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Abstract: Background:
The increasing sequencing data of a wide variety of species can be used for copy
number variation (CNV) detection at the population level in theory. However, the
growing sample size and the divergent complexity of non-human genomes challenges
the efficiency and robustness of the current human-oriented CNV detection methods.

Result:
 Here, we present CNVcaller, a read depth based method for CNV discovery in
population sequencing data. The speed was 1-2 magnitudes higher than CNVnator
and Genome STRiP in complex genomes with many unmapped scaffolds. The
detection for 232 goats takes only 1.4 days on a single computing node. The
Mendelian consistence test of sheep trios indicated that CNVcaller mitigated the
influence of high-proportioned gaps and mis-assembled duplications in the non-human
reference genome assembly. Furthermore, the validation of both sheep and human
samples showed CNVcaller achieved the best accuracy and sensitivity in duplications
compared to other methods.

Conclusion:
The fast and general detection algorithms of CNVcaller overcome prior computational
barriers for detecting CNVs from large scale sequencing data with complicated
genome structures. These advantages promote the population genetic analysis of
functional CNVs in more species.
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Dear Dr. Edmunds

Thank you very much for handling our manuscript "CNVcaller: Highly Efficient and
Widely Applicable Software for Detecting Copy Number Variations in Large
Populations " (GIGA-D-17-00119). We appreciate all the comments from the reviewers,
which helped us improve our manuscript. We have now revised the manuscript
according to the reviewers’ comments and your instructions.

We addressed the comments and questions of the reviewers as explained below, the
reviewers’ text has been included and our responses are in colored italics. Revised text
is indicated by quotation marks. Because several new figures have been added, we
attach a list of the current figures and tables corresponding to those from last version
so that the changes can easily be tracked.

Upon the suggestions of the reviewers, we modified the manuscript as follows:

1.The newly released version of CNVcaller updated the genotyping method. The
python package, scikit-learn v0.19.0, was used to decompose the reported copy
numbers into several Gaussian distributions. Therefore, the accuracy of the CNVcaller
in the new version was increased.

2.Since the reviewers required to evaluate the effects of the length and allele
frequency of the discovered CNVRs. Two result sections have been added to analyze
the number and FDR of the CNVRs detected by the three methods against the length
and allele frequency. One section including Figure 4 was based on the sheep data, the
other section including Figure 6 was based on the human data.

3.To answer the reviewer’s question about the difference of the FDR in deletions and
duplications, their FDR was evaluated respectively in the result sections.

4.The high-proportion mis-assembled segmental duplications in non-human
assemblies caused misunderstanding of the reviewer. The section has been
extensively redrafted, as analyzing both real and simulated data.

5.The previous discussion sections has been merged to the result sections to reduce
the length of the manuscript. The first part of the previous results has been moved to
the method sections as suggested by the reviewer.

6.The language has been professionally edited by an English editing service agency,
American Journal Experts (AJE). (Because the first version is inadequate, we are
waiting for the second version.)

Thank you again for all of your assistance.
Sincerely yours,
Yu Jiang, and other coauthors

 
************************
REVIEWS
************************
Reviewer #1:

The authors developed a new CNV caller pipeline which they called CNVcaller geared
towards improved speed compared to existing CNV callers and improved accuracy for
high complexity genomes. I commend the authors on their efforts to introduce
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improved algorithms and pipelines for an inherently difficult procedure, namely CNV
calling. My comments are mostly suggestions for improvement as followss. Note,
comments of the form (4:5 for example represent page 4, line 5).
Thanks for your positive comments and encouragement. We have substantially revised
the manuscript upon your suggestions.

There are several grammatical errors which make the paper somewhat confusing. I
would strongly recommend further extensive English editing.
We apologize for these mistakes. The manuscript has been professionally edited by an
English editing service agency, American Journal Experts (AJE) .

My main criticism of the analysis is one that I have seen repeatedly of most other CNV
calling publications, and that is there is no sensitivity analysis.
We are sorry for the ambiguous of the sensitivity tests, which were stuffed in previous
Table1. In the revised manuscript, new figures and tests have been added. On
general, CNVcaller demonstrated 57%-67% sensitivity for duplications, and 66%-68%
for deletions in human data. The sensitivity in sheep data was ~73%.
The detailed descriptions were as follows:
“The sensitivity of human data was estimated as the proportion of the high-confident
CNVR database that overlapped by the predicted CNVRs. Two previously published
high-confident databases, including the particular samples, were the aCGH-based
CNVR database and the 1000GP CNVR map. For the highly variable FDR, the
sensitivity estimation removed the calls that were <=2,500 bp and had an alternative
allele frequency <5%. For the aCGH database, CNVcaller demonstrated the highest
sensitivity (57%) for duplication, 14% and 26% higher than Genome STRiP and
CNVnator. Whereas Genome STRiP achieved the highest sensitivity (74%) in
deletions, 8% and 2% higher than CNVcaller and CNVnator (Figure 6C). For the 1000
GP CNV maps, even though both Genome STRiP and CNVnator were the core
methods of creating the library, the sensitivity of CNVcaller were 68% and 67% for
deletions and duplications, only 4%-10% lower than Genome STRiP and CNVnator.”
“Because the lack of validated sheep CNVR database, the sensitivity was validated
indirectly. Based on our integrated analysis (see method), there are 138 sheep X
chromosome origin scaffolds, which were not anchored onto chromosomes of OAR
v3.1. Therefore, all of these scaffolds should be detected as CNV because the rams
had half copy numbers of ewes. As a result, CNVcaller detected 101 out of these 138
X-origin scaffolds, with a sensitivity of 73%. Furthermore, the corrected copy numbers
of these scaffolds were centralized at integer (Figure 3D), whereas the peaks of the
raw copy numbers were ambiguous because of splitting the raw RDs among the
putative SDs (Supplementary Figure 4). In contrast, CNVnator and Genome STRiP
could not report these unmapped CNVRs.”

The authors here also suggest various parameters throughout their paper for
performing CNV calling, but there is no analysis of how the results change if these
parameters are adjusted, i.e. no analysis of how robust your algorithm is to changes in
the parameters.
Thank you for your suggestion. The FDR against the window size and allele frequency
have been added in Supplementary Figure 1 and Figure 6B.
The following description was added in methods.
“The window size is an important parameter for the RD methods. CNVcaller uses half
of the window size as step size. The optimal window size is 800 bp for 5-10X coverage
human and livestock sequencing data (Supplementary Figure 1). The recommended
scales roughly inversely coverage, resulting in 400 bp windows for 20X coverage and
200 bp windows for 50X coverage.”

As another example, Hong et al 27503473 has demonstrated that the biggest
variability in calling CNVs is in terms of the CNV size. I suspect that the same can be
said of CNVcaller. Please comment on what sizes of CNVs does CNV caller do well or
poorly on.
Figure 4 and Figure 6 have been added to evaluate the effect of the length and
frequency in sheep and human data. On general, the performance of CNVcaller was
good for deletions and duplications >2.5 Kb, however poorly on < 2.5 kb.
The detailed comparisons in the manuscript are as follows:
 “The detected CNVRs of CNVcaller and Genome STRiP were further analyzed against
the length and alternative allele frequency (Figure 4B). CNVcaller performed better in
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duplication detection, it can detect duplications <2.5 Kb, and the Mendelian
inconsistence of longer calls were lower than Genome STRiP (3% versus 9% for 2.5Kb
~ 5Kb calls; 2% versus 5% for > 5Kb calls). On the other hand, Genome STRiP
detected 1,958 more < 2.5Kb deletions than CNVcaller. One possible reason was
Genome STRiP integrating RP methods which have higher capability in detecting
shorter deletions. In terms of the frequency, because the detected samples were three
trios, most CNVRs were medium frequency (6%-50%). The rare duplications tended to
have a higher FDR than the median and high frequency calls (Figure 4C).”
“First, CNVcaller demonstrated the highest overall accuracy for detecting duplications,
and the FDR of CNVcaller are relative consistent across duplication length and
frequency categories. Whereas the short or singleton duplications of other two
methods have high FDR. Second, 43% duplications detected by CNVnator were >20
kb. This was not due to the merged individual CNV to the CNVR, because the average
size of individual calls was 3-4 times larger than the other methods. Third, Genome
STRiP also showed the highest capability for detecting deletions, especially the short
and rare ones, indicating the advantage of combining RD and RP methods in deletion.”

2:32  "the prevalent.." is a gross exaggeration. I think you mean "a prevalent".
Corrected as suggested.

2:35  I don't think you mean geometric. I did not comment on other
grammatical/English errors as there were too many to list individually. I would highly
recommend getting help with the English in this paper.
We apologize for these mistakes. The manuscript has been professionally edited by an
English editing service agency, American Journal Experts (AJE).

3:53  "RD" is not defined.
We apologize for the missing. This description has been added to the introduction as
follows.
“Read-depth (RD) means the depth of the coverage or the genomic region that can be
calculated by the number of reads aligned [16].”

6:120  Give a brief description of how CNVnator handles GC bias. Also why 40% for
the GC bias?  Shouldn't this parameter be dependent on the organism of interest?
We apologize for not clearly describing the procedure. In general, the mean RD of
windows with 40% percent GC is only used as the temporary standard in the GC
correction step. It will be lost in the following normalization step: the GC corrected RDs
of each window are divided by the global median RDs. Because the denominator is
calculated from the RDs already corrected by the 40% GC windows, this parameter will
be lost and is not necessarily dependent on the organism of interest.
The CG correction of CNVnator was the combination of the correction and
normalization steps of CNVcaller. The equation is as follow:

Where i is bin index,  is raw RD signal for a bin,   is corrected RD signal for the bin,   is
average RD signal over all bins, and  is the average RD signal over all bins with the
same GC content as in the bin.

The commentary on certain genomes not being as complete as others is important. I
suspect though that if a large percentage of the samples show a CNV in a genome that
is newer or not as complete, then this observation may be more likely indicative of a
problem with the reference. Can you comment?
If the detected CNVR has variation in population, which means the read depths can be
separated into two or more normal distributions, this call is probably true even with high
frequency. On the contrary, if all of the individuals show the same abnormal read
depth, it suggests the reference individual is indeed different from the sampling
population or have assembly problems.

7:145  I am not convinced Pearson's correlation is appropriate. Your data is likely to
have outliers and non-normal data. A non-parametric test of correlation like
Spearman's correlation (Kendall-Tau is likely too computational intensive), or
performing correlation after 5 or 10% trimming may be more appropriate.
We tried to replace the Pearson's correlation with Spearman's correlation in the 30
BAM files from 1000 Genome Project data. However, after replacement the FDR
doubled while the length of each calls reduced to half. A possible reason was the
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Spearman's correlation was calculated by sorting of the read depth. So, the diverged
copy numbers of deletion or duplication individuals contribution no more than the
subtle random mistakes of the normal individuals. In the low frequency CNVRs, the
Spearman's correlation index was mainly contributed by the random mistakes of the
normal copy individuals.
The trimming is also not recommended for similar reason. In the low frequency
CNVRs, the individuals with abnormal copy number will be trimmed as outliers.

cn.MOPS (Klambauer et al, PMID: 22302147) uses a mixture of Poissons as opposed
to Gaussian Mixture Models for CNV detection. I suspect the mixture of Poissions will
be superior to Gaussian Mixture Models when the read depths are low, and Gausssian
mixtures may be more appropriate when read depths are high. How difficult is it to
replace the Gaussian mixtures with Poisson mixtures and compare the performance? I
feel that this analysis would be informative and potentially improve your algorithm.
Thank you for your suggestion. However, it is not easy to replace the distribution
because the RDs after GC correction and normalization are not integer so they can not
be directly treated as Poisson distributions. Basically, CNV caller recommended a
proper window size to make the standard variation less than 30% of the mean RD,
which will not fit the Poisson distribution for RDs. Besides, we used the RDs of 232
goats with 10X coverage to test the fitness of Gaussian distribution using omnibus test
(packages). As a result, 88% windows accepted the null hypothesis at P=0.01 level.
So, we believe the Gaussian Mixture Models was acceptable for the 10 X data.

The term "CNVR" is critical for understanding the algorithm, and requires more
explanation of the term.
We apologies for missing this important concept. The explanation has been added to
the introduction as follows.
“To compare the copy number of a particular region across the samples, the shared
CNVs among individuals are needed, so the unified CNV regions (CNVRs) were
merged from the individual CNVs.”
   It would be helpful to include some further discussion on where you see that
CNVcaller works better or worse than existing CNV calling software.
Figure 2 showed the speed of CNVcaller was one to two orders of magnitudes higher
than the other methods. Figure 4 and Figure 6 have been added to evaluate the effect
of the length and frequency in sheep and human data. On general, the performance of
CNVcaller was better for all sizes of duplications, however poorly on deletions < 2.5 kb.

9:180. The "arbitrary standards" require a citation.
Two citations were added.
1.Chain FJ, Feulner PG, Panchal M, Eizaguirre C, Samonte IE, Kalbe M, et al.
Extensive copy-number variation of young genes across stickleback populations. PLoS
genetics. 2014;10 12:e1004830.
2.Abyzov A, Urban AE, Snyder M and Gerstein M. CNVnator: an approach to discover,
genotype, and characterize typical and atypical CNVs from family and population
genome sequencing. Genome research. 2011;21 6:974-84.

Minor comment: Since speed seems to be a major selling point of the software, more
details about running the software on a compute cluster or running algorithms in
parallel in the documentation would be helpful.
A new part of “Parallel submission of individual RD processing” has been added to the
methods with the principle and command as follows.
“CNVcaller processes the BAM file of each individual separately in the first step, so
parallel submissions can be used to save the total running time. All the BAM files
should be equally distributed in to N groups, and each group contains M files. The max
N = the available processing cores. M = the total number of BAM files/ N. For example,
the 232 goat BAM files were processed on a node with 32 processing cores and 128
GB of RAM. We distributed the 232 files into 20 groups, and each group contained 12
BAM files. The shell command for one group likes following:
#!/bin/sh
for i in {1..M}
 do bash Individual.Process.sh -b $i.bam -h $i -d dup -s sex_chromosome
done
After corrections and normalization, the comparable RDs of each sample are
concentrated to an ~100 MB intermediate file and output. This design avoids the
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repeated calculation of the same individual in different populations.”
 
************************
Reviewer #2:

The proposed method "CNVcaller" enables the efficient discovery and genotyping of
CNVs in large populations. One of the main benefits of the method is that it can handle
draft genome assemblies with thousands of scaffolds. The computational benchmarks
proof that the method is fast and memory efficient but the evaluation of the accuracy of
the method is less convincing. Some details of the method remain vague and hinder an
objective evaluation. Detailed comments of how to improve the manuscript are below:
Thank you for your affirmation. We are sorry for the ambiguous of the accuracy test,
and have substantially revised the manuscript upon your suggestions. In the revised
manuscript, the performance evaluation in previous Table 1 was described more detail
and classify by the species in Figure 4 and Figure 6.

Comment 1 - The primary application of CNVcaller is the detection of CNVs in large
populations. Population variant call sets are dominated by rare variants of rather small
size. For instance, less than 20% of the 1000 Genomes structural variants have a
population allele frequency >5% and almost 50% of the SVs are <2kbp in size despite
the rather low coverage (~7x). CNVcaller is currently restricted to large CNVs (>2kbp)
and common variants (>5% allele frequency), which is a major limitation for population
genomic studies.
In the revised version, all detected calls were included in the IRS test. In fact, all three
methods can report some short and rare CNVRs. However, the short and rare
duplications made by Genome STRiP and CNVnator had extremely high FDR. So, we
excluded these results from the previous version of manuscript as 1000 GP.
The newly added Figure 6 showed the shortest duplication reported by CNVnator and
Genome STRiP was 2.8 kb and 2.5 kb, and the IRS FDR of 2.5-5kb calls are 29% and
88%, respectively. The FDR of >2.5kb singletons was 35% and 69% for CNVnator and
Genome STRiP, respectively. These uncertain calls were also removed by the phase 3
extended SV release of 1000GP. After extra quality controls, the number of
duplications in the released database are only 1/7 of deletions, and the median size
was 36 kb, 17 times longer than deletions. Therefore, improving the accuracy of
duplications on this foundation is meaningful for enrich the CNV database. The main
improvement of CNVcaller is the accuracy of duplications. The FDR of 2.5 kb – 5 kb
was reduced to 19%, and the >2.5kb singletons was reduced to 9%. However, the
FDR were still higher than the longer and higher frequency calls.
Besides, the current main usage of CNVcaller is to detect the CNVRs related to
economy traits in livestock and crops. In these populations, the target CNVs usually
have a medium or high frequency after long time artificial selection. We believe the
high-confident medium to high frequency reported by CNVcaller can contribute to the
functional and breeding study of non-human studies.

 The sensitivity increase of CNVcaller for the subset of common and large CNVs
seems to be driven by an increased number of detected CNVs in SD regions (Figure
5C). SNP arrays have a low SNP density in SD regions and in the present Manuscript
array SNP probes in SD regions have been removed entirely. The reported IRS FDR is
therefore heavily biased against CNVs in SD regions and it thus seems mandatory to
me to proof that this sensitivity increase for SD-associated CNVs is not leading to an
inflated FDR.
Thanks for your suggestions. Figure 5C (New Figure 3C) was updated to show both
the number and the Mendelian inconsistence of the detected CNVs in SDs. The
inconsistence rate of the calls in SD regions made by CNVcaller was about 3%. The
copy numbers of unique and SDs were also indirectly validated by the X-origin
scaffolds of a 133-sheep population. In both validation dataset, one main reason for
acceptable FDR in SDs was most SDs in sheep reference genome assembly is
actually mis-assembled unique region.
The detailed description are as follows:
“In the real dataset, CNVcaller detected more duplications in the SDs of the sheep
genome with only 3% Mendelian inconsistence (Figure 3C, Supplementary Figure 3).
Because the lack of validated sheep CNVR database, the sensitivity was validated
indirectly. Based on our integrated analysis (see method), there are 138 sheep X
chromosome origin scaffolds, which were not anchored onto chromosomes of OAR
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v3.1. Therefore, all of these scaffolds should be detected as CNV because the rams
had half copy numbers of ewes. As a result, CNVcaller detected 101 out of these 138
X-origin scaffolds, with a sensitivity of 73%. Furthermore, the corrected copy numbers
of these scaffolds were centralized at integer (Figure 3D), whereas the peaks of the
raw copy numbers were ambiguous because of splitting the raw RDs among the
putative SDs (Supplementary Figure 4). In contrast, CNVnator and Genome STRiP
could not report these unmapped CNVRs.”

The Manuscript lacks a Figure that shows the size and allele frequency distribution of
the discovered CNVs in comparison to Genome STRiP and CNVnator. An estimate of
breakpoint accuracy of CNVcaller would also be valuable.
Thanks for your suggestion. Figure 4 and Figure 6 have been added to evaluate the
effect of the length and frequency in sheep and human data. On general, the
performance of CNVcaller was better for all sizes of duplications, however poorly on
deletions < 2.5 kb.
The breakpoint accuracy is an innate disadvantage of RD methods. Because the
detailed situation within a window is not calculated. And the window size cannot be too
small for the medium or low coverage sequencing data. We recommend the user to
combine the read pair or split read methods to improve the breakpoint accuracy.
The detailed comparations in the manuscript are as follows:
“The detected CNVRs of CNVcaller and Genome STRiP were further analyzed against
the length and alternative allele frequency (Figure 4B). CNVcaller performed better in
duplication detection, it can detect duplications <2.5 Kb, and the Mendelian
inconsistence of longer calls were lower than Genome STRiP (3% versus 9% for 2.5Kb
~ 5Kb calls; 2% versus 5% for > 5Kb calls). On the other hand, Genome STRiP
detected 1958 more < 2.5Kb deletions than CNVnator. One possible reason was
Genome STRiP integrating RP methods which have higher capability in detecting
shorter deletions. In terms of the frequency, because the detected samples were three
trios, most CNVRs were medium frequency (6%-50%). The rare duplications tended to
have a higher FDR than the median and high frequency calls (Figure 4C).”
“First, CNVcaller demonstrated the highest overall accuracy for detecting duplications,
and the FDR of CNVcaller are relative consistent across duplication length and
frequency categories. Whereas the short or singleton duplications of other two
methods have high FDR. Second, 43% duplications detected by CNVnator were >20
kb. This was not due to the merged individual CNV to the CNVR, because the average
size of individual calls was 3-4 times larger than the other methods. Third, Genome
STRiP also showed the highest capability for detecting deletions, especially the short
and rare ones, indicating the advantage of combining RD and RP methods in deletion.
Besides directly combination of the two methods into one piece of software, another
option was using high-confidence RD results generated CNVcaller as the prior to
improve the accuracy of the read pair/split read pipeline.”

The Manuscript mentions mrsFAST for absolute copy number validation. I could not
find any formal comparison of predicted copy-number by mrsFAST and CNVcaller but
maybe I missed this?
Supplementary Figure 2 (Previous Supplementary Figure 1) showed the copy number
calculated from mrsFAST and CNVcaller was similar. However, mrsFAST needed to
realign all the multi-hit reads in BWA alignments, leading to significantly increased
computational time. For example, mrsFAST needed 10 hours for a 3G genome with
10X sequencing data, whereas, CNVcaller only needed 4 minutes.
- Please add to Table 1 the number of CNV sites that could be assessed by the IRS
method and what proportion of each call set could be evaluated using IRS. I also
believe the IRS method reports p-values separately for deletions, duplications and
multi-allelic CNVs. Was there any difference among these for CNVcaller?
The detailed information of 1000GP calls including the required information has been
added to Supplementary Table 5. Overall, 28%, 30% and 60% CNVRs of CNVcaller,
CNVnator and Genome STRiP covered at least one probe of Affymetrix SNP 6.0 array,
therefore can be assessed by IRS test. One main reason for the diverged testable
proportion was only 4% of Genome STRiP calls were overlap with SDs which have
seldom probes, whereas the 34% CNVcaller calls and 28%CNVnator calls were
overlap with SDs.
Two extra genome-wide evaluations can provide supplemental proofs. The Mendelian
inconsistence of 10 Dutch family was added in Supplementary Figure 5, which can test
both unique and SD regions. The inconsistence rate of CNVcaller, CNVnator and
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Genome STRiP was 1.5%, 4.4%, and 0.4%. This accuracy ranking was consistent with
the genotyping discordance compared with the aCGH database, which were 2.6%,
5.5% and 2.2% for CNVcaller, CNVnator and Genome STRiP respectively.

- Some details of the method are vaguely specified and some Figures lack clarity and
units.
Page 6, line 129: "... if the median RD of the homogametic sex chromosomes is about
half of the median RD of autosome..."
Modified as follows:
“Most mammalian and avian genomes show XX/XY-type or ZZ/ZW-type sex-
determining system. Their homogametic sex chromosomes (X or Z) constitute 5%-10%
of the total genome, and show half RD of the autosomes in XY or ZW individuals.
Therefore, insensitive corrections are needed. The name of the homogametic sex
chromosome is required as a parameter. If the median RD of this chromosome is
<0.6X of the median RD of the autosome, this individual is determined as the XY or
ZW type, and the RDs of this chromosome are doubled before normalization.
Otherwise, this individual is determined as XX or ZZ type, and no sex correction will be
done.”

Page 8, line 154: "... and the distance between them is less than a certain percent of
their own length."
Modified as follows: “The distance between the two initial calls is less than 20% of their
combined length.”

Page 5, line 91: "The reference genome is segmented into overlapping sliding
windows." What window size and overlap was used for high-coverage genomes?
The following description was added in methods.
“The window size is an important parameter for the RD methods. CNVcaller uses half
of the window size as step size. The optimal window size is 800 bp (with a 400 bp
overlap) for 5-10X coverage human and livestock sequencing data (Supplementary
Figure 1). The recommended scales roughly inversely coverage, resulting in 400 bp
windows for 20X coverage and 200 bp windows for 50X coverage.”

Page 5, line 95: "The raw RD signal is calculated for each window as the number of
placed reads with centers within window boundaries." Does this imply that for paired-
end data both reads are counted?
Yes, considering the uncontrollable effect of gap ratios from different genome
assemblies, all of the end reads located in the window are independently added to the
RD of this window, regardless of the read is from single end mapping or paired
mapping.

Page 8, line 154: "Then the two adjacent initial calls are further merged if their copy
numbers are highly correlated". What threshold was used?
Modified as follows: “CNVRs can be separated by gaps or poorly assembled regions,
therefore, the adjacent initial calls are merged if their RDs are highly correlated. The
default parameters are: the distance between the two initial calls is less than 20% of
their combined length, and the Person’s correlation index of the two CNVRs is
significant at P = 0.01 level.”

Figure 3A: CNVcaller 13.7. What is the unit? Are these 13,700 CNVs?
The unit of this figure was Mbp, because the intersection of the three methods was
hard to define in number with different boundaries, so they are evaluated in length.
CNVcaller covered 40% of the CNVRs detected by CNVnator, 45% of Genome STRiP
and 65% of their intersection, in length.

Minor:
- I could not find a reference to the 232 goat sequencing data? Is this data publicly
available?
Among the 232 goat whole genome sequencing data, 103 were acquired from NCBI
(reference paper see below), and the accession numbers are provided in
Supplementary Table 1. The remaining 129 samples without accession number were
generated by ourselves.
Badr Benjelloun FJA, Streeter I, Boyer F, Coissac E, Stucki S, et al. (2015)
Characterizing neutral genomic diversity and selection signatures in indigenous
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populations of Moroccan goats (Capra hircus) using WGS data. Frontiers in genetics 6.
Dong Y, Zhang X, Xie M, Arefnezhad B, Wang Z, et al. (2015) Reference genome of
wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic
basis of goat domestication. BMC genomics 16: 431.
Dong Y, Xie M, Jiang Y, Xiao N, Du X, et al. (2013) Sequencing and automated whole-
genome optical mapping of the genome of a domestic goat (Capra hircus). Nature
biotechnology 31: 135-141.
Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, et al. (2017) Single-molecule
sequencing and chromatin conformation capture enable de novo reference assembly
of the domestic goat genome. Nature Genetics 49: 643-650.
Wang XL, Liu J, Niu YY, Li Y, Zhou SW, et al. Low incidence of SNVs and indels in trio
genomes of Cas9-mediated multiplex edited sheep. BMC Genomics. Under review.

- The first Results section "Overview of CNVcaller algorithm" seems better suited for
the Methods part.
 Modified as suggested.

- Is the Mendelian consistency higher for the high-coverage trio: NA12878, her father
(NA12891) and her mother (NA12892)?
Yes. Upon the high coverage data of all three members of the trio (NA12891, NA12892
and NA12878 are all 50 X), the inconsistent rate was 2.4%. Upon the high coverage
parents (50 X NA12891 and NA12892) and low coverage child (5.3 X NA12878), the
inconsistent rate was 6.1%. So, the increased sequencing depth can help to reduce
the number of false positives.

- I believe the claim that read-pair/split-read algorithms are less powerful on draft
assemblies of non-model organisms compared to read-depth methods is potentially
true but the Manuscript lacks a proof for this or a citation that supports this claim.
Thank you for your agreement. This problem was found in our previous reference
genome assembly projects for both sheep and goats. However, we did not report this
result in the section of CNV/SD detection. So, we removed this comment from this
manuscript. However, we found the following citations may help to support this claim:
 All of these algorithms including read-pair/split-read (RP/SR) and read-depth rely on
mapping sequencing reads back to reference genome. However, for many non-model
organisms, the reference genome likely contains many errors, which mainly arose from
repeat collapse and expansion; and rearrangement and inversion [1] . These mis-
assembly sequences and the repetitive regions of the genome can result in many pair-
end reads have multiple good mappings, thus it is difficult for RP/SR to uniquely
identify the true CNVs boundaries[2]. However, based on read depth by considering all
possible map locations for a read can address this problem[3].
1. Phillippy AM, Schatz MC, Pop M (2008) Genome assembly forensics: finding the
elusive mis-assembly. Genome biology 9: R55.
2. He D, Hormozdiari F, Furlotte N, Eskin E (2011) Efficient algorithms for tandem copy
number variation reconstruction in repeat-rich regions. Bioinformatics 27: 1513-1520.
3. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, et al. (2009)
Personalized copy number and segmental duplication maps using next-generation
sequencing. Nature genetics 41: 1061-1067.

- It is not clear from the Manuscript if CNVcaller reports copy-number likelihoods based
on the Gaussian mixture model. Please clarify.
Thank you for you suggest. CNVcaller reports the silhouette coefficients of the copy
numbers instead of the Gaussian mixture model likelihoods as quality control. Because
we found silhouette coefficients has greater correlation with IRS test result than
likelihoods.

- Figure 5A: Why is the absolute copy-number correction different for Human and
Sheep?
We are sorry for not clearly interpreting the high-proportioned mis-assembled
segmental duplications in non-human assemblies. This part was modified as follows:
“Previous studies showed high proportion of SDs in animal genomes are mis-
assembled single copy regions. So, we validated the copy numbers on human (hg19)
and sheep (OAR v3.1) reference genome assembly by the sequencing copy number of
a human (NA12878) and a Tan sheep sample (Figure 6A). If the SDs were correctly
assembled, the sequencing diploid copy number should be two times of the copy

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



number of SDs. For example, the average sequencing copy number of the two-copy
SDs was four in NA12878. However, the corresponding sequencing copy number of
sheep was only 2.4. These results indicated most two-copy SDs of hg19 were truly
duplicated in NA12878 while approximately 80% of the two-copy SDs in OAR v3.1
were unique regions in the Tan sheep sample. So, the SDs in sheep genome were
called “putative SDs” before validation.”

- There is quite a few typing and grammatical errors. For instance:
*Figure 2B: Max mamory
*Supplementary Table 3: Memery
*Page 3, line 53: ...the number of reads aligned to of a particular region.
*Page 8, line 160: This model presets the average copy number of homozygous
deletion, heterozygous deletion, normal, heterozygous deletion (duplication!),
homozygous deletion (duplication!) at zero to four respectively.
We are sorry for these mistakes. We have proofread the revised manuscript and used
professional English language editing to minimize the grammatical errors.

***********************************
Checklist of the updated tables and figures

Current versionLast version
Fig. 3Fig. 5
Fig. 4A-CTable 1 and newly added
Fig. 4DFig. 3B
Fig. 5Fig. 4
Fig. 6A-CTable 1 and newly added
Fig. 6DFig. 3A
Supplementary Fig. 1Newly added
Supplementary Fig. 2Supplementary Fig. 1
Supplementary Fig. 3Newly added
Supplementary Fig. 4Supplementary Fig. 2
Supplementary Fig. 5Table 1 and newly added
Supplementary Table 4Newly added
Supplementary Table 5Newly added
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Abstract 

Background: The increasing sequencing data of a wide variety of species can be used for copy 

number variation (CNV) detection at the population level in theory. However, the growing sample 

size and the divergent complexity of non-human genomes challenges the efficiency and robustness 

of the current human-oriented CNV detection methods.  

Result: Here, we present CNVcaller, a read depth based method for CNV discovery in population 

sequencing data. The speed was 1-2 magnitudes higher than CNVnator and Genome STRiP in 

complex genomes with many unmapped scaffolds. The detection for 232 goats takes only 1.4 days 

on a single computing node. The Mendelian consistence test of sheep trios indicated that 

CNVcaller mitigated the influence of high-proportioned gaps and mis-assembled duplications in 

the non-human reference genome assembly. Furthermore, the validation of both sheep and human 

samples showed CNVcaller achieved the best accuracy and sensitivity in duplications compared to 

other methods.  

Conclusion: The fast and general detection algorithms of CNVcaller overcome prior 

computational barriers for detecting CNVs from large scale sequencing data with complicated 

genome structures. These advantages promote the population genetic analysis of functional CNVs 

in more species. 

 

Keywords 

copy number variation (CNV), next-generation sequencing (NGS), read depth (RD), population 

genetics, absolute copy number. 
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Introduction 

Copy number variations (CNVs) are defined as duplications or deletions of genomic segments that 

range in size from 50 base pairs (bps) to megabase pairs (Mb) and vary among individuals and 

species [1]. As a prevalent and important source of genetic diversity, the number of CNVs 

detected in the human genome were over 50,000 and accounted for 10% of the whole genome[2]. 

CNVs can regulate the gene expression by both dosage and position effects, and have larger 

expression-altering effect sizes than do SNVs and indels [3]. In the human genome, CNVs are 

important genetic components of numerous diseases [4,5] and are a main force of evolution [6]. 

The CNVs in both animals and plants are also associated with economically important phenotypes 

and functions [7-11].  

 With the dramatic growth of the sequencing capacity and the accompanying drop in cost, an 

enormous amount of large-scale sequencing has been completed and available in public database. 

Currently, several strategies are used to detect CNVs using whole genome sequencing data: 1. 

Pead-pair (PR) and split-read (SR) methods analyze the abnormally mapping pair-end reads and 

the gapped alignment [12-15]. 2. Read-depth (RD) methods analyze the depth of the coverage in a 

genomic region that can be calculated by the number of reads aligned [16]. The RD is correlated 

with the copy number of the region, e.g., a duplicated region should have a higher RD than 

expected [17-19]. 3. The short reads local assembly methods extract the reads that mapped near 

the predicted breakpoint and assembles them into longer sequence contigs [20,21]. Employing 

multiple methods in one dataset can increase the total sensitivity [22], however, the efficiency and 

convenience would consequently become the subsequent concern, as the computational efficiency 

is one of the biggest challenges for the current CNV detectors.  
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The increasing sequencing sample size also enabled the discovery of functional CNVs using 

genome-wide association study (GWAS) in population level [11]. To compare the copy number of 

a particular region across the samples, the shared CNVs among individuals are needed, so the 

unified CNV regions (CNVRs) were merged from the individual CNVs [23]. However, detecting 

CNV individually then merged by arbitrary standard are low efficient and not feasible for the large 

cohort. Therefore, the population genetic information is applied to improve the detecting accuracy. 

A typical strategy is assuming the RD of a sliding window of all the samples to follow a specific 

distribution and imply populational merging criteria to directly report the CNVRs. A typical 

strategy is to simultaneously scan the genomes of multiple samples, then decomposes the 

variations in the RD across samples into true variations and noises by priori distributions [24,25]. 

In addition, the complicated genome structure of many non-human species demands more 

robust signal detection and noise reduction algorithms. First, the gaps and unplaced scaffolds are 

riddled with the reference genome assemblies of most non-model organisms [26,27], increasing 

the detecting errors. Second, because the heterogeneity alleles are easily misassembled into 

tandem duplication, a high proportion of the mis-assembled segmental duplications (SDs) exist in 

the non-human reference genomes [28]. For example, in the cattle genome assembly, Btau 4.1, 

97% of the highly similar tandem duplications are actually single copy regions [29]. These error 

duplications can lead to false CNVRs discovery and genotyping.  

 In this study, we introduce a super-fast and generally applicable method, CNVcaller, for 

discovering CNV from sequencing data in large populations. This software is based on the RD 

algorithm and implies robust signal detection and noise deduction methods to increase the 

computational efficiency in complex genomes. We applied it to the population sequencing data 
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from humans, livestock and crops to demonstrate its utility and benchmarked it against the RD-

based individual CNV detector CNVnator, which has been used in yak, chicken and fish cohorts 

[30-32], and the best practice population-level CNV detector Genome STRiP. 

 

Materials and Methods 

Input data 

The main input of CNVcaller is the alignment files in BAM format. The following data/samples 

were included in the validation.30 human BAM files from the 1000 Genome Project (1000GP) 

Phase 3 [33], including 27 normal (~12X) and three deeply sequenced samples (~50X). 30 BAM 

files (~20X) from 10 families from the Genomes of Netherlands (GoNL) project [34]. 70 FASTQ 

files from domestic sheep samples (~10X) from the NCBI BioProject: PRJNA160933. 232 goat 

whole genome sequencing data, among these, 103 were acquired from NCBI [35-38], and the 

accession numbers are provided in Supplementary Table 1. The remaining 129 samples without 

accession number were generated by ourselves (unpublished data). Two maize [39] and two 

soybean [11] FASTQ files (each species contain one ~5X and one ~10X sample). Three Tan sheep 

trios, including 8 individuals (~19X) and 129 goat (~12X) data were from unpublished data. An 

additional table shows the downloaded files in detail (Supplementary Table 1).  

The FASTQ files were aligned to their respective reference assemblies using BWA 0.7.13 to 

generate BAM files [40]. The versions of the reference genomes include human GRCh37, maize 

B73 RefGen_v3, soybean Glycine_max_v2.0, sheep OAR_v3.1 and goat ARS1. The GATK v3.5 

[41] pre-processing workflow was used to produce the analysis-ready BAM files. After alignment, 
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the PCR duplications were marked by Picard 2.1 (https://broadinstitute.github.io/picard), and the 

realignment was performed by GATK. The reads with a 0x504 flag (indicating unmapped, 

secondary mapped or PCR duplication) were removed. 

Individual RD processing 

RD Estimation. The pipeline of CNVcaller was showed in Figure 1. The reference genome is 

segmented into overlapping sliding windows. The windows are indexed to form a reference database, 

which is used in all samples. The sliding windows with >50% gaps are excluded from the database 

and further computation. The BAM file of each individual was parsed out using SAMtools v1.3 

[42]. The raw RD signal is calculated for each window as the number of placed reads with centres 

within the window boundaries. This step consumes less than 500 MB maximum memory for one 

BAM file, so parallel submitting is recommended. The window size is an important parameter for 

the RD methods. CNVcaller uses half of the window size as step size. The optimal window size is 

800 bp (with a 400 bp overlap) for 5-10X coverage human and livestock sequencing data 

(Supplementary Figure 1). The recommended scales roughly inversely coverage, resulting in 400 

bp windows for 20X coverage and 200 bp windows for 50X coverage.  

 

Absolute copy number correction. To perform the absolute copy number correction, windows 

with >97% sequence similarity are linked together to form a duplicated window record file. This 

file is generated by splitting the reference genome into non-overlapping windows and aligning 

them onto the reference genome using the precise aligner BLAT v. 36x1 [43]. The windows with 

more than 20 hits are excluded to remove the low complexity regions. The record files of humans, 
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livestock and main crops can be downloaded from the CNVcaller website 

(http://animal.nwsuaf.edu.cn/). 

 Based on the duplicated window record file, the raw RDs, located on similar windows, are added 

together to generate the absolute RD for all the high similarity windows.  

 

where i is the index of the window to be corrected, and t is the total number of the high 

similarity windows.  is the raw RD of the window similar with the i-th window (including 

the i-th window itself), which is counted directly from the BWA alignment, and  is the 

corrected RD of the i-th window, which can be used to deduce the absolute copy number.  

 

GC correction. Considering that the population sequencing data may come from different 

platforms, the RD of each sample was counted and corrected individually. Since the resequencing 

samples may show various GC content distributions, the GC bias is corrected individually 

basically as CNVnator [18]: 

 

where i is the window index,  is the RD after the absolute copy number correction, 

 is final corrected RD for the window,  is the mean RD of windows with 40% 

percent GC as a standard, and is the mean RD over all the windows that have the same GC 

content with the i-th window.  

 

RD normalization. Because the samples have different sequencing depths, the corrected RD need 
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to be normalized to a single standard before the population-level CNV detection. Assuming that 

the majority of the genome is normal copy number, the corrected RDs are divided by the global 

median RD to normalize to one.  

 

where the  is the median of the  of all the windows.  

Most mammalian and avian genomes show XX/XY-type or ZZ/ZW-type sex-determining 

system. Their homogametic sex chromosomes (X or Z) constitute 5%-10% of the total genome, 

and show half RD of the autosomes in XY or ZW individuals. Therefore, insensitive corrections 

are needed. The name of the homogametic sex chromosome is required as a parameter. If the 

median RD of this chromosome is <0.6X of the median RD of the autosome, this individual is 

determined as the XY or ZW type, and the RDs of this chromosome are doubled before 

normalization. Otherwise, this individual is determined as XX or ZZ type, and no sex correction 

will be done. 

 

Parallel submission of the individual RD processing. CNVcaller processes the BAM file of 

each individual separately in the first step, so parallel submissions can be used to save the total 

running time. All the BAM files should be equally distributed in to N groups, and each group 

contains M files. The max N = the available processing cores. M = the total number of BAM files/ 

N. For example, the 232 goat BAM files were processed on a node with 32 processing cores and 

124 GB of RAM. We distributed the 232 files into 20 groups, and each group contained 12 BAM 

files. The shell command for one group likes following: 

i
i corrected
normalized

global

RD
RD

RD


globalRD
i

correctedRD
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#!/bin/sh 

for i in 1..M 

 do bash Individual.Process.sh -b $i.bam -h $i -d dup -s sex_chromosome 

done 

After corrections and normalization, the comparable RDs of each sample are concentrated to an 

~100 MB intermediate file and output. This design avoids the repeated calculation of the same 

individual in different populations. 

 

CNVR detection by multiple criteria 

Individual candidate CNV window definition. The individual candidate CNV windows are defined 

using two criteria: (1) The normalized RD is significantly higher or lower than the normalized 

mean RD (deletions < 1 – 2 * STDEV; duplications > 1 + 2 * STDEV). (2) Considering that the 

normalized RD of the heterozygous deletions and duplications should be approximately 0.5 and 

1.5, respectively, an empirical standard for the normalized RD (deletions < 0.65; duplications > 

1.35) also needs to be achieved. For some strictly self-bred species, such as soybean and wheat, 

this empirical standard should be raised to 0.25 or 1.75 for the normalized RD of the homozygous 

deletions or duplications, respectively. 

 

Population-level candidate CNV window definition. All the individual RD files are piled up by the 

universal window index to a two-dimensional population RD file. Each line of this file is the 

multi-sample RDs of a particular window, from which the candidate CNV windows are selected. 
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The user can retain all the windows with at least one individual shows heterozygotic deletion or 

duplication. However, we recommend removing the low frequency windows in large population 

with low sequencing coverage because of increased random mistakes. By default, the windows 

with allele frequency ≥ 0.05 or at least two homozygous duplicated/deleted individuals are 

selected for the further validation. Then, Pearson's product–moment correlation coefficients of the 

multi-sample RDs are calculated between the two adjacent non-overlapping windows. If the 

Person’s correlation index is significant at P = 0.01 level by Student’s t test. The two windows are 

merged into one call. 

 

CNV region definition. The initial CNVRs are selected if more than four sequential overlapped 

windows are defined as the population-level candidate windows. For each individual, the medium 

RD of all the windows in this CNVR was defined as the RD of this CNVR. For noise tolerance, at 

most, one unselected window out of four continuous candidate windows is allowed to exist in the 

CNVR, however, their RD is not calculated in the RD of CNVR. CNVRs can be separated by gaps 

or poorly assembled regions, therefore, the adjacent initial calls are merged if their RDs are highly 

correlated. The default parameters are: the distance between the two initial calls is less than 20% 

of their combined length, and the Person’s correlation index of the two CNVRs is significant at P 

= 0.01 level. 

 

CNVR Genotyping  

After merging the candidate CNV windows into a CNVR, the RDs of all samples in each CNVR 
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are clustered, and the integer copy number of each individual is deduced. This step is called 

genotyping as used in SNP detection. The copy number of a specific sample is initially estimated 

by two times the median RD of all the candidate windows in this region. Then, the copy numbers 

of all samples of a CNVR are decomposed into several Gaussian distributions. The expectation 

maximization (EM) algorithm is used to estimate the model parameters, and the Dirichlet Process 

is used to infer the effective number of components. The silhouette coefficient is calculated for 

each CNVR as the quality control of the genotyping. The python package scikit-learn v0.19.0 [44] 

is used to implement the above algorithms. This genotyping step could be sequential or parallel, 

and the parameter “nproc” is used to control the number of processes. The genotyping of 232 

goats took 17.49 minutes and used 488 MB of memory on one node with two processors. The 

final output is the variant call format (VCF) file and can be analysed by SNP-based population 

genetic software. 

 

Performance evaluation 

Competing methods. Most of the validations were based on the 30 human BAM files from the 

1000 GP Phase 3 unless otherwise noted. The performance of CNVcaller was compared with two 

pipelines, including CNVnator_v0.3.3 [18], which is well used in animal population CNVR 

detection, and Genome STRiP (included in svtoolkit_2.00.1696) [25], which is the state-of-the-art 

human population CNV detector. The recommended parameters and quality controls were used. 

For Genome STRiP, both the deletion and CNV pipelines were performed. The unplaced scaffolds 

were excluded, and the whole genome was separated by chromosomes as recommended. The 
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standard screens were applied to select the passing sites and remove the duplicated calls. For 

CNVnator, a 400 bp window was used as recommended. The gap regions and calls with a p value 

less than 0.01 were removed. We also used the q0 filter to remove any predictions with q0 < 0.5 

(reads with multiple mapping locations) as recommended. The individual CNVs of all samples 

were merged into the population CNVRs by the following arbitrary standards: two calls 

have >50% reciprocal overlap with each other or >90% of one call is covered by another call 

[18,32]. Then, the CNVRs were genotyped by the built-in function of CNVnator. 

 

Sensitivity validation. Sensitivity was defined by the number of CNVs called by both the CNV 

predictions and the high-confident CNVR database (>50% reciprocal intersection) out of the total 

known CNVs of the particular samples in the database. The calls with <=2,500 bp and alternative 

allele frequency <5% and sex chromosomes were removed from this study. Two previously 

published databases, including the same samples from the test data, were used. One is the 1000 GP 

CNVR map [2], which included 26 tested samples, and the other is the array comparative genomic 

hybridization (aCGH) based CNVR database [1], which included 10 tested samples. The CNVRs 

of the specific samples were extracted from the database and were then screened by the same 

length and frequency as the detected CNVRs (length >2,500 bp and alternative allele frequency 

≥0.05). The intersected length of the predicted CNVRs and the high-confident CNVR database 

was calculated by the bedtools v2.25.0 [45]. 

 

Accuracy validation. The intensity rank-sum (IRS) test (included in the svtoolkit_2.00.1696) was 

performed based on the intensity data of the Affymetrix SNP 6.0 array, including 26 test samples. 
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The segmental duplication (SD) regions were removed [25] because the probe design did not 

cover the high similarity regions. The genotyping accuracy was calculated based on the aCGH 

CNVR database [1]. We took an intersection of the predicted regions and the aCGH database 

using bedtools. The predicted CNVs were considered as subject to validation if the predicted 

regions have a >90% reciprocal intersection with one CNVR in the database. The predicted copy 

number was in exact agreement with the integer genotyping from the aCGH database, which was 

defined as correct. The Mendelian inconsistencies were calculated from the deleted and biallelic 

duplicated CNVRs (maximum copy number < =4) in the Dutch families and sheep trios.  

 

Sheep genotyping validation by CNVplex assay. A total of 73 sheep, including Merino, Texel, 

Mongolia and Tibetan sheep, were used for genotyping validation. Genomic DNA was extracted 

from the peripheral blood using the QIAamp DNA blood mini kit (Qiagen, Germany). 

Resequencing (~10X) was performed for each sheep, and the CNVRs were detected by CNVcaller 

as described above. The predicted CNVRs, with a high variation frequency, were selected for the 

validation. The copy numbers were validated by CNVplex® (Genesky Biotechnologies Inc., 

Shanghai, China), which is based on double ligation and multiplex fluorescence PCR [46]. The 

probes were designed to target the candidate windows of the target CNVR. The sizes of the PCR 

fragment and target loci sequences in each reaction are listed in Supplementary Table 2. The 

amplified probes were detected as fluorescent signals, and the peak areas were compared and 

normalized to determine the dosage of each target. 
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Absolute copy number validation 

Detecting X-origin scaffolds. The unplaced scaffolds with a high sequence similarity with the X 

chromosome were regarded as X-origin scaffolds. All the scaffolds of OAR v3.1 were mapped to 

the X chromosome of the sheep reference genome OAR v4.0, the goat reference genome ARS1 

and the cattle reference genome UMD 3.1 using BLASR [47]. If the best hit of a scaffold had a 

coverage >50% with >90% identity and >3 Kb length, these scaffolds were defined as the putative 

X-origin scaffolds. In theory, all these scaffolds were expected to be detected as high frequency 

CNVRs because the RDs of the unplaced scaffolds were not corrected by sex. The detection and 

genotyping accuracy in the SD region was estimated by the sex information of 133 sheep. 

 

mrsFAST alignment. The pair-end reads with multiple hits indicated by the “XA” tag in the BWA 

alignment were selected for realignment by mrsFAST_v3.3.10 [48]. The mrsFAST alignment was 

performed basically as previously described [49]. Longer reads were trimmed to 40 bp to reduce 

the read length heterogeneity prior to the sequence alignment. After alignment, the reads with 

more than 20 mapped hits were excluded to remove the low complexity regions. 

 

Simulations of the SD region. To evaluate the sensitivity and accuracy of the absolute copy 

number correction in the putative SD regions, simulations were carried out. The source sequence 

was derived from a randomly selected 50 Mb single copy region of chr1 from the sheep reference 

(OAR v3.1). To simulate the putative SD regions, we randomly extracted 100 non-overlapping 

regions of 5,000 bp and artificially inserted a tandem duplication into the reference genome. In 
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these putative SD regions, 2-6 copies were randomly assigned to 100 individuals, and all other 

regions are treated as normal copy regions.  

The wgsim read simulator was used to sample the reads, assuming a 2% sequencing error 

rate, a 500 bp insert size with a standard deviation of 50 bp and a 100 bp read length under 

different coverage according to the copy number. The coverage of the normal regions was set to 

20X. All the simulated reads were mapped to the modified source sequence using Burrows-

Wheeler Aligner (BWA)[50] with the default parameters. The final BWA alignment file was used 

for calling CNVs by CNVcaller. The outputs about the position and copy number were compared 

with the ground truth.  

 

Results and discussion 

Computational cost in complex genomes from large population based studies 

The robustness of CNVcaller was validated by the real sequencing data of the different genomes. 

The individual RD processing step of CNVcaller was compared to CNVnator, which detects 

CNVs individually. The processing time of CNVcaller was linearly related to the genome size and 

sequencing coverage: 20-40 minutes for a 3 Gb genome with 10X coverage (Supplementary 

Table 3). However, the processing time of CNVnator rose exponentially with the scaffold number, 

which became the only index of time consuming when the scaffold number exceeded one 

thousand (Figure 2A). Consequently, CNVcaller achieved a 145-fold speed increase from 

CNVnator for goat CNV detection. Noteworthy, the goat reference genome ARS1, which contains 

nearly 30 thousand scaffolds, was newly assembled by single-molecule sequencing [38].  
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The memory requirement of CNVcaller is extremely low and is mainly related to the genome 

size: only approximately 500 MB for a mammalian genome, which is less than one twentieth of 

CNVnator (Figure 2B). Therefore, in multi-sample CNV detection, more than 20 missions of the 

individual RD processing step can be run in parallel on one node to further reduce the running 

time. The population-level performance of CNVcaller was evaluated and benchmarked by 

Genome STRiP, which also detects CNVRs at the population level. After removing the unplaced 

scaffolds, CNVcaller was still 3.5-7.8 times faster than Genome STRiP (Figure 2C), with a 70% 

~86% reduction in memory requirement (Figure 2D). CNVcaller can complete the CNV detection 

of 232 goats, with a mean coverage of 12X, in 1.4 days on one node.  

The high efficiency of CNVcaller facilitated the CNV detection in large populations. The 

robustness of CNVcaller also reduces the restrictions of the quality of reference genome, which 

will promote CNV research of the species with a draft assembly at the scaffold level. More 

importantly, this feature enables that CNVcaller is efficient and friendly to detect the 

present/absent variations for pan-genomes. Defined as the entire set of genes possessed by all 

members of a particular species, pan-genomes reveal numerous functional important genes 

unplaced on one single reference genome[51-53]. 

Absolute copy number correction in the putative SDs of sheep genome  

Previous studies showed high proportion of SDs in animal genomes are mis-assembled single 

copy regions [28,29]. So, we validated the copy numbers on human (hg19) and sheep (OAR v3.1) 

reference genome assembly by the sequencing copy number of a human (NA12878) and a Tan 

sheep sample (Figure 3A). If the SDs were correctly assembled, the sequencing diploid copy 
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number should be two times of the copy number of SDs. For example, the average sequencing 

copy number of the two-copy SDs was four in NA12878. However, the corresponding sequencing 

copy number of sheep was only 2.4. These results indicated most two-copy SDs of hg19 were 

truly duplicated in NA12878 while approximately 80% of the two-copy SDs in OAR v3.1 were 

unique regions in the Tan sheep sample. So, the SDs in sheep genome were called “putative SDs” 

before validation. 

CNV detection is confounded by the presence of false SDs. Due to random placement of 

multiple mapped reads, the RD signal in these regions is effectively smeared over all copies 

therefore the copy number is under estimated. At the putative two-copy SD regions, the main peak 

of the copy numbers was one, same as heterozygotic deletions (Figure 3B, yellow). CNVcaller 

implied an absolute copy number correction by simply adding the RD of the putative SDs to 

deduced the absolute copy numbers independent from the copy number on the genome assembly 

(Figure 1). Based on the BWA alignments, this correction takes only 0.06 core-hour for a 

mammalian genome with 10X sequencing coverage. The results are similar with remapping using 

the multi-hit alignments mrsFAST (Supplementary Figure 2). However, the principle of 

mrsFAST was realignment of reads. More than 10 hours were needed for the same data. After 

correction, the main peak of the copy numbers shifted to two at the putative two-copy SDs 

(Figure 3B). Moreover, this peak separated more clearly with the true duplicated regions (with 

diploid copy number four). The simulated data also showed the absolute copy number correction 

can reduce the STDEV of each simulated copy number (Supplementary Table 4).  

In the real dataset, CNVcaller detected more duplications in the SDs of the sheep genome with 

only 3% Mendelian inconsistence (Figure 3C, Supplementary Figure 3). Because the lack of 
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validated sheep CNVR database, the sensitivity was validated indirectly. Based on our integrated 

analysis (see method), there are 138 sheep X chromosome origin scaffolds, which were not 

anchored onto chromosomes of OAR v3.1. Therefore, all of these scaffolds should be detected as 

CNV because the rams had half copy numbers of ewes. As a result, CNVcaller detected 101 out of 

these 138 X-origin scaffolds, with a sensitivity of 73%. Furthermore, the corrected copy numbers 

of these scaffolds were centralized at integer (Figure 3D), whereas the peaks of the raw copy 

numbers were ambiguous because of splitting the raw RDs among the putative SDs 

(Supplementary Figure 4). In contrast, CNVnator and Genome STRiP could not report these 

unmapped CNVRs. 

Performance evaluations on sheep data 

To evaluate the robustness and FDR in sheep, we used CNVcaller, CNVnator and Genome STRiP 

to detect the CNVRs from three sheep trios, respectively. Only 260 CNVRs were reported by 

CNVnator, while 3,386 CNVRs were detected by CNVcaller. More than 90% of the initial calls of 

CNVnator was removed by the gap filtering step. This is not surprising because sheep reference 

genome OAR v3.1 has ~125,000 gaps, while the human reference genome hg19 only has 354 

gaps. CNVcaller removed the sliding windows with gaps at the first step, and finally the adjacent 

CNVRs were merged into one call if their RDs are highly correlated. These optimizations avoided 

the artefacts leaded by assembly errs and retained the adjacent CNVRs as well. 

The accuracy was validated by the Mendelian inconsistencies of all the CNVRs on 

autosomes (Figure 4). CNVcaller achieved higher accuracy than Genome STRiP in both deletion 

(1% versus 2%) and duplication (4% versus 7%). The detected CNVRs of CNVcaller and Genome 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

19 

 

STRiP were further analysed against the length and alternative allele frequency (Figure 4B). 

CNVcaller performed better in duplication detection, it can detect duplications <2.5 Kb, and the 

Mendelian inconsistence of longer calls were lower than Genome STRiP (3% versus 9% for 

2.5Kb ~ 5Kb calls; 2% versus 5% for > 5Kb calls). On the other hand, Genome STRiP detected 

1958 more < 2.5Kb deletions than CNVnator. One possible reason was Genome STRiP 

integrating RP methods which have higher capability in detecting shorter deletions. In terms of the 

frequency, because the detected samples were three trios, most CNVRs were medium frequency 

(6%-50%). The rare duplications tended to have a higher FDR than the median and high frequency 

calls (Figure 4C). Currently, the main use of CNVcaller is to detect the CNVRs related to 

economy traits in livestock and crops. In these studies, the target CNVRs usually have a high 

frequency after long time breeding selection.  

To investigate the reproducibility of CNVcaller, the CNVRs identified by CNVcaller from 133 

sheep of 44 worldwide breeds were compared with the other two recently released large-scale 

sheep CNVR datasets. One is derived from allied breeds using multiple platforms, including 

aCGH, SNP chip and whole genome sequence [54], and the other is based on three Chinese sheep 

breeds using 600K SNP array [55]. The samples and platforms had a big influence on the results, 

so the overall intersection ratio was low. However, CNVcaller covered 51% of the cross validated 

region of the two datasets (Figure 4 D).  

The genotyping accuracy of 73 sheep was validated by a recently developed molecular 

biology technique, CNVplex (Figure 5). This method reports the copy number of a genomic 

sequence based on the multiplex ligation-dependent probe amplification (MLPA) method [46]. 

When we compared the copy number predicted by CNVcaller from sequencing data and the 
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CNVplex result; the Pearson's product–moment correlation coefficients were higher than 0.95, and 

the genotype concordance was 98%. 

Performance evaluations on 1000 Genomes Project data 

Although CNVcaller were mainly designed for complex genomes, its performance was also 

benchmarked on 30 human BAM files from 1000GP. Because the SNP array and the highly-

confident CNVR databases are available for the population level accuracy and sensitivity 

evaluation. First, CNVcaller demonstrated the highest overall accuracy for detecting duplications, 

and the FDR of CNVcaller are relative consistent across duplication length and frequency 

categories (Figure 6A, B). Whereas the short or singleton duplications of other two methods have 

high FDR. Second, 43% duplications detected by CNVnator were >20 kb. This was not due to the 

merged individual CNV to the CNVR, because the average size of individual calls was 3-4 times 

larger than the other methods. Third, Genome STRiP also showed the highest capability for 

detecting deletions, especially the short and rare ones, indicating the advantage of combining RD 

and RP methods in deletion. Besides directly combination of the two methods into one piece of 

software, another option was using CNVcaller’s high-confidence RD results as the prior to 

improve the accuracy of the read pair/split read pipeline [22].  

 The genotyping accuracy of the human data was benchmarked against the integer copy 

numbers of the high-confident aCGH array based database. The discordance rate of CNVcaller, 

CNVnator and Genome STRiP were 2.6%, 5.5% and 2.2%, respectively. This genotyping 

accuracy ranking was concordance with the Mendelian inconsistence of the 10 Dutch trio 

(Supplementary Figure 5).  
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The sensitivity of human data was estimated as the proportion of the high-confident CNVR 

database that overlapped by the predicted CNVRs. Two previously published high-confident 

databases, including the particular samples, were the aCGH-based CNVR database [1] and the 

1000GP CNVR map [2]. For the highly variable FDR, the sensitivity estimation removed the calls 

that were <=2,500 bp and had an alternative allele frequency <5%. For the aCGH database, 

CNVcaller demonstrated the highest sensitivity (57%) for duplication, 14% and 26% higher than 

Genome STRiP and CNVnator. Whereas Genome STRiP achieved the highest sensitivity (74%) in 

deletions, 8% and 2% higher than CNVcaller and CNVnator (Figure 6C). For the 1000 GP CNV 

maps, even though both Genome STRiP and CNVnator were the core methods of creating the 

library, the sensitivity of CNVcaller were 68% and 67% for deletions and duplications, only 4%-

10% lower than Genome STRiP and CNVnator.  

With the same input data, the three methods have a high proportion of intersection with each 

other. The number of overlapped (>50%) calls of each of the two methods was 429 (CNVcaller vs 

CNVnator), 502 (CNVcaller vs Genome STRiP) and 513 (CNVnator vs Genome STRiP). Because 

the intersection of the three methods was hard to define in number so they are showed in length. 

CNVcaller covered 40% of the CNVRs detected by CNVnator, 45% of Genome STRiP and 65% 

of their intersection (Figure 6D). 

 

Conclusion 

CNVcaller was designed to detect the CNVRs from large scale resequencing data from all types of 

genomes. The general applicable detection and correction algorithms have greatly increased the 

computational efficiency in complex genomes. The validation of the sheep genomes showed that 
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the absolute copy number correction multiplied the detection efficiency of the misassembled SD 

regions with a great reduction in the running time and deduced more reasonable copy numbers. 

Based on the evaluations from sheep and human studies, CNVcaller achieved the best accuracy 

and sensitivity for detecting duplications. This rapid and reliable population-level CNV detection 

promotes the discovery of the missing heritability of complex traits and the accurate determination 

of the causative mutations for more species. 

 

Availability and requirements 
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Figure Legends 

Figure 1 CNVcaller algorithm flowchart (left) and the key algorithms of each step (right). (1) 

Individually RD processing. In the absolute copy number correction, the RDs of highly similar 

windows were added together to deduce the absolute copy number. (2) Multi-criteria CNVR 

selection. The curves show the copy numbers in a specific region for multiple samples. The blue 

transverse boxes mark the windows with a significantly distinguishing copy number from the 

average (individual criterion). The green vertical boxes indicate that these regions meet the 

frequency conditions, and the red frame indicates that the RDs between the two adjacent windows 

are significantly correlated (population criteria). The forth bar from the left, satisfying all the 
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above conditions, is selected as the CNVR. (3) Genotyping: The copy numbers in each CNVR are 

clustered by mixture Gaussian model to distinguish the normal, heterozygous and homozygous 

samples. 

 

Figure 2 Computational performance of CNVcaller, CNVnator and Genome STRiP. All the 

programs were executed on one node with two 2.40-GHz Intel Xeon E5-2620 v3 processors. (A, 

B) Log plots of the processing time (A) and the max memory (B) for one individual. The numbers 

of unplaced scaffolds of the reference genome are indicated in brackets. The processing time was 

normalized by the genome size and sequencing coverage to simulate a 3 Gb genome with 5X or 

10X sequencing coverage. (C, D) Log plots of the total running time (C) and the max memory (D) 

of the population CNVR detection. The test cohorts are as follows: 8 sheep, 30 humans and 232 

goats, with 19X, 16X and 12X average sequencing coverage, respectively. In Genome STRiP, the 

unplaced scaffolds were excluded. 

 

Figure 3 Absolute copy number correction in the sheep genome. (A) The RDs of a human 

(NA12787) and sheep was calculated by 800 bp sliding window and the sequencing copy number 

was deduced. The copy numbers were plotted against the copy number on the reference genome 

assembly of human and sheep. Compared with humans, the sheep sample had much lower copy 

numbers in the putative duplicated regions than expected. (B) The distribution of the copy 

numbers of the putative two-copy regions in the sheep genome before and after the absolute copy 

number correction. After correction, the main peak of the copy number shifted to two (normal 

diploid copy number). The smaller peaks at four, after correction, indicated the 20% real 
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segmental duplications. (C) The number and Mendelian FDR of CNVRs residing in the SD 

regions (>50% overlap with the SD regions). The sheep SD regions include the regions longer 

than 2 Kb with >97% identity. (D) The raw and corrected copy numbers of all the X-origin 

scaffolds of 133 sheep. 

 

Figure 4 Accuracy and reproducibility of the sheep data. (A) The Mendelian inconsistency of the 

3 sheep trios. The number of detected deletions and duplications and the FDR of the calls are 

shown by the bar plot, respectively. (B) The bar plots of the number of calls and IRS FDR 

partitioned by the CNV length. All calls on the autosomes were included. (C) The bar plots of the 

number of calls and IRS FDR partitioned by alternative allele frequency. The frequency is shown 

by the CNV allele number (D) Overlap of the length of the CNVRs (by Mb) detected by 

CNVcaller and two other large-scale sheep CNVR studies using different approaches and 

platforms. 

 

Figure 5 Evaluation of the sheep CNV genotypes by CNVplex. Two duplicated (A, B) and two 

deleted (C, D) CNVRs with a high variation frequency were typed in CNVplex using 73 sheep 

samples. The copy number genotypes predicted by CNVcaller from the sequencing data were 

plotted against the measurements of CNVplex of the same animal.  

 

Figure 6 Accuracy, genotyping, reproducibility and sensitivity on the 1000GP data. (A) The bar 

plots of the number of calls and the IRS FDR partitioned by CNV length. All the calls on the 

autosomes were included. (B) The bar plots of the number of calls and the IRS FDR partitioned by 
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alternative allele frequency. To eliminate the huge FDR diversity of the short CNVs, the effect of 

the allele frequency was evaluated using the >2.5 Kb calls. (C) The sensitivity (the proportion of 

high-confident CNV database overlapped by predicted CNVs) of the three methods. (D) Overlap 

of the length of the CNVRs (by Mb) detected by CNVcaller, CNVnator and Genome STRiP based 

on the same 30 BAM files from the 1000GP.  
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GIGA-D-17-00119 

CNVcaller: Highly Efficient and Widely Applicable Software for Detecting Copy 

Number Variations in Large Populations 

Xihong Wang; Zhuqing Zheng; Yudong Cai; Ting Chen; Chao Li; Weiwei Fu; Yu 

Jiang 

GigaScience  

Dear Dr. Edmunds 

Thank you very much for handling our manuscript "CNVcaller: Highly Efficient and 

Widely Applicable Software for Detecting Copy Number Variations in Large 

Populations " (GIGA-D-17-00119). We appreciate all the comments from the 

reviewers, which helped us improve our manuscript. We have now revised the 

manuscript according to the reviewers’ comments and your instructions.  

We addressed the comments and questions of the reviewers as explained below, the 

reviewers’ text has been included and our responses are in colored italics. Revised text 

is indicated by quotation marks. Because several new figures have been added, we 

attach a list of the current figures and tables corresponding to those from last version 

so that the changes can easily be tracked. 

Upon the suggestions of the reviewers, we modified the manuscript as follows: 

1. The newly released version of CNVcaller updated the genotyping method. The 

python package, scikit-learn v0.19.0, was used to decompose the reported copy 

numbers into several Gaussian distributions. Therefore, the accuracy of the 

CNVcaller in the new version was increased. 

2. Since the reviewers required to evaluate the effects of the length and allele 

frequency of the discovered CNVRs. Two result sections have been added to 

analyze the number and FDR of the CNVRs detected by the three methods 

against the length and allele frequency. One section including Figure 4 was 

based on the sheep data, the other section including Figure 6 was based on the 

human data.  

3. To answer the reviewer’s question about the difference of the FDR in deletions 

and duplications, their FDR was evaluated respectively in the result sections. 

4. The high-proportion mis-assembled segmental duplications in non-human 

Respond letter Click here to download Personal Cover Respond10_5.docx 
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assemblies caused misunderstanding of the reviewer. The section has been 

extensively redrafted, as analyzing both real and simulated data.  

5. The previous discussion sections has been merged to the result sections to 

reduce the length of the manuscript. The first part of the previous results has 

been moved to the method sections as suggested by the reviewer. 

6. The language has been professionally edited by an English editing service 

agency, American Journal Experts (AJE). (Because the first version is 

inadequate, we are waiting for the second version.) 

Thank you again for all of your assistance. 

Sincerely yours, 

Yu Jiang, and other coauthors 

  



************************ 

REVIEWS 

************************ 

Reviewer #1:  

 

The authors developed a new CNV caller pipeline which they called CNVcaller 

geared towards improved speed compared to existing CNV callers and improved 

accuracy for high complexity genomes. I commend the authors on their efforts to 

introduce improved algorithms and pipelines for an inherently difficult procedure, 

namely CNV calling. My comments are mostly suggestions for improvement as 

followss. Note, comments of the form (4:5 for example represent page 4, line 5).  

Thanks for your positive comments and encouragement. We have substantially revised 

the manuscript upon your suggestions. 

 

There are several grammatical errors which make the paper somewhat confusing. I 

would strongly recommend further extensive English editing.  

We apologize for these mistakes. The manuscript has been professionally edited by an 

English editing service agency, American Journal Experts (AJE). 

 

My main criticism of the analysis is one that I have seen repeatedly of most other 

CNV calling publications, and that is there is no sensitivity analysis.  

We are sorry for the ambiguous of the sensitivity tests, which were stuffed in previous 

Table1. In the revised manuscript, new figures and tests have been added. On general, 

CNVcaller demonstrated 57%-67% sensitivity for duplications, and 66%-68% for 

deletions in human data. The sensitivity in sheep data was ~73%.  

The detailed descriptions were as follows: 



“The sensitivity of human data was estimated as the proportion of the high-

confident CNVR database that overlapped by the predicted CNVRs. Two previously 

published high-confident databases, including the particular samples, were the 

aCGH-based CNVR database and the 1000GP CNVR map. For the highly variable 

FDR, the sensitivity estimation removed the calls that were <=2,500 bp and had an 

alternative allele frequency <5%. For the aCGH database, CNVcaller demonstrated 

the highest sensitivity (57%) for duplication, 14% and 26% higher than Genome 

STRiP and CNVnator. Whereas Genome STRiP achieved the highest sensitivity (74%) 

in deletions, 8% and 2% higher than CNVcaller and CNVnator (Figure 6C). For the 

1000 GP CNV maps, even though both Genome STRiP and CNVnator were the core 

methods of creating the library, the sensitivity of CNVcaller were 68% and 67% for 

deletions and duplications, only 4%-10% lower than Genome STRiP and CNVnator.” 

“Because the lack of validated sheep CNVR database, the sensitivity was 

validated indirectly. Based on our integrated analysis (see method), there are 138 

sheep X chromosome origin scaffolds, which were not anchored onto chromosomes of 

OAR v3.1. Therefore, all of these scaffolds should be detected as CNV because the 

rams had half copy numbers of ewes. As a result, CNVcaller detected 101 out of these 

138 X-origin scaffolds, with a sensitivity of 73%. Furthermore, the corrected copy 

numbers of these scaffolds were centralized at integer (Figure 3D), whereas the peaks 

of the raw copy numbers were ambiguous because of splitting the raw RDs among the 

putative SDs (Supplementary Figure 4). In contrast, CNVnator and Genome STRiP 

could not report these unmapped CNVRs.”  

 

The authors here also suggest various parameters throughout their paper for 

performing CNV calling, but there is no analysis of how the results change if these 

parameters are adjusted, i.e. no analysis of how robust your algorithm is to changes in 

the parameters.  

Thank you for your suggestion. The FDR against the window size and allele frequency 

have been added in Supplementary Figure 1 and Figure 6B.  

The following description was added in methods.  

“The window size is an important parameter for the RD methods. CNVcaller uses 

half of the window size as step size. The optimal window size is 800 bp for 5-10X 

coverage human and livestock sequencing data (Supplementary Figure 1). The 



recommended scales roughly inversely coverage, resulting in 400 bp windows for 20X 

coverage and 200 bp windows for 50X coverage.” 

 

As another example, Hong et al 27503473 has demonstrated that the biggest 

variability in calling CNVs is in terms of the CNV size. I suspect that the same can be 

said of CNVcaller. Please comment on what sizes of CNVs does CNV caller do well 

or poorly on.  

Figure 4 and Figure 6 have been added to evaluate the effect of the length and 

frequency in sheep and human data. On general, the performance of CNVcaller was 

good for deletions and duplications >2.5 Kb, however poorly on < 2.5 kb. 

The detailed comparisons in the manuscript are as follows: 

 “The detected CNVRs of CNVcaller and Genome STRiP were further analyzed 

against the length and alternative allele frequency (Figure 4B). CNVcaller performed 

better in duplication detection, it can detect duplications <2.5 Kb, and the Mendelian 

inconsistence of longer calls were lower than Genome STRiP (3% versus 9% for 

2.5Kb ~ 5Kb calls; 2% versus 5% for > 5Kb calls). On the other hand, Genome 

STRiP detected 1,958 more < 2.5Kb deletions than CNVcaller. One possible reason 

was Genome STRiP integrating RP methods which have higher capability in detecting 

shorter deletions. In terms of the frequency, because the detected samples were three 

trios, most CNVRs were medium frequency (6%-50%). The rare duplications tended 

to have a higher FDR than the median and high frequency calls (Figure 4C).” 

“First, CNVcaller demonstrated the highest overall accuracy for detecting 

duplications, and the FDR of CNVcaller are relative consistent across duplication 

length and frequency categories. Whereas the short or singleton duplications of other 

two methods have high FDR. Second, 43% duplications detected by CNVnator 

were >20 kb. This was not due to the merged individual CNV to the CNVR, because 

the average size of individual calls was 3-4 times larger than the other methods. 

Third, Genome STRiP also showed the highest capability for detecting deletions, 

especially the short and rare ones, indicating the advantage of combining RD and RP 

methods in deletion.”  

 

2:32  "the prevalent.." is a gross exaggeration. I think you mean "a prevalent".  



Corrected as suggested.  

 

2:35  I don't think you mean geometric. I did not comment on other 

grammatical/English errors as there were too many to list individually. I would highly 

recommend getting help with the English in this paper.  

We apologize for these mistakes. The manuscript has been professionally edited by an 

English editing service agency, American Journal Experts (AJE). 

 

3:53  "RD" is not defined.  

We apologize for the missing. This description has been added to the introduction as 

follows.  

“Read-depth (RD) means the depth of the coverage or the genomic region that 

can be calculated by the number of reads aligned [16].” 

 

6:120  Give a brief description of how CNVnator handles GC bias. Also why 40% 

for the GC bias?  Shouldn't this parameter be dependent on the organism of interest?  

We apologize for not clearly describing the procedure. In general, the mean RD 

of windows with 40% percent GC is only used as the temporary standard in the GC 

correction step. It will be lost in the following normalization step: the GC corrected 

RDs of each window are divided by the global median RDs. Because the denominator 

is calculated from the RDs already corrected by the 40% GC windows, this parameter 

will be lost and is not necessarily dependent on the organism of interest. 

The CG correction of CNVnator was the combination of the correction and 

normalization steps of CNVcaller. The equation is as follow:  

 



Where i is bin index, 
i

rawRD
is raw RD signal for a bin, 

i

correctedRD
 is corrected 

RD signal for the bin, globalRD
 is average RD signal over all bins, and gcRD

is the 

average RD signal over all bins with the same GC content as in the bin. 

 

The commentary on certain genomes not being as complete as others is important. I 

suspect though that if a large percentage of the samples show a CNV in a genome that 

is newer or not as complete, then this observation may be more likely indicative of a 

problem with the reference. Can you comment?  

If the detected CNVR has variation in population, which means the read depths can be 

separated into two or more normal distributions, this call is probably true even with 

high frequency. On the contrary, if all of the individuals show the same abnormal read 

depth, it suggests the reference individual is indeed different from the sampling 

population or have assembly problems. 

 

7:145  I am not convinced Pearson's correlation is appropriate. Your data is likely to 

have outliers and non-normal data. A non-parametric test of correlation like 

Spearman's correlation (Kendall-Tau is likely too computational intensive), or 

performing correlation after 5 or 10% trimming may be more appropriate.  

We tried to replace the Pearson's correlation with Spearman's correlation in the 30 

BAM files from 1000 Genome Project data. However, after replacement the FDR 

doubled while the length of each calls reduced to half. A possible reason was the 

Spearman's correlation was calculated by sorting of the read depth. So, the diverged 

copy numbers of deletion or duplication individuals contribution no more than the 

subtle random mistakes of the normal individuals. In the low frequency CNVRs, the 

Spearman's correlation index was mainly contributed by the random mistakes of the 

normal copy individuals.  

The trimming is also not recommended for similar reason. In the low frequency 

CNVRs, the individuals with abnormal copy number will be trimmed as outliers.  

 

cn.MOPS (Klambauer et al, PMID: 22302147) uses a mixture of Poissons as opposed 



to Gaussian Mixture Models for CNV detection. I suspect the mixture of Poissions 

will be superior to Gaussian Mixture Models when the read depths are low, and 

Gausssian mixtures may be more appropriate when read depths are high. How 

difficult is it to replace the Gaussian mixtures with Poisson mixtures and compare the 

performance? I feel that this analysis would be informative and potentially improve 

your algorithm.  

Thank you for your suggestion. However, it is not easy to replace the distribution 

because the RDs after GC correction and normalization are not integer so they can 

not be directly treated as Poisson distributions. Basically, CNV caller recommended a 

proper window size to make the standard variation less than 30% of the mean RD, 

which will not fit the Poisson distribution for RDs. Besides, we used the RDs of 232 

goats with 10X coverage to test the fitness of Gaussian distribution using omnibus test 

(packages). As a result, 88% windows accepted the null hypothesis at P=0.01 level. 

So, we believe the Gaussian Mixture Models was acceptable for the 10 X data.  

 

The term "CNVR" is critical for understanding the algorithm, and requires more 

explanation of the term.  

We apologies for missing this important concept. The explanation has been added to 

the introduction as follows.  

“To compare the copy number of a particular region across the samples, the shared 

CNVs among individuals are needed, so the unified CNV regions (CNVRs) were 

merged from the individual CNVs.” 

   It would be helpful to include some further discussion on where you see that 

CNVcaller works better or worse than existing CNV calling software.  

Figure 2 showed the speed of CNVcaller was one to two orders of magnitudes higher 

than the other methods. Figure 4 and Figure 6 have been added to evaluate the effect 

of the length and frequency in sheep and human data. On general, the performance of 

CNVcaller was better for all sizes of duplications, however poorly on deletions < 2.5 

kb. 

 

9:180. The "arbitrary standards" require a citation.  



Two citations were added. 

1. Chain FJ, Feulner PG, Panchal M, Eizaguirre C, Samonte IE, Kalbe M, et al. 

Extensive copy-number variation of young genes across stickleback populations. 

PLoS genetics. 2014;10 12:e1004830. 

2. Abyzov A, Urban AE, Snyder M and Gerstein M. CNVnator: an approach to 

discover, genotype, and characterize typical and atypical CNVs from family and 

population genome sequencing. Genome research. 2011;21 6:974-84. 

 

Minor comment: Since speed seems to be a major selling point of the software, more 

details about running the software on a compute cluster or running algorithms in 

parallel in the documentation would be helpful.  

A new part of “Parallel submission of individual RD processing” has been added to 

the methods with the principle and command as follows.  

“CNVcaller processes the BAM file of each individual separately in the first step, so 

parallel submissions can be used to save the total running time. All the BAM files 

should be equally distributed in to N groups, and each group contains M files. The 

max N = the available processing cores. M = the total number of BAM files/ N. For 

example, the 232 goat BAM files were processed on a node with 32 processing cores 

and 128 GB of RAM. We distributed the 232 files into 20 groups, and each group 

contained 12 BAM files. The shell command for one group likes following: 

#!/bin/sh 

for i in {1..M} 

 do bash Individual.Process.sh -b $i.bam -h $i -d dup -s sex_chromosome 

done 

After corrections and normalization, the comparable RDs of each sample are 

concentrated to an ~100 MB intermediate file and output. This design avoids the 

repeated calculation of the same individual in different populations.” 

  



************************ 

Reviewer #2: 

 

The proposed method "CNVcaller" enables the efficient discovery and genotyping of 

CNVs in large populations. One of the main benefits of the method is that it can 

handle draft genome assemblies with thousands of scaffolds. The computational 

benchmarks proof that the method is fast and memory efficient but the evaluation of 

the accuracy of the method is less convincing. Some details of the method remain 

vague and hinder an objective evaluation. Detailed comments of how to improve the 

manuscript are below:  

Thank you for your affirmation. We are sorry for the ambiguous of the accuracy test, 

and have substantially revised the manuscript upon your suggestions. In the revised 

manuscript, the performance evaluation in previous Table 1 was described more 

detail and classify by the species in Figure 4 and Figure 6. 

 

Comment 1 - The primary application of CNVcaller is the detection of CNVs in 

large populations. Population variant call sets are dominated by rare variants of rather 

small size. For instance, less than 20% of the 1000 Genomes structural variants have a 

population allele frequency >5% and almost 50% of the SVs are <2kbp in size despite 

the rather low coverage (~7x). CNVcaller is currently restricted to large CNVs 

(>2kbp) and common variants (>5% allele frequency), which is a major limitation for 

population genomic studies.  

In the revised version, all detected calls were included in the IRS test. In fact, all three 

methods can report some short and rare CNVRs. However, the short and rare 

duplications made by Genome STRiP and CNVnator had extremely high FDR. So, we 

excluded these results from the previous version of manuscript as 1000 GP. 

The newly added Figure 6 showed the shortest duplication reported by CNVnator 

and Genome STRiP was 2.8 kb and 2.5 kb, and the IRS FDR of 2.5-5kb calls are 29% 

and 88%, respectively. The FDR of >2.5kb singletons was 35% and 69% for 

CNVnator and Genome STRiP, respectively. These uncertain calls were also removed 

by the phase 3 extended SV release of 1000GP. After extra quality controls, the 

number of duplications in the released database are only 1/7 of deletions, and the 

median size was 36 kb, 17 times longer than deletions. Therefore, improving the 

accuracy of duplications on this foundation is meaningful for enrich the CNV 

database. The main improvement of CNVcaller is the accuracy of duplications. The 

FDR of 2.5 kb – 5 kb was reduced to 19%, and the >2.5kb singletons was reduced to 



9%. However, the FDR were still higher than the longer and higher frequency calls. 

 Besides, the current main usage of CNVcaller is to detect the CNVRs related to 

economy traits in livestock and crops. In these populations, the target CNVs usually 

have a medium or high frequency after long time artificial selection. We believe the 

high-confident medium to high frequency reported by CNVcaller can contribute to the 

functional and breeding study of non-human studies. 

 

 The sensitivity increase of CNVcaller for the subset of common and large CNVs 

seems to be driven by an increased number of detected CNVs in SD regions (Figure 

5C). SNP arrays have a low SNP density in SD regions and in the present Manuscript 

array SNP probes in SD regions have been removed entirely. The reported IRS FDR 

is therefore heavily biased against CNVs in SD regions and it thus seems mandatory 

to me to proof that this sensitivity increase for SD-associated CNVs is not leading to 

an inflated FDR.  

Thanks for your suggestions. Figure 5C (New Figure 3C) was updated to show both 

the number and the Mendelian inconsistence of the detected CNVs in SDs. The 

inconsistence rate of the calls in SD regions made by CNVcaller was about 3%. The 

copy numbers of unique and SDs were also indirectly validated by the X-origin 

scaffolds of a 133-sheep population. In both validation dataset, one main reason for 

acceptable FDR in SDs was most SDs in sheep reference genome assembly is actually 

mis-assembled unique region.  

The detailed description are as follows: 

“In the real dataset, CNVcaller detected more duplications in the SDs of the 

sheep genome with only 3% Mendelian inconsistence (Figure 3C, Supplementary 

Figure 3). Because the lack of validated sheep CNVR database, the sensitivity was 

validated indirectly. Based on our integrated analysis (see method), there are 138 

sheep X chromosome origin scaffolds, which were not anchored onto chromosomes of 

OAR v3.1. Therefore, all of these scaffolds should be detected as CNV because the 

rams had half copy numbers of ewes. As a result, CNVcaller detected 101 out of these 

138 X-origin scaffolds, with a sensitivity of 73%. Furthermore, the corrected copy 

numbers of these scaffolds were centralized at integer (Figure 3D), whereas the peaks 

of the raw copy numbers were ambiguous because of splitting the raw RDs among the 

putative SDs (Supplementary Figure 4). In contrast, CNVnator and Genome STRiP 

could not report these unmapped CNVRs.” 

 

The Manuscript lacks a Figure that shows the size and allele frequency distribution of 



the discovered CNVs in comparison to Genome STRiP and CNVnator. An estimate of 

breakpoint accuracy of CNVcaller would also be valuable.  

Thanks for your suggestion. Figure 4 and Figure 6 have been added to evaluate the 

effect of the length and frequency in sheep and human data. On general, the 

performance of CNVcaller was better for all sizes of duplications, however poorly on 

deletions < 2.5 kb.  

The breakpoint accuracy is an innate disadvantage of RD methods. Because the 

detailed situation within a window is not calculated. And the window size cannot be 

too small for the medium or low coverage sequencing data. We recommend the user to 

combine the read pair or split read methods to improve the breakpoint accuracy. 

The detailed comparations in the manuscript are as follows: 

“The detected CNVRs of CNVcaller and Genome STRiP were further analyzed 

against the length and alternative allele frequency (Figure 4B). CNVcaller performed 

better in duplication detection, it can detect duplications <2.5 Kb, and the Mendelian 

inconsistence of longer calls were lower than Genome STRiP (3% versus 9% for 

2.5Kb ~ 5Kb calls; 2% versus 5% for > 5Kb calls). On the other hand, Genome 

STRiP detected 1958 more < 2.5Kb deletions than CNVnator. One possible reason 

was Genome STRiP integrating RP methods which have higher capability in detecting 

shorter deletions. In terms of the frequency, because the detected samples were three 

trios, most CNVRs were medium frequency (6%-50%). The rare duplications tended 

to have a higher FDR than the median and high frequency calls (Figure 4C).” 

“First, CNVcaller demonstrated the highest overall accuracy for detecting 

duplications, and the FDR of CNVcaller are relative consistent across duplication 

length and frequency categories. Whereas the short or singleton duplications of other 

two methods have high FDR. Second, 43% duplications detected by CNVnator 

were >20 kb. This was not due to the merged individual CNV to the CNVR, because 

the average size of individual calls was 3-4 times larger than the other methods. 

Third, Genome STRiP also showed the highest capability for detecting deletions, 

especially the short and rare ones, indicating the advantage of combining RD and RP 

methods in deletion. Besides directly combination of the two methods into one piece of 

software, another option was using high-confidence RD results generated CNVcaller 

as the prior to improve the accuracy of the read pair/split read pipeline.” 

 

The Manuscript mentions mrsFAST for absolute copy number validation. I could not 

find any formal comparison of predicted copy-number by mrsFAST and CNVcaller 

but maybe I missed this?  



Supplementary Figure 2 (Previous Supplementary Figure 1) showed the copy number 

calculated from mrsFAST and CNVcaller was similar. However, mrsFAST needed to 

realign all the multi-hit reads in BWA alignments, leading to significantly increased 

computational time. For example, mrsFAST needed 10 hours for a 3G genome with 

10X sequencing data, whereas, CNVcaller only needed 4 minutes. 

- Please add to Table 1 the number of CNV sites that could be assessed by the IRS 

method and what proportion of each call set could be evaluated using IRS. I also 

believe the IRS method reports p-values separately for deletions, duplications and 

multi-allelic CNVs. Was there any difference among these for CNVcaller?  

The detailed information of 1000GP calls including the required information has been 

added to Supplementary Table 5. Overall, 28%, 30% and 60% CNVRs of CNVcaller, 

CNVnator and Genome STRiP covered at least one probe of Affymetrix SNP 6.0 

array, therefore can be assessed by IRS test. One main reason for the diverged 

testable proportion was only 4% of Genome STRiP calls were overlap with SDs which 

have seldom probes, whereas the 34% CNVcaller calls and 28%CNVnator calls were 

overlap with SDs.   

Two extra genome-wide evaluations can provide supplemental proofs. The 

Mendelian inconsistence of 10 Dutch family was added in Supplementary Figure 5, 

which can test both unique and SD regions. The inconsistence rate of CNVcaller, 

CNVnator and Genome STRiP was 1.5%, 4.4%, and 0.4%. This accuracy ranking was 

consistent with the genotyping discordance compared with the aCGH database, which 

were 2.6%, 5.5% and 2.2% for CNVcaller, CNVnator and Genome STRiP 

respectively. 

 

- Some details of the method are vaguely specified and some Figures lack clarity and 

units.  

Page 6, line 129: "... if the median RD of the homogametic sex chromosomes is about 

half of the median RD of autosome..."  

Modified as follows:  

“Most mammalian and avian genomes show XX/XY-type or ZZ/ZW-type sex-

determining system. Their homogametic sex chromosomes (X or Z) constitute 5%-

10% of the total genome, and show half RD of the autosomes in XY or ZW 

individuals. Therefore, insensitive corrections are needed. The name of the 

homogametic sex chromosome is required as a parameter. If the median RD of this 

chromosome is <0.6X of the median RD of the autosome, this individual is determined 

as the XY or ZW type, and the RDs of this chromosome are doubled before 

normalization. Otherwise, this individual is determined as XX or ZZ type, and no sex 

correction will be done.” 



 

Page 8, line 154: "... and the distance between them is less than a certain percent of 

their own length."  

Modified as follows: “The distance between the two initial calls is less than 20% 

of their combined length.” 

  

Page 5, line 91: "The reference genome is segmented into overlapping sliding 

windows." What window size and overlap was used for high-coverage genomes? 

The following description was added in methods.  

“The window size is an important parameter for the RD methods. CNVcaller uses 

half of the window size as step size. The optimal window size is 800 bp (with a 400 bp 

overlap) for 5-10X coverage human and livestock sequencing data (Supplementary 

Figure 1). The recommended scales roughly inversely coverage, resulting in 400 bp 

windows for 20X coverage and 200 bp windows for 50X coverage.” 

 

Page 5, line 95: "The raw RD signal is calculated for each window as the number of 

placed reads with centers within window boundaries." Does this imply that for paired-

end data both reads are counted?  

Yes, considering the uncontrollable effect of gap ratios from different genome 

assemblies, all of the end reads located in the window are independently added to the 

RD of this window, regardless of the read is from single end mapping or paired 

mapping.   

 

Page 8, line 154: "Then the two adjacent initial calls are further merged if their copy 

numbers are highly correlated". What threshold was used?  

Modified as follows: “CNVRs can be separated by gaps or poorly assembled regions, 

therefore, the adjacent initial calls are merged if their RDs are highly correlated. The 

default parameters are: the distance between the two initial calls is less than 20% of 

their combined length, and the Person’s correlation index of the two CNVRs is 

significant at P = 0.01 level.”  

 



Figure 3A: CNVcaller 13.7. What is the unit? Are these 13,700 CNVs? 

The unit of this figure was Mbp, because the intersection of the three methods was 

hard to define in number with different boundaries, so they are evaluated in length. 

CNVcaller covered 40% of the CNVRs detected by CNVnator, 45% of Genome STRiP 

and 65% of their intersection, in length.  

 

Minor:  

- I could not find a reference to the 232 goat sequencing data? Is this data publicly 

available?  

Among the 232 goat whole genome sequencing data, 103 were acquired from NCBI 

(reference paper see below), and the accession numbers are provided in 

Supplementary Table 1. The remaining 129 samples without accession number were 

generated by ourselves. 

Badr Benjelloun FJA, Streeter I, Boyer F, Coissac E, Stucki S, et al. (2015) 

Characterizing neutral genomic diversity and selection signatures in indigenous 

populations of Moroccan goats (Capra hircus) using WGS data. Frontiers in genetics 
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wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic 

basis of goat domestication. BMC genomics 16: 431. 
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whole-genome optical mapping of the genome of a domestic goat (Capra hircus). 

Nature biotechnology 31: 135-141. 

Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, et al. (2017) Single-molecule 

sequencing and chromatin conformation capture enable de novo reference assembly 

of the domestic goat genome. Nature Genetics 49: 643-650. 

Wang XL, Liu J, Niu YY, Li Y, Zhou SW, et al. Low incidence of SNVs and indels in trio 

genomes of Cas9-mediated multiplex edited sheep. BMC Genomics. Under review. 

 

- The first Results section "Overview of CNVcaller algorithm" seems better suited for 

the Methods part.  

 Modified as suggested. 



 

- Is the Mendelian consistency higher for the high-coverage trio: NA12878, her father 

(NA12891) and her mother (NA12892)?  

Yes. Upon the high coverage data of all three members of the trio (NA12891, 

NA12892 and NA12878 are all 50 X), the inconsistent rate was 2.4%. Upon the high 

coverage parents (50 X NA12891 and NA12892) and low coverage child (5.3 X 

NA12878), the inconsistent rate was 6.1%. So, the increased sequencing depth can 

help to reduce the number of false positives. 

 

- I believe the claim that read-pair/split-read algorithms are less powerful on draft 

assemblies of non-model organisms compared to read-depth methods is potentially 

true but the Manuscript lacks a proof for this or a citation that supports this claim.  

Thank you for your agreement. This problem was found in our previous reference 

genome assembly projects for both sheep and goats. However, we did not report this 

result in the section of CNV/SD detection. So, we removed this comment from this 

manuscript. However, we found the following citations may help to support this claim: 

  All of these algorithms including read-pair/split-read (RP/SR) and read-depth 

rely on mapping sequencing reads back to reference genome. However, for many non-

model organisms, the reference genome likely contains many errors, which mainly 

arose from repeat collapse and expansion; and rearrangement and inversion [1] . 

These mis-assembly sequences and the repetitive regions of the genome can result in 

many pair-end reads have multiple good mappings, thus it is difficult for RP/SR to 

uniquely identify the true CNVs boundaries[2]. However, based on read depth by 

considering all possible map locations for a read can address this problem[3]. 

1. Phillippy AM, Schatz MC, Pop M (2008) Genome assembly forensics: finding the 

elusive mis-assembly. Genome biology 9: R55. 

2. He D, Hormozdiari F, Furlotte N, Eskin E (2011) Efficient algorithms for tandem 

copy number variation reconstruction in repeat-rich regions. Bioinformatics 27: 

1513-1520. 

3. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, et al. (2009) 

Personalized copy number and segmental duplication maps using next-generation 

sequencing. Nature genetics 41: 1061-1067. 

 

- It is not clear from the Manuscript if CNVcaller reports copy-number likelihoods 



based on the Gaussian mixture model. Please clarify.  

Thank you for you suggest. CNVcaller reports the silhouette coefficients of the copy 

numbers instead of the Gaussian mixture model likelihoods as quality control. 

Because we found silhouette coefficients has greater correlation with IRS test result 

than likelihoods.  

 

- Figure 5A: Why is the absolute copy-number correction different for Human and 

Sheep?  

We are sorry for not clearly interpreting the high-proportioned mis-assembled 

segmental duplications in non-human assemblies. This part was modified as follows:  

“Previous studies showed high proportion of SDs in animal genomes are mis-

assembled single copy regions. So, we validated the copy numbers on human (hg19) 

and sheep (OAR v3.1) reference genome assembly by the sequencing copy number of 

a human (NA12878) and a Tan sheep sample (Figure 6A). If the SDs were correctly 

assembled, the sequencing diploid copy number should be two times of the copy 

number of SDs. For example, the average sequencing copy number of the two-copy 

SDs was four in NA12878. However, the corresponding sequencing copy number of 

sheep was only 2.4. These results indicated most two-copy SDs of hg19 were truly 

duplicated in NA12878 while approximately 80% of the two-copy SDs in OAR v3.1 

were unique regions in the Tan sheep sample. So, the SDs in sheep genome were 

called “putative SDs” before validation.” 

 

- There is quite a few typing and grammatical errors. For instance:  

*Figure 2B: Max mamory  

*Supplementary Table 3: Memery  

*Page 3, line 53: ...the number of reads aligned to of a particular region.  

*Page 8, line 160: This model presets the average copy number of homozygous 

deletion, heterozygous deletion, normal, heterozygous deletion (duplication!), 

homozygous deletion (duplication!) at zero to four respectively.  

We are sorry for these mistakes. We have proofread the revised manuscript and used 

professional English language editing to minimize the grammatical errors. 
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