GigaScience

CNVcaller: High efficient and Widely Applicable Software for Detecting Copy Number Variations in large Populations --Manuscript Draft--

Manuscript Number:	GIGA-D-17-00119	
Full Title:	CNVcaller: High efficient and Widely Applic Variations in large Populations	able Software for Detecting Copy Number
Article Type:	Research	
Funding Information:	National Natural Science Foundation of China (31572381)	Prof. Yu Jiang
	National Thousand Youth Talents Plan	Prof. Yu Jiang
Abstract:	Background: The increasing sequencing da opportunity for copy number variation (CNV the growing sample size and the divergent challenge the efficiency and robustness of methods. Result: Here we present CNVcaller, a read of the population sequencing data. By the se population-level noise reduction algorithms complicated genome assembly takes only Besides, the false segmental duplications in mitigated by a simplified absolute copy num minutes and increases the sensitivity in CN showed that CNVcaller achieved increased and low false discovery rate in human, lives Conclusion: The fast and general detection computational barriers for detecting CNV fr complicated genome structure. These adva analysis of functional CNVs of more specie	 detection at population level. However, complexity of non-human genomes the current human-oriented CNV detection depth based method for CNVs discovering statistics-based signal detection and the detection for 232 goats with 1.4 days on a single compute node. n reference genome assemblies can be aber correction, which consumes only a few V enriched regions. Multiple validations total sensitivity, high genotyping accuracy stock and crop populations. algorithms of CNVcaller overcome prior om large scale sequencing data with intages will promote the population genetic
Corresponding Author:	Yu Jiang, Ph.D Northwest Agriculture and Forestry University Yangling, Shaanxi CHINA	ity
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Northwest Agriculture and Forestry University	ity
Corresponding Author's Secondary Institution:		
First Author:	Xihong Wang	
First Author Secondary Information:		
Order of Authors:	Xihong Wang	
	Zhuqing Zheng	
	Yudong Cai	
	Ting Chen	
	Chao Li	
	Weiwei Fu	
	Yu Jiang	
Order of Authors Secondary Information:		
Opposed Reviewers:		

Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our <u>Minimum Standards Reporting Checklist</u> . Information essential to interpreting the data presented should be made available in the figure legends. Have you included all the information	
requested in your manuscript?	
Resources A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.	Yes
Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	

1 2	1	CNVcaller: High Efficient and Widely Applicable Software for
3 4	2	Detecting Copy Number Variations in large Populations
5 6 7	3	
8 9 10	4	Xihong Wang ^{1†} , Zhuqing Zheng ^{1†} , Yudong Cai ¹ , Ting Chen ¹ , Chao Li ¹ , Weiwei Fu ¹ , Yu Jiang ^{1*}
11 12 13	5	1 College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi,
14 15 16	6	China
17 18	7	† These authors contributed equally to this work.
19 20 21	8	*Correspondence should be addressed to Yu Jiang (yu.jiang@nwafu.edu.cn).
22 23 24	9	Abstract
25 26 27	10	Background: The increasing sequencing data of a wide variety of species offers an opportunity
28 29	11	for copy number variation (CNV) detection at population level. However, the growing sample size
30 31 32	12	and the divergent complexity of non-human genomes challenge the efficiency and robustness of
33 34 35	13	the current human-oriented CNV detection methods.
36 37 38	14	Result: Here we present CNV caller, a read depth based method for CNV discovering of the
39 40	15	population sequencing data. By the statistics-based signal detection and population-level noise
41 42 43	16	reduction algorithms, the detection for 232 goats with complicated genome assembly takes only
44 45 46	17	1.4 days on a single compute node. Besides, the false segmental duplications in reference genome
47 48	18	assemblies can be mitigated by a simplified absolute copy number correction, which consumes
49 50 51	19	only a few minutes and increases the sensitivity in CNV enriched regions. Multiple validations
52 53 54	20	showed that CNVcaller achieved increased total sensitivity, high genotyping accuracy and low
55 56 57	21	false discovery rate in human, livestock and crop populations.
57 58 59 60	22	Conclusion: The fast and general detection algorithms of CNVcaller overcome prior
61 62		1

23	computational barriers for detecting CNVs from large scale sequencing data with complicated
24	genome structure. These advantages will promote the population genetic analysis of functional
25	CNVs of more species.
26	
27	Keywords
28	copy number variation (CNV), next-generation sequencing (NGS), population genetics, segmental
29	duplication, absolute copy number.
30	
31	Introduction
32	Copy number variants (CNVs) are the prevalent and important source of genetic diversity [1],
33	which are highly correlated with diseases [2, 3], evolutions [4] and other phenotypes [5-8] for all
34	kinds of species. Over the development for decades, the large-scale sequencing projects have
35	provided us with enormous amount of data across the tree of life. The geometric growing sample
36	size enables the population genetics variant association studies using the CNV regions (CNVRs)
37	integrated from multi-sample CNVs [9, 10]. However, the increasing data size aggravates
38	computational burden and challenges the efficiency of the current CNV detectors. In addition, the
39	complicated genome structure of many non-human species demands more robust signal detection
40	and noise reduction algorithms.
41	Currently, several strategies are used to for CNV detecting of whole genome sequencing data:
42	read-pair/split-read [11-14], local assembly [15-17] and read-depth (RD) [18-20]. Although
43	employing multiple methods in one dataset can increase the total sensitivity [21], the efficiency
44	and convenience would consequently become the subsequent concern. With the increasing release
	2

of large-scale sequencing data, the population genetic information is applied to improve the detecting accuracy [22]. A typical strategy is to simultaneously scan the genomes of multiple samples, then decompose all signals into true variations and noises by priori distributions. Genome STRiP [23] is shown to be one of the best population-level CNV detectors in 1000 Genome Project [24]. Current human-oriented CNV detectors leave some uncertain points for application to the other species. Firstly, gaps and unplaced scaffolds are riddled with reference genome assemblies of most non-model organism [25, 26], leading to the increase of the abnormal mapping and the false positive rate of the read-pair/split-read algorithms. In comparison, the RD algorithm deduces copy number from the number of reads aligned to of a particular region, which can efficiently screen out noises by statistical hypothesis [18, 27]. In the RD based methods, CNVnator [19] which provides multi-sample genotyping function was used in yak, chicken and fish cohorts [28-30]. Secondly, the alternative alleles lead to high-proportioned erroneous segmental duplications (SDs) for the animal reference genomes [31, 32]. Therefore, intensive filtering of the duplicated regions on the reference genome is recommended by many CNV detectors. However, the SDs enrich CNVs 10 times than other area of the genome [4] and contribute to the evolutionary adaptive traits [33]. A more precise solution is deducing the absolute copy number from mrsFAST alignment which reports multiple hits of a single read [34]. However, precise realignment always requires enormous time, especially for the crop plant genomes which frequently contain large duplicated regions. Therefore, this strategy was hired in very few non-human CNV researches [35]. In this study, we introduce a super-fast and generally applicable method, CNV caller, for

67	CNV discovering sequencing data of large populations. This software is based on the RD
68	algorithm, and implies robust signal detection and noise deduction methods to increase the
69	computational efficiency in all kinds of genomes. We applied it to the population sequencing data
70	of human, livestock and crop to demonstrate the utility and benchmarked against the widely used
71	and best practice CNV detectors.
72	
73	Materials and Methods
74	Input data
75	The main input of CNV caller are the alignment files in BAM format. The following data/samples
76	were included in the validation: 30 BAM files of human from the 1000 Genome Project Phase 3
77	[36], including 27 normal (~ 12 X) and three deeply sequenced samples (~ 50 X); 30 BAM files of
78	10 families from the Genomes of Netherlands (GoNL) project [37] (~ 20 X); 70 FASTQ files of
79	domestic sheep samples (~ 10 X) from the NCBI BioProject: PRJNA160933; two maize [38] and
80	two soybeans [8] FASTQ files (each species contain one \sim 5 X and one \sim 10 X sample). An
81	additional table showed the downloaded files in detail (Supplementary Table1).
82	Another 63 sheep (~10 X) and 232 goats (~12 X) data were sequenced using pair-end
83	libraries on the Illumina HiSeq 4000 platform. The FASTQ files were aligned to their respective
84	reference assemblies using BWA 0.7.13 to generate BAM files [35]. The version of reference
85	genomes are: human GRCh37, maize B73 RefGen_v3, soybean Glycine_max_v2.0, sheep
86	OAR_v3.1 and goat ARS1. The GATK v3.5 [39] pre-processing workflow is used to produce
87	analysis-ready BAM files. After alignment, PCR duplications were marked by Picard 2.1 and the
	4

88 realignment was performed by GATK. The reads with 0x504 flag (indicating unmapped,

89 secondary mapped or PCR duplication) were removed.

90 Individual RD processing

RD Estimation. The reference genome is segmented into overlapping sliding windows. For 5-10
92 X sequencing data, 800 bp windows with a 400 bp overlap is recommended. The sliding windows
93 with gaps are excluded from the computation. The windows are indexed to form a reference database
94 which will be used in all samples. The BAM file of each individual is parsed out using SAMtools
95 v1.3 [40]. The raw RD signal is calculated for each window as the number of placed reads with
96 centers within window boundaries. This step consumes less than 500 Mb max memory for one BAM
97 file, so parallel submitting is recommended.

Absolute copy number correction. The standard mapping only aligns one sequencing read to one
best position of the genome. For the regions with more than one assembled copy in reference
genome, the reads will be split among the copies. Therefore, the deduced copy numbers are
dependent to the segment number in reference genome, which is called relative copy number.
CNVcaller implies a simple correction to deduce the copy number independent to the reference
genome, which was called absolute copy number.

To perform the absolute copy number correction, the windows with >97% sequence similarity
are linked together to form a duplicated window record file before correction. This file can be
generated by splitting the reference genome into non-overlapping windows and aligning them
onto the reference genome using the precise aligner, e.g. BLAT v. 36X1 [41]. The windows with

110 livestock and main crops can be downloaded from the CNVcaller website.

111 Based on the duplicated window record file, the raw RD located on similar windows are added

together to generate the absolute RD for all the high similarity windows.

113
$$RD_{absolute}^{i} = \sum_{j=1}^{t} RD_{raw}^{ij}$$

114 Where i is the index of the window to be corrected, t is the total number of the high similarity 115 windows. RD_{raw}^{ij} is the raw RD of the window similar with the i-th window (including the i-th 116 window itself), which is counted directly from the BWA alignment, and $RD_{absolute}^{i}$ is the

117 corrected RD of the i-th window which can be used to deduce the absolute copy number.

GC correction and normalization. Since the resequencing samples may show various GC content
distribution, the GC bias is corrected individually basically as CNVnator [19] except using the RD
of the windows with 40% GC as standard:

$$RD^{i}_{corrected} = \frac{RD_{40}}{RD_{ac}} RD^{i}_{absolute}$$

123 Where i is the window index, $RD_{absolute}^{i}$ is the RD after absolute copy number correction, 124 $RD_{corrected}^{i}$ is final corrected RD for the window, \overline{RD}_{40} is the mean RD of windows with 40% 125 percent GC as standard, and \overline{RD}_{gc} is the mean RD over all windows that have the same GC 126 content with the i-th window.

Assuming that the majority part of the genome is in normal copy number, the corrected RDs aredivided by the global median RD to normalized to one. For the sex chromosomes, if the median

RD of the homogametic sex chromosomes (X or Z) is about half of the median RD of autosome,

the RDs on the X or Z chromosome are doubled before normalization.

132 CNVR detection by multiple criteria

133	Individual candidate CNV window definition. The individual candidate CNV windows are defined
134	using two criteria: (1) The normalized RD is significantly higher or lower than the normalized
135	mean RD (deletions $< 1 - 2 * STDEV$; duplications $> 1 + 2 * STDEV$). (2) Considering the
136	normalized RD of heterozygous deletions and duplications should be around 0.5 and 1.5
137	respectively, an empirical standard for the normalized RD (deletions < 0.65 ; duplications > 1.35)
138	also need to be achieved. For some strictly self-bred species, such as soybean and wheat, this
139	empirical standard should be raised to 0.25 or 1.75 for the normalized RD of the homozygous
140	deletions or duplications respectively.
141	
142	Population-level candidate CNV window definition. All individual RD files are piled up by the
143	universal window index to a two-dimensional population RD file. The window showing high
144	frequency of individually candidate CNV (allele frequency >0.05) or have at least three
145	homozygous duplicated/deleted individuals in large population are selected. Then Pearson's
146	product-moment correlation coefficients of the multi-sample RDs are calculated between the two
147	adjacent non-overlapping windows. Only the windows with significant correlation (P<0.01 by T $$
148	test) are selected and merged into one call.
149	
150	CNV region definition. Initial calls are selected if more than four sequential 800 bp overlapped

windows (total length >=2,000 bp) are defined as the population-level candidate windows. To tolerant noises, at most one unselected window out of four continuous candidate windows is allowed to exist. Then the two adjacent initial calls are further merged if their copy numbers are highly correlated and the distance between them is less than a certain percent of their own length. **CNVR** Genotyping The copy number of a specific sample is initially estimated by two times the median RD of all the candidate windows in this region. The deleted and biallelic duplicated CNVRs (average copy number $\langle = 4 \rangle$ will be clustered by a constrained mixture Gaussian model embedded in CNVcaller. This model presets the average copy number of homozygous deletion, heterozygous deletion, normal, heterozygous deletion and homozygous deletion at zero to four respectively. For multiallelic CNVRs (average copy number >4) we provide a clustering process by unsupervised mixture Gaussian model (calling R package mclust 5.2 [42]). In a population, the calls with the same copy number in all samples are defined as SDs while the polymorphic calls are defined as

165 CNVRs. The output CNVR genotyping file is analyzable by the population genetic algorithms.

Performance evaluation

Competing methods. Most validations were based on the 30 human BAM files from the 1000
Genome Project Phase 3 unless otherwise noted. The performance of CNVcaller was compared
with two pipelines: CNVnator v0.3.3 [19] which was well-used in animal population CNVR

171	detection and Genome STRiP (included in svtoolkit_2.00.1696) [23] which was the state-of-the-
172	art human population CNV detector. The recommended parameters and QC filters were used. For
173	Genome STRiP, both the deletion and CNV pipelines were performed. The unplaced scaffolds
174	were removed from the reference genome and the whole genome was separated by chromosome
175	as recommended. The standard screens were applied to select passing sites and remove duplicated
176	calls. For CNVnator, the gap regions and calls with p values less than 0.01 were removed. We also
177	used the q0 filter to remove any predictions with q0 <0.5 (reads with multiple mapping locations)
178	as recommend. The individual CNVs of all sample were merged in to the population CNVRs by
179	the arbitrary standards: two calls have >50% reciprocal overlapping with each other or >90% of
180	on one call is covered by another call. Then the CNVRs were genotyped by the built-in function of
181	CNVnator. Because the three software have different limitations in CNV detection, only the
182	CNVRs on autosomes with $>2,000$ bp length and allele frequency $>=0.05$ were used in the
183	following validation.
184	
185	Sensitivity validation. Sensitivity was calculated as the proportion of high-confident CNVR
186	database overlapped by predicted CNVRs. Two previously published database including the same
187	samples in the test data were used. One is the 1000 Genome Project CNVR map [24] included 26
188	tested samples, the other is the array comparative genomic hybridization, (aCGH) based CNVR
189	database [43] included 10 tested samples. The CNVRs of the specific samples were extracted from
190	the database then screened by the same length and frequency as detected CNVRs (length >2,000
191	bp and alternative allele frequency \geq =0.05). The intersected length of the predicted CNVRs and
192	the high-confident CNVR database were calculated by the bedtools v2.25.0 [44].
	9

194	Accuracy validation using human database. The intensity rank-sum (IRS) test (included in the
195	svtoolkit_2.00.1696) was performed based on the intensity data of the Affymetrix SNP 6.0 array
196	including 26 test samples. SD regions were removed as [23] because the probe design does not
197	cover the high similarity regions. The genotyping accuracy were calculated based on the aCGH
198	CNVR database [43]. For a detected CNVR has >90% overlap with the database, the predicted
199	copy number showed exact agreement with the integer genotyping from aCGH database were
200	defined as correct. The Mendelian inconsistencies were calculated from the deleted and biallelic
201	duplicated CNVRs (average copy number < 4) in the Dutch families and sheep trios.
202	
203	Sheep genotyping validation by CNVplex assay. A total of 73 sheep including Merino, Texel,
204	Mongolia and Tibetan sheep were used for genotyping validation. Genomic DNA was extracted
205	from the peripheral blood using the QIA amp DNA blood mini kit (Qiagen, Germany). ~10 X $$
206	resequencing was performed for each sheep and the CNVRs were detected by CNVcaller as
207	described above. The predicted CNVRs with high variation frequency were selected for the
208	validation. The copy numbers were validated by CNVplex® (Genesky Biotechnologies Inc.,
209	Shanghai, China), which is based on double ligation and multiplex fluorescence PCR [45]. The
210	probes were designed to target the candidate windows of the target CNVR. The sizes of the PCR
211	fragments and target loci sequences in each reaction are listed in Supplementary Table 2.
212	Amplified probes were detected as fluorescent signals and peak areas were compared and
213	normalized to determine the dosage of each target.
214	
	10

Absolute copy number validation

216	Putative X-linked scaffolds. All the scaffolds of OAR v3.1 were mapped to the X chromosome of
217	sheep reference genome OAR v4.0, goat reference genome ARS1, and cattle reference genome
218	UMD 3.1 using BLASR [46]. If the best hit of a scaffold had a coverage >50% with >90% identity
219	and >3 Kb length, this scaffold was defined as the putative X-linked scaffold.
220	
221	mrsFAST alignment. The pair-end reads with multiple hits indicated by the XA tag in BWA
222	alignment were selected to realign by mrsFAST_v3.3.10 [34]. The mrsFAST alignment was
223	performed basically as previously described [47]. Longer reads were trimmed into 40 bp to reduce
224	the read length heterogeneity prior to sequence alignments. After alignment, the reads with more
225	than 20 mapped hits were excluded to remove the low complexity regions.
226	
227	Results
228	Overview of CNVcaller algorithm
229	CNVcaller pipeline includes three main steps (Figure 1). First, considering the population
230	sequencing data may come from different platforms, the RD of each sample is counted and
231	corrected individually. An original absolute copy number correction is used to modify the standard
232	read alignments generated by BWA software to multi-hit alignments, as similar to mrsFAST

- **233** format (**Supplementary Figure 1**). This correction takes only 0.06 core-hour for a mammalian
- genome with 10 X sequencing coverage, while 10 core-hours are needed for remapping the reads
- by mrsFAST. After corrections and normalization, the comparable RDs of each sample is

concentrated to a ~100 Mb intermediate file and output. This design avoids repeat calculation of a
same individual in different populations, and save much time since the individual step consumes
more than 80% of the total running time.

In the second CNVR detection step, the RD files of all samples are piled up into a two-

240 dimensional population RD file. Multi-criteria are implied to remove the high-proportional noise

241 caused by low sequencing quality or assembly bias. Individually, the RD of the candidate CNV

242 window should significantly deviates from average. The piled-up candidate windows should also

243 meet two population-level criteria: CNV allele frequency > 5% and the multi-sample RDs of

244 adjacent windows are significantly correlated (Figure 1). Compared with intensified individual

245 RD screening, the multi-criteria filtering preserves heterozygous CNVs with half RD value of the

homozygous CNVs.

After merging the candidate CNV windows into a CNVR, the RDs of all samples in each CNVR are clustered by the mixture Gaussian model and deducing the integer copy number of each individual. This step is called genotyping as used in SNP detection. The final output is compatible with most SNP based population genetic algorithm.

251 Computational cost

The robustness of CNVcaller was validated by the real sequencing data of different genomes. The
individual RD processing step of CNVcaller was compared against CNVnator, which also detects
CNVs individually. The processing time of CNVcaller was linear related to the genome size and
sequencing coverage: 20-40 minutes for a 3 Gb genome with 10 X coverage (Supplementary

Table 3). However, the processing time of CNVnator rose exponentially with the scaffold number,

257	which became the only index of time consuming when the scaffold number exceeds one thousand
258	(Figure 2A). Consequently, CNV caller achieved 145 fold speed increasing over CNV nator for
259	goat CNV detection. Noteworthy, the goat reference genome ARS1 which contains nearly 30
260	thousand scaffolds was newly assembled by single-molecule sequencing platform [48].
261	The memory requirement of CNVcaller is extremely low and mainly related to the genome size:
262	only about 500 Mb for a mammalian genome, which was less than one twentieth of CNVnator
263	(Figure 2B). Therefore, in multi-sample CNV detection, more than 20 missions of the individual
264	RD processing step can be run in parallel on one node to further increase the population CNVR
265	detection efficiency. The population-level performance of CNVcaller was evaluated and
266	benchmarked by Genome STRiP which also detects CNVRs at population level. After removing
267	the unplaced scaffolds, CNVcaller was still 3.5-7.8 times faster than Genome STRiP (Figure 2C),
268	with 70% ~86% reduction in memory requirement (Figure 2D). The CNV detection of 232 goats
269	with mean 12 X coverage can be completed in 1.4 days by CNVcaller on one node.

270 Sensitivity and accuracy

A total of 1,058 CNVRs with a total length of 24.5 Mb were detected by CNVcaller from a 30
human cohort, 20% longer than CNVnator, and twice of Genome STRiP. CNVcaller covered 43%
of the CNVRs detected by CNVnator, 65% of Genome STRiP and 76% of their intersection
(Figure 3A), indicating CNVcaller has higher sensitivity for the cross validated CNVRs. We also
compared the CNVRs identified by CNVcaller from worldwide 133 sheep of 44 breeds with the
other two recently released large scale sheep CNVR datasets. One is derived from a small
pedigrees using multiple platforms including aCGH, SNP chip and whole genome sequence [49],

278	the other is based on three Chinese sheep breeds and 600K SNP array [50]. Although based on
279	different technologies and breeds, CNVcaller still covers 51% of their intersection (Figure 3B).
280	The 1000 Genome Project samples with experimental validated CNV database was mainly used
281	to evaluate the sensitivity and accuracy of CNVcaller and other two methods. The sensitivity was
282	estimated as the proportion of high-confident CNV database overlapped by predicted CNVs
283	(Table 1). Based on the aCGH database [43], the sensitivity of CNVcaller was 13%-18% higher
284	than the other two methods. Even based on the 1000 Genome Project CNV maps which was
285	constructed by multiple methods including the Genome STRiP and CNVnator [24], CNVcaller
286	still achieved higher sensitivity than other software.
287	False discovery rate (FDR) on human genome was estimated by multiple strict sample specific
288	methods (Table 1). (1) IRS test based on the intensity data of the SNP array; (2) the integer copy
289	numbers in aCGH database; (3) the Mendelian inconsistencies from 10 Dutch families. For the
290	three CNV detectors, Genome STRiP achieved the best accuracy (0.8% - 3.9%) in all the human
291	based validations, and a little higher Mendelian inconsistencies (5.2%) in the three sheep trios.
292	CNVcaller had median FDR (2.8% - 5.4%) in human validations, however, it achieved the best
293	accuracy (2.4% Mendelian inconsistencies) in the three sheep trios, indicating its superiority in
294	non-human genomes. To evaluate the genotyping accuracy, we turned to a recently developed
295	molecular biology technique, CNVplex, which counts the copy number of a genomic sequence
296	based on the multiplex ligation-dependent probe amplification (MLPA) method [45]. When we
297	compared the copy numbers predicted by CNVcaller from sequencing data and the CNVplex
298	result, the Pearson's product-moment correlation coefficients were higher than 0.95, and the
299	integer genotype concordance was 98% (Figure 4).
	14

300 The absolute copy number correction in duplicated region of the reference

301 genome

302	Compared with human, the sheep sample had much lower copy numbers in putative duplicated
303	regions than expected (Figure 5A), indicating the sequencing reads were split among the false
304	duplications as previous reported on other animal genome assemblies [31]. This bias leaded the
305	raw copy number distribution of the putative two-copy segment duplications peak at one (Figure
306	5B), thus most of these windows were likely to be mistaken for heterozygote deletions. After
307	absolute copy number correction (Figure 1), the copy number distribution was more reasonable:
308	the main peak shift to around two (normal biallelic copy number), and the smaller peaks around
309	one and four indicated the detectable heterozygous deletions and duplications respectively (Figure
310	5B). Because this correction preserves the complicated regions and the multi-hit reads, CNVcaller
311	increased the sensitivity of SD region about six time than the other two methods. Moreover, it is
312	more reasonable for most CNVs in SD regions were genotyped as duplications instead of deletions
313	(Figure 5C).
314	The detection and genotyping accuracy in SD region were further estimated by the sex
315	information of 133 sheep. We first defined 138 unplaced scaffolds with high sequence similarity to
316	X chromosome as X-linked scaffolds. In theory, all these scaffolds were expected to be detected as
317	high frequency CNVRs because the RDs of unplaced scaffolds were not corrected by sex.
318	CNVcaller detected 101 out of the 138 X-linked scaffolds with a sensitivity of 73%, while
319	CNVnator did not catch any of these regions. The corrected copy number of these scaffold
320	centralized at one and two in rams and doubled in ewes indicating the unique and duplicated X-
	46
	15

linked regions. However, the peaks of raw copy numbers were ambiguous and not at integer (Figure 5D). Further examination of the duplicated regions showed the higher divergence was caused by splitting of raw RDs among the mistaken-assembly segments (Supplementary Figure 2). Discussion CNVcaller was designed to detect the CNVRs from large scale resequencing data of all kinds of genomes. It takes full consideration of the complexity of genome, and implies several general applicable signal detection and noise deduction algorithms to increase the computational efficiency. The detection of 232 individuals can be complete on one compute note within two days, and this speed up does not compromise the accuracy. Meanwhile, validated through multiple rigorous assessment, CNVcaller increased the sensitivity by 13%-18% with a low FDR in human and non-human species. The statistics-based detection algorithm of CNVcaller assumes a true CNV signal can be interrupted with high ratio of noise, while the segmentation algorithms assume that the RD signal is basically piecewise constant in the genome sequence. The formal model is universally applicable to high quality as well as fragmented genomes. Therefore, the speed of CNVcaller is still fast with thousands of scaffolds, which is common in non-human reference genome assemblies. The robustness of CNV caller reduces the restrictions of the reference genome, which will promote CNV research of the species with only scaffold level reference genome assemblies. More importantly, this feature enables the comprehensive variation discoveries using multiple

assemblies or pan-genomes. Defined as the entire set of genes possessed by all members of a particular species, pan-genomes reveal numerous functional important genes unplaced on one single reference genome [50-52]. However, its complexity and diversity hinder the application of almost all CNV detectors. Up on our unpublished data, CNVcaller is efficient and friendly to detect the present/absent variations for pan-genomes. Another optimization of CNVcaller is the simplified absolute copy number correction. Although absolute copy number can reduce the bias of misassembled duplications in non-human genomes, conventional solution requires mapping the sequencing reads of each individual by

time-consuming precise aligner. CNVcaller simplifies the calculation by generating a duplicated

351 window record file through one precise alignment of the reference genome (the duplicated

352 window record file of the latest reference genome of human, livestock and main crops can be

downloaded from website), then the standard alignment of all samples can be corrected with high

354 speed. In this way, the misassembled duplications can be mitigated with a great reduction of

running time. Validation of sheep genomes showed this correction multiplied the detection

356 efficiency of SD regions, and deduced the more reasonable copy numbers.

357 Several limitations still exist in CNVcaller pipeline. First, population level criteria are used to
358 screen out the low frequency and uncorrelated windows. Therefore, CNVcaller is not suitable for
359 detection of rare CNVs, however, the influence is much less on GWAS which also has low power
360 to capture rare functional variants [51]. Besides, the RD algorithm has disadvantage in short CNV
361 detection and breakpoint definition. The visual examination for the specific interval using IGV
362 [52] or combined with other CNV detection methods can improve the results. In the latter
363 situation, CNVcaller can provide high-confidence RD information as solid prior for the read

pair/split read pipeline [53].

365	In summary, CNV caller offers a fast and robust pipeline to detect CNVRs from population-
366	scale resequencing data. The high computational efficiency reduces the hardware requirements
367	and facilitates the CNVR detection of large populations. The general applicable detection and
368	correction algorithms have greatly increased the sensitivity in non-model species and enabled the
369	CNV detection for a wide range of species. The rapid and reliable population-level CNV detection
370	will promote the discovery of the missing heritability of complex traits and accurately
371	determination of the causative mutations for more species.
372	
373	Availability and requirements
374	Project name: CNVcaller
375	Project home page: http://animal.nwsuaf.edu.cn/software
376	https://github.com/JiangYuLab/CNVcaller
377	Operating system(s): platform independent
378	Programming language: Perl, C++
379	Other requirements: Samtools 1.3 (using htslib 1.3)
380	License: GNU General Public License, version 3.0 (GPL-3.0)
381	
000	Conflict of interest
382	Conflict of interest
383	The authors declare that they have no competing interests
	18

Author contributions WXH and JY designed this software; ZZQ and CT wrote the code; WXH and ZZQ improved the pipeline structures; ZZQ and CYD tested the software prototype; LC and FWW contributed to the data organization; WXH and JY drafted the manuscript. All authors read and approved the final manuscript. Acknowledgements This work is supported by grants from National Natural Science Foundation of China (31572381), and the National Thousand Youth Talents Plan. We thank the International Sheep Genomics Consortium (ISGC) for access to the unpublished sheep sequencing data provided under the Toronto guidelines for data users. We thank for the Genomes of Netherlands (GoNL) project for the human family data. **References** 1. Chiang C, Scott AJ, Davis JR, Tsang EK, Li X, Kim Y, et al. The impact of structural variation on human gene expression. Nature genetics. 2017. 2. Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature. 2014;505 7483:361-6. 3. Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T, et al.

1 2	405	Integrative annotation of variants from 1092 humans: application to cancer genomics.
3 4	406	Science. 2013;342 6154:1235587.
5 6 7	407	4. Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, et
8 9 10	408	al. Global diversity, population stratification, and selection of human copy-number
11 12	409	variation. Science. 2015;349 6253:aab3761.
13 14 15	410	5. Norris BJ and Whan VA. A gene duplication affecting expression of the ovine
16 17 18	411	ASIP gene is responsible for white and black sheep. Genome research. 2008;18
19 20 21	412	8:1282-93.
22 23	413	6. Wright D, Boije H, Meadows JR, Bed'Hom B, Gourichon D, Vieaud A, et al.
24 25 26	414	Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in
27 28 29	415	chickens. PLoS Genet. 2009;5 6:e1000512.
30 31 32	416	7. Seo B-Y, Park E-W, Ahn S-J, Lee S-H, Kim J-H, Im H-T, et al. An accurate
33 34	417	method for quantifying and analyzing copy number variation in porcine KIT by an
35 36 37	418	oligonucleotide ligation assay. BMC genetics. 2007;8 1:81.
38 39 40	419	8. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, et al. Resequencing 302 wild
41 42 43	420	and cultivated accessions identifies genes related to domestication and improvement
44 45	421	in soybean. Nature biotechnology. 2015;33 4:408-14.
46 47 48	422	9. Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, et al.
49 50 51	423	Genome-wide association study of CNVs in 16,000 cases of eight common diseases
52 53 54	424	and 3,000 shared controls. Nature. 2010;464 7289:713-20. doi:10.1038/nature08979.
55 56	425	10. Xu L, Cole JB, Bickhart DM, Hou Y, Song J, VanRaden PM, et al. Genome
57 58 59	426	wide CNV analysis reveals additional variants associated with milk production traits in
60 61 62		20
63		
64		
65		

1	427	Holsteins. BMC genomics. 2014;15:683. doi:10.1186/1471-2164-15-683.
2 3 4	428	11. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al.
5 6 7	429	BreakDancer: an algorithm for high-resolution mapping of genomic structural
8 9 10	430	variation. Nat Meth. 2009;6 9:677-81.
11 12 13	431	12. Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, et al.
14 15	432	Next-generation VariationHunter: combinatorial algorithms for transposon insertion
16 17 18	433	discovery. Bioinformatics. 2010;26 12:i350-i7. doi:10.1093/bioinformatics/btq216.
19 20 21	434	13. Ye K, Schulz MH, Long Q, Apweiler R and Ning Z. Pindel: a pattern growth
22 23 24	435	approach to detect break points of large deletions and medium sized insertions from
25 26	436	paired-end short reads. Bioinformatics. 2009;25 21:2865-71.
27 28 29	437	doi:10.1093/bioinformatics/btp394.
30 31 32	438	14. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V and Korbel JO. DELLY:
33 34 35	439	structural variant discovery by integrated paired-end and split-read analysis.
36 37	440	Bioinformatics. 2012;28 18:i333-i9.
38 39 40	441	15. Chen K, Chen L, Fan X, Wallis J, Ding L and Weinstock G. TIGRA: A targeted
41 42 43	442	iterative graph routing assembler for breakpoint assembly. Genome research.
44 45 46	443	2014;24 2:310-7. doi:10.1101/gr.162883.113.
47 48	444	16. Zerbino DR and Birney E. Velvet: Algorithms for de novo short read assembly
49 50 51	445	using de Bruijn graphs. Genome research. 2008;18 5:821-9.
52 53 54	446	doi:10.1101/gr.074492.107.
55 56 57	447	17. Zhuang J and Weng Z. Local sequence assembly reveals a high-resolution
58 59	448	profile of somatic structural variations in 97 cancer genomes. Nucleic Acids Res.
60 61 62		21
63		
64 65		
nn		

1 2	449	2015;43 17:8146-56. doi:10.1093/nar/gkv831.
3 4 5	450	18. Yoon S, Xuan Z, Makarov V, Ye K and Sebat J. Sensitive and accurate
6 7	451	detection of copy number variants using read depth of coverage. Genome research.
8 9 10	452	2009;19 9:1586-92.
11 12 13	453	19. Abyzov A, Urban AE, Snyder M and Gerstein M. CNVnator: an approach to
14 15 16	454	discover, genotype, and characterize typical and atypical CNVs from family and
17 18	455	population genome sequencing. Genome research. 2011;21 6:974-84.
19 20 21	456	20. Szatkiewicz JP, Wang W, Sullivan PF, Wang W and Sun W. Improving
22 23 24	457	detection of copy-number variation by simultaneous bias correction and read-depth
25 26 27	458	segmentation. Nucleic acids research. 2013;41 3:1519-32.
28 29	459	21. Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, et al. Asymmetric subgenome
30 31 32	460	selection and cis-regulatory divergence during cotton domestication. Nature genetics.
33 34 35	461	2017.
36 37 38	462	22. Klambauer G, Schwarzbauer K, Mayr A, Clevert D-A, Mitterecker A,
39 40	463	Bodenhofer U, et al. cn. MOPS: mixture of Poissons for discovering copy number
41 42 43	464	variations in next-generation sequencing data with a low false discovery rate. Nucleic
44 45 46	465	acids research. 2012:gks003.
47 48 49	466	23. Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger
50 51	467	LM, et al. Large multiallelic copy number variations in humans. Nature genetics.
52 53 54	468	2015;47 3:296-303.
55 56 57	469	24. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J,
58 59	470	et al. An integrated map of structural variation in 2,504 human genomes. Nature.
60 61 62		22
63 64		
65		

171	2015-526 7571-75 91
471	2015;526 7571:75-81.
472	25. Claros MG, Bautista R, Guerrero-Fernández D, Benzerki H, Seoane P and
473	Fernández-Pozo N. Why assembling plant genome sequences is so challenging.
474	Biology. 2012;1 2:439-59.
475	26. Warr A, Hume D, Archibald AL, Deeb N and Watson M. Identification of low-
476	confidence regions in the pig reference genome (Sscrofa10. 2). Frontiers in genetics.
477	2015;6:338.
478	27. Xie C and Tammi MT. CNV-seq, a new method to detect copy number variation
479	using high-throughput sequencing. BMC bioinformatics. 2009;10 1:80.
480	28. Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, et al. Genome-wide patterns
481	of copy number variation in the Chinese yak genome. BMC genomics. 2016;17 1:1.
482	29. Chain FJ, Feulner PG, Panchal M, Eizaguirre C, Samonte IE, Kalbe M, et al.
483	Extensive copy-number variation of young genes across stickleback populations.
484	PLoS Genet. 2014;10 12:e1004830. doi:10.1371/journal.pgen.1004830.
485	30. Yi G, Qu L, Liu J, Yan Y, Xu G and Yang N. Genome-wide patterns of copy
486	number variation in the diversified chicken genomes using next-generation
487	sequencing. BMC genomics. 2014;15:962. doi:10.1186/1471-2164-15-962.
488	31. Kelley DR and Salzberg SL. Detection and correction of false segmental
489	duplications caused by genome mis-assembly. Genome biology. 2010;11 3:1.
490	32. Zimin AV, Kelley DR, Roberts M, Marçais G, Salzberg SL and Yorke JA. Mis-
491	Assembled "Segmental Duplications" in Two Versions of the <italic>Bos</italic>
492	taurus Genome. PLoS One. 2012;7 8:e42680.
	23
	473 474 475 476 477 478 479 480 481 482 483 484 483 484 485 486 485 486 487 488 489 490 491

1 2	493	doi:10.1371/journal.pone.0042680.
3 4	494	33. Dennis MY, Harshman L, Nelson BJ, Penn O, Cantsilieris S, Huddleston J, et
5 6 7	495	al. The evolution and population diversity of human-specific segmental duplications.
8 9 10	496	Nature Ecology & Evolution. 2017;1:0069.
11 12	497	34. Hach F, Hormozdiari F, Alkan C, Hormozdiari F, Birol I, Eichler EE, et al.
13 14 15	498	mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature methods.
16 17 18	499	2010;7 8:576-7.
19 20	500	35. Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, et al. Analysis of
21 22 23	501	copy number variations among diverse cattle breeds. Genome research. 2010;20
24 25 26	502	5:693-703.
27 28 29	503	36. Zarrei M, MacDonald JR, Merico D and Scherer SW. A copy number variation
30 31	504	map of the human genome. Nature Reviews Genetics. 2015.
32 33 34	505	37. Consortium GotN. Whole-genome sequence variation, population structure and
35 36 37	506	demographic history of the Dutch population. Nature genetics. 2014;46 8:818-25.
38 39 40	507	38. Diez CM, Meca E, Tenaillon MI and Gaut BS. Three groups of transposable
41 42	508	elements with contrasting copy number dynamics and host responses in the maize
43 44 45	509	(Zea mays ssp. mays) genome. PLoS Genet. 2014;10 4:e1004298.
46 47 48	510	39. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
49 50	511	The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
51 52 53	512	generation DNA sequencing data. Genome Res. 2010;20 9:1297-303.
54 55 56	513	doi:10.1101/gr.107524.110.
57 58	514	40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
59 60 61		24
62 63 64		
65		

1	515	Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25 16:2078-9.
2 3 4	516	doi:10.1093/bioinformatics/btp352.
5 6 7	517	41. Kent WJ. BLAT—the BLAST-like alignment tool. Genome research. 2002;12
8 9 10	518	4:656-64.
11 12 13	519	42. Scrucca L, Fop M, Murphy TB and Raftery AE. mclust 5: Clustering,
14 15 16	520	classification and density estimation using gaussian finite mixture models. The R
17 18	521	Journal. 2016;8 1:289.
19 20 21	522	43. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins
22 23 24	523	and functional impact of copy number variation in the human genome. Nature.
25 26	524	2010;464 7289:704-12.
27 28 29	525	44. Quinlan AR and Hall IM. BEDTools: a flexible suite of utilities for comparing
30 31 32	526	genomic features. Bioinformatics. 2010;26 6:841-2.
33 34 35	527	45. Zhang X, Xu Y, Liu D, Geng J, Chen S, Jiang Z, et al. A modified multiplex
36 37 38	528	ligation-dependent probe amplification method for the detection of 22q11. 2 copy
39 40	529	number variations in patients with congenital heart disease. BMC genomics. 2015;16
41 42 43	530	1:364.
44 45 46	531	46. Chaisson MJ and Tesler G. Mapping single molecule sequencing reads using
47 48	532	basic local alignment with successive refinement (BLASR): application and theory.
49 50 51	533	BMC bioinformatics. 2012;13 1:238.
52 53 54	534	47. Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, et
55 56 57	535	al. Copy number variation of individual cattle genomes using next-generation
58 59	536	sequencing. Genome research. 2012;22 4:778-90.
60 61 62		25
63		
64		
65		

1	537	48. Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, et al. Single-	
2 3 4	538	molecule sequencing and chromatin conformation capture enable de novo reference	;
5 6 7	539	assembly of the domestic goat genome. Nature Genetics. 2017;49 4:643-50.	
8 9 10	540	49. Jenkins GM, Goddard ME, Black MA, Brauning R, Auvray B, Dodds KG, et al.	
11 12 13	541	Copy number variants in the sheep genome detected using multiple approaches.	
14 15	542	BMC genomics. 2016;17 1:1.	
16 17 18	543	50. Zhu C, Fan H, Yuan Z, Hu S, Ma X, Xuan J, et al. Genome-wide detection of	
19 20 21	544	CNVs in Chinese indigenous sheep with different types of tails using ovine high-	
22 23 24	545	density 600K SNP arrays. Scientific reports. 2016;6.	
25 26	546	51. Robinson MR, Wray NR and Visscher PM. Explaining additional genetic	
27 28 29	547	variation in complex traits. Trends in Genetics. 2014;30 4:124-32.	
30 31 32	548	52. Thorvaldsdóttir H, Robinson JT and Mesirov JP. Integrative Genomics Viewer	
33 34 35	549	(IGV): high-performance genomics data visualization and exploration. Briefings in	
36 37 38	550	bioinformatics. 2013;14 2:178-92.	
39 40	551	53. Layer RM, Chiang C, Quinlan AR and Hall IM. LUMPY: a probabilistic	
41 42 43	552	framework for structural variant discovery. Genome biology. 2014;15 6:R84.	
44 45 46	553		
47 48 49	554	Figure Legends	
50 51	555	Figure 1 CNVcaller algorithm flowchart (left) and the key algorithms of each step (right). (1)	
52 53 54	556	Individually RD processing. In the absolute copy number correction, the RDs of high similar	
55 56 57	557	windows are added together to deduce the absolute copy number. (2) Multi-criteria CNVR	
58 59 60	558	selection. Curves show copy numbers in a specific region for multiple samples. Blue transverse	
61 62		2	26
63 64 65			

boxes mark the windows with significantly distinguish copy number from the average (individual criterion). Green vertical boxes indicate regions with the CNV allele frequency >5% in a specific region, and red frame indicates the RDs between two adjacent windows are significantly correlated (population criteria). Only the region with continuous high CNV allele frequency and high correlation (the forth bar from the left) are selected as the CNVRs. (3) Genotyping: The copy numbers in each CNVR are clustered by mixture Gaussian model to distinguish the normal, heterozygous and homozygous samples. Figure 2 Computational performance of CNVcaller, CNVnator and Genome STRiP. All the programs were executed on one node with two 2.40-GHz Intel Xeon E5-2620 v3 processors. (A, B) Log plots of processing time (A) and max memory (B) for one individual. The numbers of unplaced scaffolds of the reference genome are indicated in brackets. The processing time was normalized by genome size and sequencing coverage to simulate a 3 Gb genome with 5 X or 10 X sequencing coverage. (C, D) Log plots of total running time (C) and max memory (D) of population CNVR detection. The test cohorts are: 8 sheep, 30 humans and 232 goats with 19 X, 16 X and 12 X average sequencing coverage respectively. In Genome STRiP running, the unplaced scaffolds were removed from the reference genome. Figure 3 Overlap of the CNVRs detected by CNVcaller and other approaches/platforms (A) Intersection of the CNVRs detected by CNVcaller, CNVnator and Genome STRiP based on the same 30 human data. (B) Intersection of the CNVRs detected by CNVcaller and two other large scale sheep CNVR studies.

	T
	2
	3
	1
	-
	5
	6
	12345678901234567890123456789012345678901234567890
	8
	0
_	9
Τ	0
1	1
1	2
1	2
1	1
T	4
1	5
1	6
1	7
1	0
1	0
T	9
2	0
2	1
2	2
2	2
2	3
2	4
2	5
2	6
2	7
2	/
2	8
2	9
3	0
З	1
2	т Т
3	2
3	3
3	4
3	5
2	6
2	0
3	7
3	8
3	9
4	0
1	1
4	1
4	2
4	3
4	4
4	
	6
4	
4	8
4	
5	
5	1
5	-
С	2
э 5	2 3
5	2 3
5	- 2 3 4
5 5	2 3 4 5
5 5 5	- 2 3 4
5 5	2 3 4 5
5 5 5 5	2 3 4 5 6 7
5 5 5 5 5 5 5	-2 3 4 5 6 7 8
5 5 5 5 5 5 5	2 3 4 5 6 7 8 9
5 5 5 5 5 5 5	-234567890
5 5 5 5 5 5 5	2 3 4 5 6 7 8 9
5 5 5 5 5 5 5	2 3 4 5 6 7 8 9 0 1
5 5 5 5 5 5 6 6 6	2 3 4 5 6 7 8 9 0 1
5 5 5 5 5 5 6 6 6	2 3 4 5 6 7 8 9 0 1
5 5 5 5 5 5 6 6 6 6 6	2 3 4 5 6 7 8 9 0 1

_

581	
582	Figure 4 Evaluation of CNV genotypes by CNVplex. Two duplicated (A, B) and two deleted (C,
583	D) CNVRs with high variation frequency were typed in CNVplex in 73 sheep samples. The copy
584	number genotypes predicted by CNVcaller from sequencing data were plotted against the
585	measurements from CNVplex of the same animal.
586	
587	Figure 5 Absolute copy number correction in sheep genome. (A) The copy numbers of all
588	windows with no more than six repeats were plotted against the repeat numbers in reference
589	genome. (B) Distribution of copy numbers of two-copy loci in sheep genome before and after
590	absolute copy number correction. (C) The detected CNVRs resided in SD regions. The sheep SD
591	regions include the regions longer than 2 Kb with >97% identity. The CNVRs resided in SD
592	regions were defined if more than 50% of this CNVR was overlapped with the SD regions. (D)
593	The raw and corrected copy numbers of all X-linked scaffolds of 133 sheep.
594	

	Estimated sensitivity		Estimated FDR			
Methods	-001	1000 GP	IRS	CGH	Mendelian	Mendelian
	aCGH			Genotype	error Human*	error Sheep*
CNVcaller	45.4%	56.1%	4.1%	5.4%	2.8%	2.4%
CNVnator	32.6%	51.7%	11.4%	5.4%	5.5%	3.7%
Genome STRiP	27.2%	50.4%	3.9%	2.2%	0.8%	5.2%

Table 1. Sensitivity and FDR of CNVcaller, CNVnator and Genome STRiP.

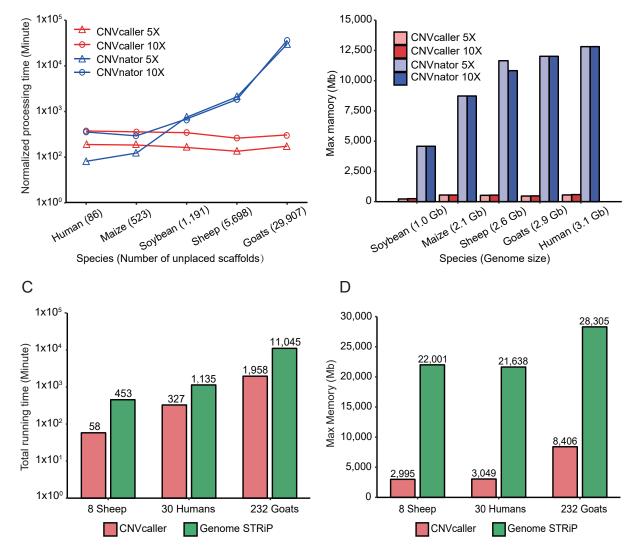
*The Mendelian errors in human and sheep were calculated based on 10 Dutch families and three

sheep trios respectively. Other evaluations were based on 30 human BAM files downloaded from

1000 genome project.

Figure1

(1) Individual RD processing Input BAM file RAW read depth Count the RD of each sliding window across genome **Raw BWA alignment** Absolute copy number correction Absolute copy number Identity > 97% -----Short reads correction, GC correction <<u></u>______ and normalization Reference geno 2 Read depth 0 Pile up corrected RD of all samples Low Low Low CNVR frequency correlation polymorphism (2) Multi-criteria 4 **CNVR** selection 1 2 0 Individual RD higher or 4 lower than global average 2 2 0 4 3 CNV allele frequency > 5%2 0 4 2 RDs of the adjacent windows significant correlated 0 4 n 2 **Define CNVR** 0 boundary Duplicated CNV Deleted CNV (3) Genotyping Density Density Report integer copy numbers by Gaussian Mixture Model ż 1 2 3 n


Copy number

Click here to download Figure Figure1.pdf 🛓

Copy number

FigAre2

B Click here to download Figure Figure2.pdf ±

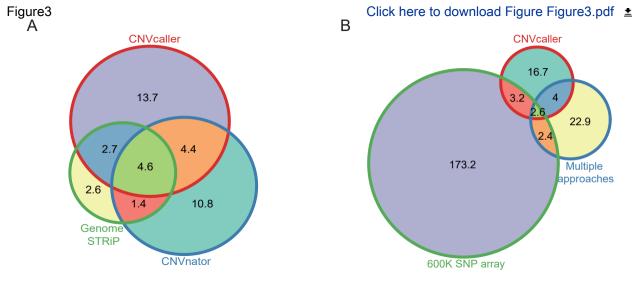
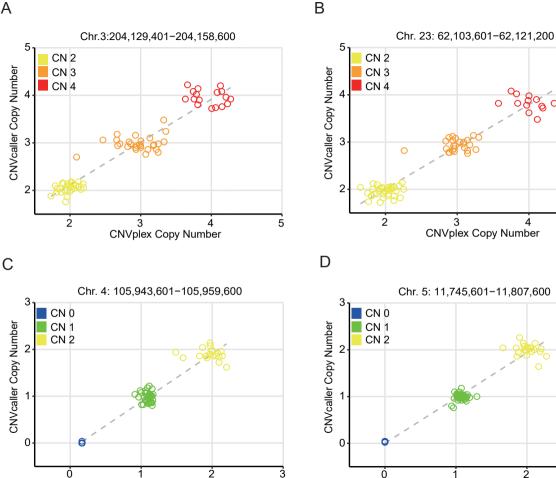
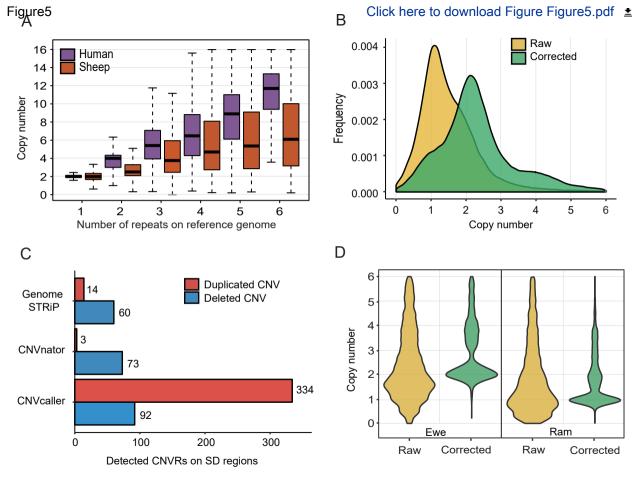


Figure4


Click here to download Figure Figure 4.pdf 👱

CNVplex Copy Number


0

3

CNVplex Copy Number

Supplementary Material

Click here to access/download Supplementary Material Supplementary Materials.docx