Supplement 2

Computational consideration of DRAGON search

Let *n* be the total number of samples in a sample set χ , and n_i be the number of samples in *i*th cluster (χ_i) . By taking one sample out at a time would induce the following computational requirements for dragon search:

The above search would find the first cluster with n_1 samples. It can be noted (from column 3 of the table) that *n* is appeared $n - n_1$ times (along the row). Therefore, the total search to obtain the first cluster would be the summation of column 3; i.e.,

$$
T_1 = n(n - n_1) - \frac{1}{2}(n - n_1 - 1)(n - n_1)
$$

= $\frac{1}{2}(n - n_1)(n + n_1 + 1)$
= $\frac{1}{2}(n + \frac{1}{2})^2 - \frac{1}{2}(n_1 + \frac{1}{2})^2$

assuming $n + \frac{1}{2} \approx n$ and $n_1 + \frac{1}{2} \approx n_1$, we get

$$
T_1 \approx \frac{1}{2}n^2 - \frac{1}{2}n_1^2 \tag{S1}
$$

After locating cluster 1, n_1 samples of cluster 1 will be removed from the sample set χ . This would reduce the total number of samples to $n - n_1$. Therefore, for the 2nd cluster the search can be obtained by simply replacing *n* by $n - n_1$, and, n_1 by n_2 in Equation S1, where n_2 is the number of samples in cluster 2. This would give total search for the 2^{nd} cluster as

$$
T_2 \approx \frac{1}{2}(n - n_1)^2 - \frac{1}{2}n_2^2 \tag{S2}
$$

Similarly, the search for k -th cluster can be given obtained as

$$
T_k \approx \frac{1}{2}(n - n_1 - n_2 \dots - n_{k-1})^2 - \frac{1}{2}n_k^2
$$
 (S3)

If there are c clusters then the total search would be:

$$
T_{tot} \approx \frac{1}{2} \sum_{i=1}^{c-1} (n - n_1 - n_2 \dots n_{i-1})^2 - \frac{1}{2} \sum_{i=1}^{c-1} n_i^2
$$
 (S4)

Note that in Equation S4, the upper limit of summation is $c - 1$ and not c because if there are only two clusters required to be found then only T_1 search is required. In other words, the 1st cluster (χ_1) can be

obtained by removing a sample at a time from sample set χ (this would require T_1 search), and, the remaining samples can be collected to form the second cluster (this would require no search). Similarly, if there are c clusters to be found then $T_1 + T_2 + \cdots + T_{c-1}$ search is required. Equation S4 can be simplified as

$$
T_{tot} \approx \frac{1}{2} \sum_{i=1}^{c-1} \left(n - \sum_{j=1}^{i-1} n_j \right)^2 - \frac{1}{2} \sum_{i=1}^{c-1} n_i^2
$$
 (S5)

Two cases can be considered to further simply Equation S5: 1) If all clusters have equal number of samples; i.e., $n_1 = n_2 = \cdots = n_{c-1} = n_c = n/c$; and, 2) if the number of clusters is same as the number of samples ($n = c$); i.e., each cluster would have 1 sample each or $n_i = 1$.

Case 1: if $n_i = n/c$ for $i = 1,2,...,c$ then from Equation S5

$$
T_{tot} \approx \frac{1}{2} \sum_{i=1}^{c-1} \left(n - \frac{n}{c} (i-1) \right)^2 - \frac{1}{2} \frac{n^2}{c^2} (c-1)
$$

= $\frac{1}{2} \frac{n^2}{c^2} \sum_{i=1}^{c-1} \left(c - (i-1) \right)^2 - \frac{1}{2} \frac{n^2}{c^2} (c-1)$

substituting $i \leftarrow c - (i - 1)$, we get

$$
= \frac{1}{2} \frac{n^2}{c^2} \sum_{i=2}^{c} i^2 - \frac{1}{2} \frac{n^2}{c^2} (c - 1)
$$

from the sum of the squares of the first c natural numbers we get

$$
= \frac{1}{2} \frac{n^2}{c^2} \left(\frac{c^3}{3} + \frac{c^2}{2} + \frac{c}{6} - 1 \right) - \frac{1}{2} \frac{n^2}{c^2} (c - 1)
$$

assuming $c - 1 \approx c$ and $c^3 \gg c^2 \gg c$, we get

$$
T_{tot} \approx \frac{1}{6} n^2 c - \frac{1}{2} \frac{n^2}{c} = O(n^2 c)
$$

Case 2: If $n_i = 1$ for $i = 1, 2, ..., n$ (as $n = c$) then from Equation S5

$$
T_{tot} \approx \frac{1}{2} \sum_{i=1}^{n-1} \left(n - \sum_{j=1}^{i-1} n_j \right)^2 - \frac{1}{2} \sum_{i=1}^{n-1} n_i^2
$$

=
$$
\frac{1}{2} \sum_{i=1}^{n-1} \left(n - (i-1) \right)^2 - \frac{1}{2} \left(n - 1 \right)
$$

substituting $i \leftarrow n - (i - 1)$, we get

$$
= \frac{1}{2} \sum_{i=2}^{n-1} i^2 - \frac{1}{2} (n-1)
$$

= $\frac{1}{2} (\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} - 1) - \frac{1}{2} (n-1)$

assuming $n^3 \gg n^2 \gg n$, we get

$$
T_{tot} \approx \frac{1}{6} n^3 = O(n^3)
$$

Therefore, the search complexity is between $O(n^2c)$ and $O(n^3)$.