

Assuming that the majority part of the genome is in normal copy number, the corrected RDs are 127 

divided by the global median RD to normalized to one. For the sex chromosomes, if the median 128 

RD of the homogametic sex chromosomes (X or Z) is about half of the median RD of autosome, 129 
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the RDs on the X or Z chromosome are doubled before normalization.  130 

 131 

CNVR detection by multiple criteria 132 

Individual candidate CNV window definition. The individual candidate CNV windows are defined 133 

using two criteria: (1) The normalized RD is significantly higher or lower than the normalized 134 

mean RD (deletions < 1 – 2 * STDEV; duplications > 1 + 2 * STDEV). (2) Considering the 135 

normalized RD of heterozygous deletions and duplications should be around 0.5 and 1.5 136 

respectively, an empirical standard for the normalized RD (deletions < 0.65; duplications > 1.35) 137 

also need to be achieved. For some strictly self-bred species, such as soybean and wheat, this 138 

empirical standard should be raised to 0.25 or 1.75 for the normalized RD of the homozygous 139 

deletions or duplications respectively. 140 

 141 

Population-level candidate CNV window definition. All individual RD files are piled up by the 142 

universal window index to a two-dimensional population RD file. The window showing high 143 

frequency of individually candidate CNV (allele frequency >0.05) or have at least three 144 

homozygous duplicated/deleted individuals in large population are selected. Then Pearson's 145 

product–moment correlation coefficients of the multi-sample RDs are calculated between the two 146 

adjacent non-overlapping windows. Only the windows with significant correlation (P<0.01 by T 147 

test) are selected and merged into one call.  148 

 149 

CNV region definition. Initial calls are selected if more than four sequential 800 bp overlapped 150 
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windows (total length >=2,000 bp) are defined as the population-level candidate windows. To 151 

tolerant noises, at most one unselected window out of four continuous candidate windows is 152 

allowed to exist. Then the two adjacent initial calls are further merged if their copy numbers are 153 

highly correlated and the distance between them is less than a certain percent of their own length.  154 

 155 

CNVR Genotyping  156 

The copy number of a specific sample is initially estimated by two times the median RD of all the 157 

candidate windows in this region. The deleted and biallelic duplicated CNVRs (average copy 158 

number <= 4) will be clustered by a constrained mixture Gaussian model embedded in CNVcaller. 159 

This model presets the average copy number of homozygous deletion, heterozygous deletion, 160 

normal, heterozygous deletion and homozygous deletion at zero to four respectively. For 161 

multiallelic CNVRs (average copy number >4) we provide a clustering process by unsupervised 162 

mixture Gaussian model (calling R package mclust 5.2 [42]). In a population, the calls with the 163 

same copy number in all samples are defined as SDs while the polymorphic calls are defined as 164 

CNVRs. The output CNVR genotyping file is analyzable by the population genetic algorithms.  165 

 166 

Performance evaluation 167 

Competing methods. Most validations were based on the 30 human BAM files from the 1000 168 

Genome Project Phase 3 unless otherwise noted. The performance of CNVcaller was compared 169 

with two pipelines: CNVnator_v0.3.3 [19] which was well-used in animal population CNVR 170 
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detection and Genome STRiP (included in svtoolkit_2.00.1696) [23] which was the state-of-the-171 

art human population CNV detector. The recommended parameters and QC filters were used. For 172 

Genome STRiP, both the deletion and CNV pipelines were performed. The unplaced scaffolds 173 

were removed from the reference genome and the whole genome was separated by chromosome 174 

as recommended. The standard screens were applied to select passing sites and remove duplicated 175 

calls. For CNVnator, the gap regions and calls with p values less than 0.01 were removed. We also 176 

used the q0 filter to remove any predictions with q0 <0.5 (reads with multiple mapping locations) 177 

as recommend. The individual CNVs of all sample were merged in to the population CNVRs by 178 

the arbitrary standards: two calls have >50% reciprocal overlapping with each other or >90% of 179 

on one call is covered by another call. Then the CNVRs were genotyped by the built-in function of 180 

CNVnator. Because the three software have different limitations in CNV detection, only the 181 

CNVRs on autosomes with >2,000 bp length and allele frequency >=0.05 were used in the 182 

following validation.  183 

 184 

Sensitivity validation. Sensitivity was calculated as the proportion of high-confident CNVR 185 

database overlapped by predicted CNVRs. Two previously published database including the same 186 

samples in the test data were used. One is the 1000 Genome Project CNVR map [24] included 26 187 

tested samples, the other is the array comparative genomic hybridization, (aCGH) based CNVR 188 

database [43] included 10 tested samples. The CNVRs of the specific samples were extracted from 189 

the database then screened by the same length and frequency as detected CNVRs (length >2,000 190 

bp and alternative allele frequency >=0.05). The intersected length of the predicted CNVRs and 191 

the high-confident CNVR database were calculated by the bedtools v2.25.0 [44].  192 
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 193 

Accuracy validation using human database. The intensity rank-sum (IRS) test (included in the 194 

svtoolkit_2.00.1696) was performed based on the intensity data of the Affymetrix SNP 6.0 array 195 

including 26 test samples. SD regions were removed as [23] because the probe design does not 196 

cover the high similarity regions. The genotyping accuracy were calculated based on the aCGH 197 

CNVR database [43]. For a detected CNVR has >90% overlap with the database, the predicted 198 

copy number showed exact agreement with the integer genotyping from aCGH database were 199 

defined as correct. The Mendelian inconsistencies were calculated from the deleted and biallelic 200 

duplicated CNVRs (average copy number < 4) in the Dutch families and sheep trios.  201 

 202 

Sheep genotyping validation by CNVplex assay. A total of 73 sheep including Merino, Texel, 203 

Mongolia and Tibetan sheep were used for genotyping validation. Genomic DNA was extracted 204 

from the peripheral blood using the QIAamp DNA blood mini kit (Qiagen, Germany). ~10 X 205 

resequencing was performed for each sheep and the CNVRs were detected by CNVcaller as 206 

described above. The predicted CNVRs with high variation frequency were selected for the 207 

validation. The copy numbers were validated by CNVplex® (Genesky Biotechnologies Inc., 208 

Shanghai, China), which is based on double ligation and multiplex fluorescence PCR [45]. The 209 

probes were designed to target the candidate windows of the target CNVR. The sizes of the PCR 210 

fragments and target loci sequences in each reaction are listed in Supplementary Table 2. 211 

Amplified probes were detected as fluorescent signals and peak areas were compared and 212 

normalized to determine the dosage of each target. 213 

 214 
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Absolute copy number validation 215 

Putative X-linked scaffolds. All the scaffolds of OAR v3.1 were mapped to the X chromosome of 216 

sheep reference genome OAR v4.0, goat reference genome ARS1, and cattle reference genome 217 

UMD 3.1 using BLASR [46]. If the best hit of a scaffold had a coverage >50% with >90% identity 218 

and >3 Kb length, this scaffold was defined as the putative X-linked scaffold.  219 

 220 

mrsFAST alignment. The pair-end reads with multiple hits indicated by the XA tag in BWA 221 

alignment were selected to realign by mrsFAST_v3.3.10 [34]. The mrsFAST alignment was 222 

performed basically as previously described [47]. Longer reads were trimmed into 40 bp to reduce 223 

the read length heterogeneity prior to sequence alignments. After alignment, the reads with more 224 

than 20 mapped hits were excluded to remove the low complexity regions.  225 

 226 

Results 227 

Overview of CNVcaller algorithm 228 

CNVcaller pipeline includes three main steps (Figure 1). First, considering the population 229 

sequencing data may come from different platforms, the RD of each sample is counted and 230 

corrected individually. An original absolute copy number correction is used to modify the standard 231 

read alignments generated by BWA software to multi-hit alignments, as similar to mrsFAST 232 

format (Supplementary Figure 1). This correction takes only 0.06 core-hour for a mammalian 233 

genome with 10 X sequencing coverage, while 10 core-hours are needed for remapping the reads 234 

by mrsFAST. After corrections and normalization, the comparable RDs of each sample is 235 
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concentrated to a ~100 Mb intermediate file and output. This design avoids repeat calculation of a 236 

same individual in different populations, and save much time since the individual step consumes 237 

more than 80% of the total running time. 238 

In the second CNVR detection step, the RD files of all samples are piled up into a two-239 

dimensional population RD file. Multi-criteria are implied to remove the high-proportional noise 240 

caused by low sequencing quality or assembly bias. Individually, the RD of the candidate CNV 241 

window should significantly deviates from average. The piled-up candidate windows should also 242 

meet two population-level criteria: CNV allele frequency > 5% and the multi-sample RDs of 243 

adjacent windows are significantly correlated (Figure 1). Compared with intensified individual 244 

RD screening, the multi-criteria filtering preserves heterozygous CNVs with half RD value of the 245 

homozygous CNVs.  246 

After merging the candidate CNV windows into a CNVR, the RDs of all samples in each 247 

CNVR are clustered by the mixture Gaussian model and deducing the integer copy number of 248 

each individual. This step is called genotyping as used in SNP detection. The final output is 249 

compatible with most SNP based population genetic algorithm. 250 

Computational cost  251 

The robustness of CNVcaller was validated by the real sequencing data of different genomes. The 252 

individual RD processing step of CNVcaller was compared against CNVnator, which also detects 253 

CNVs individually. The processing time of CNVcaller was linear related to the genome size and 254 

sequencing coverage: 20-40 minutes for a 3 Gb genome with 10 X coverage (Supplementary 255 

Table 3). However, the processing time of CNVnator rose exponentially with the scaffold number, 256 
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which became the only index of time consuming when the scaffold number exceeds one thousand 257 

(Figure 2A). Consequently, CNVcaller achieved 145 fold speed increasing over CNVnator for 258 

goat CNV detection. Noteworthy, the goat reference genome ARS1 which contains nearly 30 259 

thousand scaffolds was newly assembled by single-molecule sequencing platform [48]. 260 

The memory requirement of CNVcaller is extremely low and mainly related to the genome size: 261 

only about 500 Mb for a mammalian genome, which was less than one twentieth of CNVnator 262 

(Figure 2B). Therefore, in multi-sample CNV detection, more than 20 missions of the individual 263 

RD processing step can be run in parallel on one node to further increase the population CNVR 264 

detection efficiency. The population-level performance of CNVcaller was evaluated and 265 

benchmarked by Genome STRiP which also detects CNVRs at population level. After removing 266 

the unplaced scaffolds, CNVcaller was still 3.5-7.8 times faster than Genome STRiP (Figure 2C), 267 

with 70% ~86% reduction in memory requirement (Figure 2D). The CNV detection of 232 goats 268 

with mean 12 X coverage can be completed in 1.4 days by CNVcaller on one node.  269 

Sensitivity and accuracy  270 

A total of 1,058 CNVRs with a total length of 24.5 Mb were detected by CNVcaller from a 30 271 

human cohort, 20% longer than CNVnator, and twice of Genome STRiP. CNVcaller covered 43% 272 

of the CNVRs detected by CNVnator, 65% of Genome STRiP and 76% of their intersection 273 

(Figure 3A), indicating CNVcaller has higher sensitivity for the cross validated CNVRs. We also 274 

compared the CNVRs identified by CNVcaller from worldwide 133 sheep of 44 breeds with the 275 

other two recently released large scale sheep CNVR datasets. One is derived from a small 276 

pedigrees using multiple platforms including aCGH, SNP chip and whole genome sequence [49], 277 
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the other is based on three Chinese sheep breeds and 600K SNP array [50]. Although based on 278 

different technologies and breeds, CNVcaller still covers 51% of their intersection (Figure 3B).  279 

The 1000 Genome Project samples with experimental validated CNV database was mainly used 280 

to evaluate the sensitivity and accuracy of CNVcaller and other two methods. The sensitivity was 281 

estimated as the proportion of high-confident CNV database overlapped by predicted CNVs 282 

(Table 1). Based on the aCGH database [43], the sensitivity of CNVcaller was 13%-18% higher 283 

than the other two methods. Even based on the 1000 Genome Project CNV maps which was 284 

constructed by multiple methods including the Genome STRiP and CNVnator [24], CNVcaller 285 

still achieved higher sensitivity than other software.  286 

False discovery rate (FDR) on human genome was estimated by multiple strict sample specific 287 

methods (Table 1). (1) IRS test based on the intensity data of the SNP array; (2) the integer copy 288 

numbers in aCGH database; (3) the Mendelian inconsistencies from 10 Dutch families. For the 289 

three CNV detectors, Genome STRiP achieved the best accuracy (0.8% - 3.9%) in all the human 290 

based validations, and a little higher Mendelian inconsistencies (5.2%) in the three sheep trios. 291 

CNVcaller had median FDR (2.8% - 5.4%) in human validations, however, it achieved the best 292 

accuracy (2.4% Mendelian inconsistencies) in the three sheep trios, indicating its superiority in 293 

non-human genomes. To evaluate the genotyping accuracy, we turned to a recently developed 294 

molecular biology technique, CNVplex, which counts the copy number of a genomic sequence 295 

based on the multiplex ligation-dependent probe amplification (MLPA) method [45]. When we 296 

compared the copy numbers predicted by CNVcaller from sequencing data and the CNVplex 297 

result, the Pearson's product–moment correlation coefficients were higher than 0.95, and the 298 

integer genotype concordance was 98% (Figure 4). 299 
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The absolute copy number correction in duplicated region of the reference 300 

genome 301 

Compared with human, the sheep sample had much lower copy numbers in putative duplicated 302 

regions than expected (Figure 5A), indicating the sequencing reads were split among the false 303 

duplications as previous reported on other animal genome assemblies [31]. This bias leaded the 304 

raw copy number distribution of the putative two-copy segment duplications peak at one (Figure 305 

5B), thus most of these windows were likely to be mistaken for heterozygote deletions. After 306 

absolute copy number correction (Figure 1), the copy number distribution was more reasonable: 307 

the main peak shift to around two (normal biallelic copy number), and the smaller peaks around 308 

one and four indicated the detectable heterozygous deletions and duplications respectively (Figure 309 

5B). Because this correction preserves the complicated regions and the multi-hit reads, CNVcaller 310 

increased the sensitivity of SD region about six time than the other two methods. Moreover, it is 311 

more reasonable for most CNVs in SD regions were genotyped as duplications instead of deletions 312 

(Figure 5C). 313 

The detection and genotyping accuracy in SD region were further estimated by the sex 314 

information of 133 sheep. We first defined 138 unplaced scaffolds with high sequence similarity to 315 

X chromosome as X-linked scaffolds. In theory, all these scaffolds were expected to be detected as 316 

high frequency CNVRs because the RDs of unplaced scaffolds were not corrected by sex. 317 

CNVcaller detected 101 out of the 138 X-linked scaffolds with a sensitivity of 73%, while 318 

CNVnator did not catch any of these regions. The corrected copy number of these scaffold 319 

centralized at one and two in rams and doubled in ewes indicating the unique and duplicated X-320 
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linked regions. However, the peaks of raw copy numbers were ambiguous and not at integer 321 

(Figure 5D). Further examination of the duplicated regions showed the higher divergence was 322 

caused by splitting of raw RDs among the mistaken-assembly segments (Supplementary Figure 323 

2).  324 

 325 

Discussion 326 

CNVcaller was designed to detect the CNVRs from large scale resequencing data of all kinds of 327 

genomes. It takes full consideration of the complexity of genome, and implies several general 328 

applicable signal detection and noise deduction algorithms to increase the computational 329 

efficiency. The detection of 232 individuals can be complete on one compute note within two 330 

days, and this speed up does not compromise the accuracy. Meanwhile, validated through multiple 331 

rigorous assessment, CNVcaller increased the sensitivity by 13%-18% with a low FDR in human 332 

and non-human species. 333 

The statistics-based detection algorithm of CNVcaller assumes a true CNV signal can be 334 

interrupted with high ratio of noise, while the segmentation algorithms assume that the RD signal 335 

is basically piecewise constant in the genome sequence. The formal model is universally 336 

applicable to high quality as well as fragmented genomes. Therefore, the speed of CNVcaller is 337 

still fast with thousands of scaffolds, which is common in non-human reference genome 338 

assemblies. The robustness of CNVcaller reduces the restrictions of the reference genome, which 339 

will promote CNV research of the species with only scaffold level reference genome assemblies. 340 

More importantly, this feature enables the comprehensive variation discoveries using multiple 341 
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assemblies or pan-genomes. Defined as the entire set of genes possessed by all members of a 342 

particular species, pan-genomes reveal numerous functional important genes unplaced on one 343 

single reference genome [50-52]. However, its complexity and diversity hinder the application of 344 

almost all CNV detectors. Up on our unpublished data, CNVcaller is efficient and friendly to 345 

detect the present/absent variations for pan-genomes. 346 

Another optimization of CNVcaller is the simplified absolute copy number correction. 347 

Although absolute copy number can reduce the bias of misassembled duplications in non-human 348 

genomes, conventional solution requires mapping the sequencing reads of each individual by 349 

time-consuming precise aligner. CNVcaller simplifies the calculation by generating a duplicated 350 

window record file through one precise alignment of the reference genome (the duplicated 351 

window record file of the latest reference genome of human, livestock and main crops can be 352 

downloaded from website), then the standard alignment of all samples can be corrected with high 353 

speed. In this way, the misassembled duplications can be mitigated with a great reduction of 354 

running time. Validation of sheep genomes showed this correction multiplied the detection 355 

efficiency of SD regions, and deduced the more reasonable copy numbers.  356 

 Several limitations still exist in CNVcaller pipeline. First, population level criteria are used to 357 

screen out the low frequency and uncorrelated windows. Therefore, CNVcaller is not suitable for 358 

detection of rare CNVs, however, the influence is much less on GWAS which also has low power 359 

to capture rare functional variants [51]. Besides, the RD algorithm has disadvantage in short CNV 360 

detection and breakpoint definition. The visual examination for the specific interval using IGV 361 

[52] or combined with other CNV detection methods can improve the results. In the latter 362 

situation, CNVcaller can provide high-confidence RD information as solid prior for the read 363 
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pair/split read pipeline [53].  364 

In summary, CNVcaller offers a fast and robust pipeline to detect CNVRs from population-365 

scale resequencing data. The high computational efficiency reduces the hardware requirements 366 

and facilitates the CNVR detection of large populations. The general applicable detection and 367 

correction algorithms have greatly increased the sensitivity in non-model species and enabled the 368 

CNV detection for a wide range of species. The rapid and reliable population-level CNV detection 369 

will promote the discovery of the missing heritability of complex traits and accurately 370 

determination of the causative mutations for more species.  371 

 372 

Availability and requirements 373 

Project name: CNVcaller 374 

Project home page: http://animal.nwsuaf.edu.cn/software 375 

https://github.com/JiangYuLab/CNVcaller 376 

Operating system(s): platform independent 377 

Programming language: Perl, C++ 378 

Other requirements: Samtools 1.3 (using htslib 1.3) 379 

 License: GNU General Public License, version 3.0 (GPL-3.0) 380 
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  553 

Figure Legends 554 

Figure 1 CNVcaller algorithm flowchart (left) and the key algorithms of each step (right). (1) 555 

Individually RD processing. In the absolute copy number correction, the RDs of high similar 556 

windows are added together to deduce the absolute copy number. (2) Multi-criteria CNVR 557 

selection. Curves show copy numbers in a specific region for multiple samples. Blue transverse 558 
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boxes mark the windows with significantly distinguish copy number from the average (individual 559 

criterion). Green vertical boxes indicate regions with the CNV allele frequency >5% in a specific 560 

region, and red frame indicates the RDs between two adjacent windows are significantly 561 

correlated (population criteria). Only the region with continuous high CNV allele frequency and 562 

high correlation (the forth bar from the left) are selected as the CNVRs. (3) Genotyping: The copy 563 

numbers in each CNVR are clustered by mixture Gaussian model to distinguish the normal, 564 

heterozygous and homozygous samples. 565 

 566 

Figure 2 Computational performance of CNVcaller, CNVnator and Genome STRiP. All the 567 

programs were executed on one node with two 2.40-GHz Intel Xeon E5-2620 v3 processors. (A, 568 

B) Log plots of processing time (A) and max memory (B) for one individual. The numbers of 569 

unplaced scaffolds of the reference genome are indicated in brackets. The processing time was 570 

normalized by genome size and sequencing coverage to simulate a 3 Gb genome with 5 X or 10 X 571 

sequencing coverage. (C, D) Log plots of total running time (C) and max memory (D) of 572 

population CNVR detection. The test cohorts are: 8 sheep, 30 humans and 232 goats with 19 X, 16 573 

X and 12 X average sequencing coverage respectively. In Genome STRiP running, the unplaced 574 

scaffolds were removed from the reference genome. 575 

 576 

Figure 3 Overlap of the CNVRs detected by CNVcaller and other approaches/platforms (A) 577 

Intersection of the CNVRs detected by CNVcaller, CNVnator and Genome STRiP based on the 578 

same 30 human data. (B) Intersection of the CNVRs detected by CNVcaller and two other large 579 

scale sheep CNVR studies.  580 
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 581 

Figure 4 Evaluation of CNV genotypes by CNVplex. Two duplicated (A, B) and two deleted (C, 582 

D) CNVRs with high variation frequency were typed in CNVplex in 73 sheep samples. The copy 583 

number genotypes predicted by CNVcaller from sequencing data were plotted against the 584 

measurements from CNVplex of the same animal.  585 

 586 

Figure 5 Absolute copy number correction in sheep genome. (A) The copy numbers of all 587 

windows with no more than six repeats were plotted against the repeat numbers in reference 588 

genome. (B) Distribution of copy numbers of two-copy loci in sheep genome before and after 589 

absolute copy number correction. (C) The detected CNVRs resided in SD regions. The sheep SD 590 

regions include the regions longer than 2 Kb with >97% identity. The CNVRs resided in SD 591 

regions were defined if more than 50% of this CNVR was overlapped with the SD regions. (D) 592 

The raw and corrected copy numbers of all X-linked scaffolds of 133 sheep. 593 

 594 
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Table 1. Sensitivity and FDR of CNVcaller, CNVnator and Genome STRiP.  

Methods 

Estimated sensitivity   Estimated FDR 

aCGH 1000 GP   IRS 
CGH 

Genotype 

Mendelian 

error Human* 

Mendelian 

error Sheep* 

CNVcaller 45.4% 56.1%  4.1% 5.4% 2.8% 2.4% 

CNVnator 32.6% 51.7%  11.4% 5.4% 5.5% 3.7% 

Genome STRiP 27.2% 50.4%   3.9% 2.2% 0.8% 5.2% 

*The Mendelian errors in human and sheep were calculated based on 10 Dutch families and three 

sheep trios respectively. Other evaluations were based on 30 human BAM files downloaded from 

1000 genome project.  
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