
Author's Response To Reviewer Comments  

Dear Dr. Edmunds,  

 

Thank you very much for handling our manuscript "CNVcaller: Highly Efficient and Widely 

Applicable Software for Detecting Copy Number Variations in Large Populations " (GIGA-D-

17-00119). We appreciate all the comments from the reviewers, which helped us improve our 

manuscript. We have now revised the manuscript according to the reviewers‟ comments and 

your instructions.  

We addressed the comments and questions of the reviewers as explained below; the reviewers‟ 

text has been included, and our responses are in coloured italics. The revised text is indicated by 

quotation marks. Because several new figures have been added, we have attached a list of the 

current figures and tables corresponding to those in the last version so that the changes can be 

easily tracked.  

 

According to the suggestions of the reviewers, we have modified the manuscript as follows:  

 

1. The newly released version of CNVcaller updated the genotyping method. A python package, 

scikit-learn v0.19.0, was used to decompose the reported copy numbers into several Gaussian 

distributions. Therefore, the accuracy of CNVcaller in the new version was increased.  

 

2. The reviewers requested that we evaluate the effects of the length and allele frequency of the 

discovered CNVRs. Therefore, two sections have been added to the results analysing the number 

and FDR of the CNVRs detected by the three methods against the length and allele frequency. 

One section (including Figure 4) was based on the sheep data, the other section (including Figure 

6) was based on the human data.  

 

3. To answer the reviewer‟s question about the difference between the FDRs in deletions and 

duplications, their FDRs were evaluated separately in the results section.  

 

4. The high proportion of misassembled segmental duplications in non-human assemblies may 

have led to misunderstanding on the reviewer‟s part. This section has been extensively redrafted 

with analyses of both real and simulated data.  

 

5. The previous discussion section has been merged with the results section to reduce the length 

of the manuscript. The first part of the previous results section has been moved to the methods 

section, as suggested by the reviewer.  

 

6. The language has been professionally edited by an English-language editing service, American 

Journal Experts (AJE).  

 

7. We have registered the software in the SciCrunch.org database. The RRID SRC_015752 was 

added to the „Availability and requirements‟ sections.  

 

Thank you again for all of your assistance.  

 



Sincerely yours,  

Yu Jiang and co-authors  

 

 

 

 

************************  

REVIEWS  

************************  

Reviewer #1:  

 

- The authors developed a new CNV caller pipeline which they called CNVcaller geared towards 

improved speed compared to existing CNV callers and improved accuracy for high complexity 

genomes. I commend the authors on their efforts to introduce improved algorithms and pipelines 

for an inherently difficult procedure, namely CNV calling. My comments are mostly suggestions 

for improvement as follows. Note, comments of the form (4:5 for example represent page 4, line 

5).  

 

Thank you for your positive comments and encouragement. We have substantially revised the 

manuscript upon your suggestions.  

 

- There are several grammatical errors which make the paper somewhat confusing. I would 

strongly recommend further extensive English editing.  

 

We apologize for these mistakes. The manuscript has been professionally edited by an English-

language editing service, American Journal Experts (AJE) .  

 

- My main criticism of the analysis is one that I have seen repeatedly of most other CNV calling 

publications, and that is there is no sensitivity analysis.  

 

We are sorry for the ambiguity of the sensitivity tests, which were included in the previous Table 

1. In the revised manuscript, Figure 6C has been added to describe the sensitivity. In general, 

CNVcaller demonstrated 57%-67% sensitivity for duplications and 66%-68% for deletions in 

human data. The sensitivity in sheep was ~73% by indirectly evaluation. The detailed 

descriptions are as follows:  

 

Human: “The sensitivity was estimated as the proportion of the high-confidence CNVR database 

that overlapped with the predicted CNVRs. Two previously published high-confidence databases 

that include our test samples are the aCGH-based CNVR database [1] and the 1000GP CNVR 

map [2]. For the aCGH database, CNVcaller demonstrated the highest sensitivity (57%) in 

duplications, whereas Genome STRiP achieved the highest sensitivity (74%) in deletions (Figure 

6C). Both Genome STRiP and CNVnator were the core contributors to the 1000GP CNV maps; 

However, the sensitivity of CNVcaller was 68% and 67% for deletions and duplications 

according to this database, only 4%-10% lower than Genome STRiP and CNVnator.”  

 

Sheep: “The sensitivity of sheep CNVRs was estimated indirectly due to the lack of a validated 



database. Based on our integrated analysis (see methods), there were 138 sheep X chromosome-

origin scaffolds, which were not anchored onto chromosomes of OAR v3.1. Therefore, all of 

these scaffolds should be detected as CNVs because the rams had half the copy numbers of the 

ewes. As a result, CNVcaller detected 101 of these 138 X-origin scaffolds, with a sensitivity of 

73%. In contrast, CNVnator and Genome STRiP did not report these unmapped CNVRs.”  

 

- The authors here also suggest various parameters throughout their paper for performing CNV 

calling, but there is no analysis of how the results change if these parameters are adjusted, i.e. no 

analysis of how robust your algorithm is to changes in the parameters.  

 

Thank you for your suggestion. Two important parameters of CNVcaller were window size and 

minimum report allele frequency. The FDRs against the window size and alternative allele 

frequency have been added to Supplementary Figure 1 and Figure 6B. In general, with the 

increasing of window size and allele frequency, the accuracy raised while the sensitivity 

decreased.  

 

- As another example, Hong et al 27503473 has demonstrated that the biggest variability in 

calling CNVs is in terms of the CNV size. I suspect that the same can be said of CNVcaller. 

Please comment on what sizes of CNVs does CNV caller do well or poorly on.  

 

Thank you for your suggestion. Figure 4 and Figure 6 have been added, which evaluate the 

effects of length and frequency in sheep and human data. The detailed comparisons in the 

manuscript are as follows:  

 

Sheep: “The accuracy was evaluated by the Mendelian inconsistency of all the CNVRs on 

autosomes against the length and alternative allele frequency (Figure 4). CNVcaller achieved 

higher accuracy than Genome STRiP in both deletion (1% vs 2%) and duplication (4% vs 7%) 

(Figure 4A). Whereas Genome STRiP had greater capability to detected short (<2.5 kb) deletions 

(Figure 4B), indicating the RP methods integrated in Genome STRiP performed well on small 

deletions. Concerning the alternative allele frequency, both methods showed an increased FDR 

in rare duplications (Figure 4C). However, CNVcaller is primarily used to detect CNVRs related 

to economic traits in livestock and crops. In these studies, the target CNVRs usually have a high 

frequency after long-duration breeding selection.”  

 

Human: “CNVcaller demonstrated the highest overall accuracy for detecting duplications and 

performed consistently across the length and frequency categories, whereas Genome STRiP and 

CNVnator had high FDRs on the short or singleton duplications (Figure 6A, B). Genome STRiP 

showed the greatest ability to detect deletions, indicating the advantage of combining RD and RP 

methods for deletion detection. The genotyping accuracy of the human dataset was further 

benchmarked against the high-confidence aCGH array-based database. The discordance rates of 

CNVcaller, CNVnator and Genome STRiP were 2.6%, 5.5% and 2.2%, respectively. This 

genotyping accuracy ranking was same with the Mendelian inconsistency of the 10 Dutch trios 

(Supplementary Figure 5).”  

 

- 2:32 "the prevalent.." is a gross exaggeration. I think you mean "a prevalent".  

 



This has been corrected as suggested.  

 

- 2:35 I don't think you mean geometric. I did not comment on other grammatical/English errors 

as there were too many to list individually. I would highly recommend getting help with the 

English in this paper.  

 

We apologize for these mistakes. The manuscript has been professionally edited by an English-

language editing service, American Journal Experts (AJE).  

 

- 3:53 "RD" is not defined.  

 

We apologize for the missing definition. The following description has been added to the 

introduction:  

“read depth (RD) refers to the depth of coverage in a genomic region that can be calculated from 

the number of aligned reads [14], a CNV region should have a higher or lower RD than expected 

[22-24].”  

 

- 6:120 Give a brief description of how CNVnator handles GC bias. Also why 40% for the GC 

bias? Shouldn't this parameter be dependent on the organism of interest?  

 

We apologize for not clearly describing the procedure. In general, the mean RD of windows with 

40% percent GC is used as only a temporary standard in the GC correction step. It will be lost in 

the following normalization step, in which the GC-corrected RDs of each window are divided by 

the global median RDs. Because the denominator is calculated from the RDs already corrected 

by the 40% GC windows, this parameter will be lost and is not necessarily dependent on the 

organism of interest.  

 

The GC corrected RD for a window is calculated by CNVnator as follows: the raw RD times the 

global average RD and divided by the average RD with the same GC content as in this window. 

Because the global average RD is calculated before the GC correction, no temporary parameter 

is used. The equation is showed in Personal Cover.  

 

 

- The commentary on certain genomes not being as complete as others is important. I suspect 

though that if a large percentage of the samples show a CNV in a genome that is newer or not as 

complete, then this observation may be more likely indicative of a problem with the reference. 

Can you comment?  

 

If the detected CNVR has variation in a population, which means the read depths can be 

clustered into two or more normal distributions, this CNVR is probably true even with high 

frequency. In contrast, if all of the individuals show the same abnormal read depth, this suggests 

that the reference individual is different from the sample population or some assembly problems 

exist.  

 

- 7:145 I am not convinced Pearson's correlation is appropriate. Your data is likely to have 

outliers and non-normal data. A non-parametric test of correlation like Spearman's correlation 



(Kendall-Tau is likely too computational intensive), or performing correlation after 5 or 10% 

trimming may be more appropriate.  

 

We tried replacing Pearson's correlation with Spearman's correlation in the 30 BAM files from 

the 1000 Genome Projects data. However, the FDR doubled after the replacement, while the 

length of each call was reduced by half. A possible reason is that Spearman's correlation is 

calculated by ranking instead of the numerical value of copy numbers across samples. Therefore, 

the divergent copy numbers of individuals with deletions or duplications contributed no more 

than the subtle random mistakes of normal copy individuals, especially in the low-frequency 

CNVRs.  

 

Trimming is also not recommended for a similar reason. In the low-frequency CNVRs, 

individuals with an abnormal copy number will be trimmed as outliers.  

 

- cn.MOPS (Klambauer et al, PMID: 22302147) uses a mixture of Poissons as opposed to 

Gaussian Mixture Models for CNV detection. I suspect the mixture of Poissions will be superior 

to Gaussian Mixture Models when the read depths are low, and Gausssian mixtures may be more 

appropriate when read depths are high. How difficult is it to replace the Gaussian mixtures with 

Poisson mixtures and compare the performance? I feel that this analysis would be informative 

and potentially improve your algorithm.  

 

Thank you for your suggestion. However, it is not easy to replace the distribution because the 

RDs after GC correction and normalization are not integers; thus, they cannot be directly treated 

as Poisson distributions. Additionally, we totally agree with your comment about the Poisson 

distribution will be superior for low read depths with high STDEV. However, the currently 

common sequencing depth are about 5-10X. Under this sequencing depth and a proper window 

size, the STDEV/mean RD was only 0.2-0.3, which essentially not fit the Poisson distribution. In 

addition, we used the RDs of 232 goats with ~10X coverage to test the fitness of Gaussian 

distribution using the omnibus test (scipy 0.19.0). As a result, 88% of windows accepted the null 

hypothesis at the P = 0.01 level. Therefore, we believe the Gaussian Mixture Model is acceptable 

for the current data.  

 

- The term "CNVR" is critical for understanding the algorithm, and requires more explanation of 

the term.  

 

We apologize for missing this important concept. The following explanation has been added to 

the introduction:  

“To study the polymorphism among individuals, the overlapping CNVs need to be merged into 

unified regions, namely CNV regions (CNVRs)”  

 

- It would be helpful to include some further discussion on where you see that CNVcaller works 

better or worse than existing CNV calling software.  

 

Thank you for your suggestion. Figure 2 shows that the speed of CNVcaller was one to two 

orders of magnitude higher than the other methods. Newly added Figure 4 and Figure 6 

evaluated the effects of length and frequency in sheep and human data. In general, the 



performance of CNVcaller was better for all sizes of duplications but was poor for deletions <2.5 

kb.  

 

- 9:180. The "arbitrary standards" require a citation.  

 

Two citations have been added as follows:  

 

1. Chain FJ, Feulner PG, Panchal M, Eizaguirre C, Samonte IE, Kalbe M, et al. Extensive copy-

number variation of young genes across stickleback populations. PLoS genetics. 2014;10 

12:e1004830.  

 

2. Abyzov A, Urban AE, Snyder M and Gerstein M. CNVnator: an approach to discover, 

genotype, and characterize typical and atypical CNVs from family and population genome 

sequencing. Genome research. 2011;21 6:974-84.  

 

- Minor comment: Since speed seems to be a major selling point of the software, more details 

about running the software on a compute cluster or running algorithms in parallel in the 

documentation would be helpful.  

 

A new section, “Parallel submission of individual RD processing,” has been added to the 

methods with the principle and commands as follows:  

“Parallel processing of individual RDs. The CNVcaller processes the BAM file of each 

individual separately in the first step, and therefore, parallel computations can be performed to 

reduce the total running time. All BAM files are equally distributed into N groups, and each 

group contains M files. The max N is the total available processing cores, and M is the total 

number of BAM files/N. For example, the 232 goat BAM files were processed on a node with 32 

processing cores and 124 GB of RAM. We distributed the 232 files into 20 groups, and each 

group contained 12 BAM files. The shell command for one group is as follows:  

 

#!/bin/sh  

for i in {1..M}  

do bash Individual.Process.sh -b $i.bam -h $i -d dup -s sex_chromosome  

done  

After corrections and normalization, the comparable RDs of each sample are aggregated into an 

~100 MB intermediate file and output, thus preventing repeated calculations for the same 

individual in different populations.”  

 

 

************************  

Reviewer #2:  

 

The proposed method "CNVcaller" enables the efficient discovery and genotyping of CNVs in 

large populations. One of the main benefits of the method is that it can handle draft genome 

assemblies with thousands of scaffolds. The computational benchmarks proof that the method is 

fast and memory efficient but the evaluation of the accuracy of the method is less convincing. 

Some details of the method remain vague and hinder an objective evaluation. Detailed comments 



of how to improve the manuscript are below:  

 

Thank you for your affirmation. We are sorry for the ambiguity of the accuracy test and have 

substantially revised the manuscript according to your suggestions. In the revised manuscript, the 

performance evaluation in the previous Table 1 is described in more detail in Figure 4 and Figure 

6.  

 

Comment 1 - The primary application of CNVcaller is the detection of CNVs in large 

populations. Population variant call sets are dominated by rare variants of rather small size. For 

instance, less than 20% of the 1000 Genomes structural variants have a population allele 

frequency >5% and almost 50% of the SVs are <2kbp in size despite the rather low coverage 

(~7x). CNVcaller is currently restricted to large CNVs (>2kbp) and common variants (>5% 

allele frequency), which is a major limitation for population genomic studies.  

 

We apologise for the ambiguous. Actually, the user can retain all the windows with at least one 

individual that shows heterozygous deletion or duplication. However, we recommend removing 

low-frequency windows in large populations with low sequencing coverage because of increased 

random mistakes. In the revised version, Figure 6 was added to evaluate the effects of length and 

frequency by IRS test. We found Genome STRiP showed the greatest ability to detect short and 

rare deletions, indicating the advantage of combining RD and RP methods for deletion detection. 

However, short and rare duplications still had extremely high FDR. The shortest duplications 

reported by CNVnator and Genome STRiP were 2.8 kb and 2.5 kb, and the IRS FDRs of 2.5-5 

kb calls were 29% and 88%, respectively. The FDRs of singletons were 35% and 69% for 

CNVnator and Genome STRiP, respectively. The main improvement of CNVcaller is the 

accuracy of duplications. The FDR of 2.5 kb – 5 kb duplications was reduced to 19%, and the 

FDR of singleton duplications were reduced to 9%. However, the FDRs were still higher than 

those of the longer and higher-frequency calls. So, these calls were removed from the previous 

manuscript. These uncertain calls were also removed by the phase 3 extended SV release of 

1000GP. After extra quality controls, the number of duplications in the released database is only 

1/7 the number of deletions, and the median size is 36 kb, which is 17 times longer than 

deletions. Therefore, improving the accuracy of duplications on this foundation is meaningful for 

enriching the CNV database.  

 

Additionally, the current main use of CNVcaller is the detection of CNVRs related to economic 

traits in livestock and crops. In these populations, the target CNVRs usually have a medium or 

high frequency after long-duration artificial selection. We believe that the high-confidence 

medium to high frequency reported by CNVcaller can contribute to functional and breeding 

studies of animals and plants.  

 

The sensitivity increase of CNVcaller for the subset of common and large CNVs seems to be 

driven by an increased number of detected CNVs in SD regions (Figure 5C). SNP arrays have a 

low SNP density in SD regions and in the present Manuscript array SNP probes in SD regions 

have been removed entirely. The reported IRS FDR is therefore heavily biased against CNVs in 

SD regions and it thus seems mandatory to me to proof that this sensitivity increase for SD-

associated CNVs is not leading to an inflated FDR.  

 



Thank you for your suggestions. Figure 5C (new Figure 3C) has been updated to show both the 

number and the Mendelian inconsistency of the detected CNVs in SDs. The Mendelian 

inconsistency rate of the calls in SD regions made by CNVcaller was approximately 3%, no 

higher the other methods. The copy numbers of unique and SDs were also indirectly validated by 

the X-origin scaffolds of a 133-sheep population. All of these scaffolds should be detected as 

CNVs because the rams had half the copy numbers of the ewes. As a result, CNVcaller detected 

101 of these 138 X-origin scaffolds. In contrast, CNVnator and Genome STRiP did not report 

these regions.  

 

The Manuscript lacks a Figure that shows the size and allele frequency distribution of the 

discovered CNVs in comparison to Genome STRiP and CNVnator. An estimate of breakpoint 

accuracy of CNVcaller would also be valuable.  

 

Thank you for your suggestion. Figure 4 and Figure 6 have been added, which evaluate the 

effects of length and frequency in sheep and human data. The detailed comparisons in the 

manuscript are as follows:  

 

Sheep: “The accuracy was evaluated by the Mendelian inconsistency of all the CNVRs on 

autosomes against the length and alternative allele frequency (Figure 4). CNVcaller achieved 

higher accuracy than Genome STRiP in both deletion (1% vs 2%) and duplication (4% vs 7%) 

(Figure 4A). Whereas Genome STRiP had greater capability to detected short (<2.5 kb) deletions 

(Figure 4B), indicating the RP methods integrated in Genome STRiP performed well on small 

deletions. Concerning the alternative allele frequency, both methods showed an increased FDR 

in rare duplications (Figure 4C). However, CNVcaller is primarily used to detect CNVRs related 

to economic traits in livestock and crops. In these studies, the target CNVRs usually have a high 

frequency after long-duration breeding selection.”  

 

Human: “CNVcaller demonstrated the highest overall accuracy for detecting duplications and 

performed consistently across the length and frequency categories, whereas Genome STRiP and 

CNVnator had high FDRs on the short or singleton duplications (Figure 6A, B). Genome STRiP 

showed the greatest ability to detect deletions, indicating the advantage of combining RD and RP 

methods for deletion detection. The genotyping accuracy of the human dataset was further 

benchmarked against the high-confidence aCGH array-based database. The discordance rates of 

CNVcaller, CNVnator and Genome STRiP were 2.6%, 5.5% and 2.2%, respectively. This 

genotyping accuracy ranking was the same with the Mendelian consistency of the 10 Dutch trios 

(Supplementary Figure 5).”  

 

Thank you for your reminding of the breakpoint issue. However, unlike the PR/SP algorithm, 

RD can not detect breakpoints in the at base pair resolution or less than the window step size 

resolution. Integrating RD and RP methods can improve the breakpoint accuracy in human 

genome. However, precise breakpoint is more difficult to achieve in the poorly assembled 

genomes. Additionally, the breakpoint issue did not affect the genotyping accuracy which is the 

direct input of GWAS. The genotyping FDR of CNVcaller, CNVnator and Genome STRiP were 

2.6%, 5.5% and 2.2%, respectively.  

 

The Manuscript mentions mrsFAST for absolute copy number validation. I could not find any 



formal comparison of predicted copy-number by mrsFAST and CNVcaller but maybe I missed 

this?  

 

Supplementary Figure 2 (previous Supplementary Figure 1) shows that the copy numbers 

calculated using mrsFAST and CNVcaller were similar. However, mrsFAST needed to realign 

all the multi-hit reads in BWA alignments, leading to significantly increased computational time. 

For example, mrsFAST required 10 hours for a 3G genome with 10X sequencing data, whereas 

CNVcaller needed only 4 minutes.  

 

- Please add to Table 1 the number of CNV sites that could be assessed by the IRS method and 

what proportion of each call set could be evaluated using IRS. I also believe the IRS method 

reports p-values separately for deletions, duplications and multi-allelic CNVs. Was there any 

difference among these for CNVcaller?  

 

Detailed information on 1000GP calls, including the required information, has been added to 

Supplementary Table 5. Overall, 28%, 30% and 60% of the CNVRs of CNVcaller, CNVnator 

and Genome STRiP covered at least one probe of the Affymetrix SNP 6.0 array and therefore 

could be assessed using the IRS test. One main reason for the divergent testable proportions was 

that only 4% of Genome STRiP calls overlapped with SDs, which have infrequent probes, 

whereas 34% of the CNVcaller calls and 28% of the CNVnator calls overlapped with SDs.  

 

Two extra genome-wide evaluations can provide supplemental evidence. The Mendelian 

inconsistency of 10 Dutch families was added to Supplementary Figure 5, which was based on 

tests of both unique and SD regions. The inconsistency rates of CNVcaller, CNVnator and 

Genome STRiP were 1.5%, 4.4%, and 0.4%, respectively. This accuracy ranking was consistent 

with the genotyping discordance values compared with the aCGH database, which were 2.6%, 

5.5% and 2.2% for CNVcaller, CNVnator and Genome STRiP, respectively.  

 

To analysis the difference between deletions and duplications, all FDRs were evaluated 

separately in the revised manuscript. We found the duplications had much higher FDRs than the 

deletions, especially for the short and rare CNVs.  

 

- Some details of the method are vaguely specified and some Figures lack clarity and units.  

Page 6, line 129: "... if the median RD of the homogametic sex chromosomes is about half of the 

median RD of autosome..."  

 

This section has been expanded in the newly added subsection “RD corrections for sex 

chromosomes” as follows:  

 

“RD corrections for sex chromosomes. Most mammalian and avian genomes show an XX/XY-

type or ZZ/ZW-type sex-determining system. Their homogametic sex chromosomes (X or Z) 

constitute 5%-10% of the total genome and show half the RD of the autosomes in XY or ZW 

individuals. Therefore, intensive correction for X and Z chromosomes is needed. The RD of the 

X or Z chromosome (the particular name provided by the user) is used to determine the sex of a 

particular individual. If the median RD of this chromosome is <0.6X the median RD of the 

autosome, the individual is considered an XY or ZW type, and the RDs of this chromosome are 



doubled before normalization. Otherwise, nothing is performed for individuals determined to be 

XX or ZZ type.”  

 

Page 8, line 154: "... and the distance between them is less than a certain percent of their own 

length."  

 

This text has been modified as follows: “As CNVRs can be separated by gaps or poorly 

assembled regions, the adjacent initial calls are merged if their RDs are highly correlated. The 

default parameters are as follows: the distance between the two initial calls is less than 20% of 

their combined length, and the Pearson‟s correlation index of the two CNVRs is significant at the 

P = 0.01 level.”  

 

Page 5, line 91: "The reference genome is segmented into overlapping sliding windows." What 

window size and overlap was used for high-coverage genomes?  

 

The following description has been added to the methods.  

“The window size is an important parameter for RD methods. CNVcaller uses half of the 

window size as the step size. The optimal window size is 800 bp (with a 400 bp overlap) for 5-

10X coverage human and livestock sequencing data (Supplementary Figure 1). The 

recommended window sizes are inversely related with coverage, and thus, ~400 bp windows 

correspond to 20X coverage, and ~200 bp windows correspond to 50X coverage.”  

 

Page 5, line 95: "The raw RD signal is calculated for each window as the number of placed reads 

with centers within window boundaries." Does this imply that for paired-end data both reads are 

counted?  

 

We apologise for the ambiguous description. The following description has been added: 

“Considering the uncontrollable effect of gap ratios from different genome assemblies, all of the 

end reads located in the window are independently added to the RD of this window, regardless of 

whether the read is from single-end mapping or paired mapping.”  

 

Page 8, line 154: "Then the two adjacent initial calls are further merged if their copy numbers are 

highly correlated". What threshold was used?  

 

This text has been modified as follows: “As CNVRs can be separated by gaps or poorly 

assembled regions, the adjacent initial calls are merged if their RDs are highly correlated. The 

default parameters are as follows: the distance between the two initial calls is less than 20% of 

their combined length, and the Pearson‟s correlation index of the two CNVRs is significant at the 

P = 0.01 level.”  

 

Figure 3A: CNVcaller 13.7. What is the unit? Are these 13,700 CNVs?  

 

The unit in this figure is Mb. Because the intersection of the three methods with different 

boundaries was difficult to define in numbers, they were evaluated in terms of length. CNVcaller 

covered 40% of the CNVRs detected by CNVnator, 45% of the CNVRs detected by Genome 

STRiP and 65% of their intersecting CNVRs, in terms of length.  



 

Minor:  

- I could not find a reference to the 232 goat sequencing data? Is this data publicly available?  

 

Among the 232 goat whole-genome sequencing data files, 103 files were acquired from NCBI, 

the accession numbers are provided in Supplementary Table 1. The remaining 129 samples 

without accession numbers were generated by ourselves, and will be published soon. The 

reference and unpublished paper are as follows:  

 

1.Badr Benjelloun FJA, Streeter I, Boyer F, Coissac E, Stucki S, et al. (2015) Characterizing 

neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats 

(Capra hircus) using WGS data. Frontiers in genetics 6.  

 

2.Dong Y, Zhang X, Xie M, Arefnezhad B, Wang Z, et al. (2015) Reference genome of wild 

goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat 

domestication. BMC genomics 16: 431.  

 

3.Dong Y, Xie M, Jiang Y, Xiao N, Du X, et al. (2013) Sequencing and automated whole-

genome optical mapping of the genome of a domestic goat (Capra hircus). Nature biotechnology 

31: 135-141.  

 

4.Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, et al. (2017) Single-molecule 

sequencing and chromatin conformation capture enable de novo reference assembly of the 

domestic goat genome. Nature Genetics 49: 643-650.  

 

5.Wang XL, Liu J, Niu YY, Li Y, Zhou SW, et al. Low incidence of SNVs and indels in trio 

genomes of Cas9-mediated multiplex edited sheep. BMC Genomics. Under review.  

 

6.Zheng ZQ, Li M, Liu J, Wang XL, Pan XY, et al. The early domestication process inferred 

from genome analysis of worldwide goats. In preparation.  

 

- The first Results section "Overview of CNVcaller algorithm" seems better suited for the 

Methods part.  

 

This has been modified as suggested.  

 

- Is the Mendelian consistency higher for the high-coverage trio: NA12878, her father 

(NA12891) and her mother (NA12892)?  

 

Yes. In the high-coverage data of all three members of the trio (NA12891, NA12892 and 

NA12878 were all 50X), the inconsistency rate was 2.4%. In the high-coverage data of the 

parents (50X for NA12891 and NA12892) and the low-coverage data of the child (5.3X for 

NA12878), the inconsistency rate was 6.1%. Thus, increased sequencing depth can help to 

reduce the number of false positives.  

 

- I believe the claim that read-pair/split-read algorithms are less powerful on draft assemblies of 



non-model organisms compared to read-depth methods is potentially true but the Manuscript 

lacks a proof for this or a citation that supports this claim.  

 

Thank you for your agreement. This problem was found in our previous reference genome 

assembly projects for both sheep and goats. However, we did not report this result in the section 

on CNV/SD detection. The review listed below has some comments about this claim, however, 

without direct supporting data. Therefore, we have removed this comment from this manuscript.  

 

Bickhart DM and Liu GE. The challenges and importance of structural variation detection in 

livestock. Frontiers in genetics. 2014;5.  

 

“While RP methods should provide a suitable means for detecting such events in theory, two 

major problems currently challenge the accuracy of this method:  

 

(1) alignment errors resulting from the mapping of read pairs to repetitive regions of the 

genome…… The first problem (1) is unfortunately dependent on the reference genome assembly 

for the species, and is unlikely to be resolved until better reference assemblies are created for 

livestock.”  

 

- It is not clear from the Manuscript if CNVcaller reports copy-number likelihoods based on the 

Gaussian mixture model. Please clarify.  

 

Thank you for your suggestion. CNVcaller reports the silhouette coefficients of the copy 

numbers instead of the Gaussian mixture model likelihood as quality control because we found 

that silhouette coefficients had a greater correlation with the IRS test results than likelihood.  

 

- Figure 5A: Why is the absolute copy-number correction different for Human and Sheep?  

 

We are sorry for not clearly interpreting the high proportion of misassembled segmental 

duplications in non-human assemblies. This part of the manuscript has been modified as follows:  

 

“Previous studies have shown that a high proportion of SDs in animal genomes are 

misassembled single-copy regions [27, 29]. Therefore, we detected the ratios of false SDs on the 

human (hg19) and sheep (OAR v3.1) reference genome assemblies by the sequencing copy 

number of a human (NA12878) and a Tan sheep sample (Figure 3A). If the SDs were correctly 

assembled, the sequencing diploid copy number should be twice the copy number of SDs. For 

example, the average sequencing copy number of the two-copy SDs was four in NA12878. 

However, the corresponding sequencing copy number in sheep was only 2.4. These results 

indicated that most two-copy SDs of hg19 were truly duplicated in NA12878, while 

approximately 80% of the two-copy SDs in OAR v3.1 were single-copy regions in the Tan sheep 

sample. Thus, the SDs in the sheep genome were called “putative SDs” before validation.”  

 

- There is quite a few typing and grammatical errors. For instance:  

*Figure 2B: Max mamory  

*Supplementary Table 3: Memery  

*Page 3, line 53: ...the number of reads aligned to of a particular region.  



*Page 8, line 160: This model presets the average copy number of homozygous deletion, 

heterozygous deletion, normal, heterozygous deletion (duplication!), homozygous deletion 

(duplication!) at zero to four respectively.  

 

We are sorry for these mistakes. We have proofread the revised manuscript and used a 

professional English-language editing service to minimize the grammatical errors.  

 

 

************************  

 

Checklist of the updated tables and figures  

Current version Last version  

Fig. 3 Fig. 5  

Fig. 4A-C Table 1 and newly added  

Fig. 4D Fig. 3B  

Fig. 5 Fig. 4  

Fig. 6A-C Table 1 and newly added  

Fig. 6D Fig. 3A  

Supplementary Fig. 1 Newly added  

Supplementary Fig. 2 Supplementary Fig. 1  

Supplementary Fig. 3 Newly added  

Supplementary Fig. 4 Supplementary Fig. 2  

Supplementary Fig. 5 Table 1 and newly added  

Supplementary Table 4 Newly added  

Supplementary Table 5 Newly added  

 


