1 Supplemental Methods

2 Inducible NASH model using wildtype mice

- 3 Eight-week-old wildtype mice were kept under standard diet (SD) for 4 weeks, or fed Western
- 4 diet (WD) for 16 weeks, and were received a single injection of CCl₄ (WAKO, Osaka, Japan)
- 5 intraperitoneally at a dose of 0.1 ml/kg diluted 1:40 in olive oil. Then, the mice were kept on
- 6 SD or WD and were sacrificed at each time point.

7 Induction of hepatocyte death with anti-Fas antibody

- 8 After 4-week WD feeding, MC4R-KO mice received a single injection of anti-Fas antibody
- 9 (Jo2, BD Bioscience, San Jose, CA) intravenously at a dose of $10 \mu g/kg$. Then, the mice were
- 10 kept on WD and were sacrificed at each time point.

11

1 Supplemental Table 1. Body and tissue weights in MC4R-KO mice reconstituted with

3		WT/SD		MC4R/WD	
4		WT-BM		WT-BM	CCR2 KO-BM
5	Body weight (g)	25.8 ± 0.3		46.8 ± 0.6**	44.0 ± 0.5
6	Liver (g)	1.28 ± 0.03		4.73 ± 0.28**	3.90 ± 0.22
7	Epididymal fat (g)	0.33 ± 0.01		1.45 ± 0.12**	1.65 ± 0.09
8	Blood glucose (mg/dl, ad lib)	129.6 ± 0.2	1′	70.8 ± 6.9**	163.1 ± 14.0
9	WT, wildtype mice; MC4R,	melanocortin	4 r	eceptor-deficient	mice; CCR2-k

2 bone marrow cells from CCR2-KO mice.

KO, C-C

10 chemokine receptor 2-deficient mice; SD, standard diet; WD, Western diet; BM, bone marrow.

11 Data represent mean \pm SEM. ***P* < 0.01 versus WT-BM WT/SD (Tukey-Kramer test). *n* = 5-9.

-				
2	Genes	Primers		
3	Ccr2	Fw: ACAAATCAAAGGAAATGGAAGACAAT		
4		Rv: TGCCGTGGATGAACTGAGG		
5	Clec4f	Fw: GATGGGACACCATTCAACAATG		
6		Rv: CTCTCCGTTCCTATGTCTCCAGTT		
7	Collal	Fw: CCTCAGGGTATTGCTGGACAAC		
8		Rv: ACCACTTGATCCAGAAGGACCTT		
9	Emrl	Fw: CTTTGGCTATGGGCTTCCAGT		
10		Rv: GCAAGGAGGACAGAGTTTATCGTG		
11	Itgam	Fw: TTACCTGGGTTATGCTTCTGCAG		
12		Rv: AAGCTTTGGACACGGTTCCTC		
13	Itgax	Fw: GCCATTGAGGGCACAGAGA		
14		Rv: GAAGCCCTCCTGGGACATCT		
15	Ly6c1	Fw: GCAGTGCTACGAGTGCTATGG		
16		Rv: ACTGACGGGTCTTTAGTTTCCTT		
17	Siglec 1	Fw: GCAGCCTCTTTCAATGCTAAGG		
18		Rv: TGTATTTGACGGTGTGATGACCA		
19	Tgfb1	Fw: CCTGAGTGGCTGTCTTTTGACG		
20		Rv: AGTGAGCGCTGAATCGAAAGC		
21	Timp1	Fw: CATCACGGGCCGCCTA		
22		Rv: AAGCTGCAGGCACTGATGTG		
23	Tnfa	Fw: ACCCTCACACTCAGATCATCTTC		
24		Rv: TGGTGGTTTGCTACGACGT		
25	18S	Fw: GTAACCCGTTGAACCCCATT		

1 Supplemental Table 2. Primers used in this study

1		Rv: CCATCCAATCGGTAGTAGCG
2	<i>36B4</i>	Fw: GGCCCTGCACTCTCGCTTTC
3		Rv: TGCCAGGACGCGCTTGT
4		

1 2 3 4 5 Supplemental Figure 1. Effect of CCR2 deficiency on inflammatory changes in the adipose tissue.

6 (A) F4/80 immunostaining in the epididymal fat from wildtype mice on standard diet (SD) and 7 MC4R-KO mice reconstituted with CCR2-KO or wildtype mice-derived bone marrow cells on 8 Western diet (WD) for 20 weeks. Scale bars, 50 µm. (B) The number of F4/80-positive cells 9 and crown-like structure (CLS). (C) The insulin tolerance test at 11 weeks of WD feeding. 10 MC4R-KO mice were challenged with 1 U/kg insulin after 1 hour fasting, and blood glucose was measured at indicated time point. Data represent mean \pm SEM. ** P < 0.01 11 (Tukey-Kramer test). n = 5-9. 12

2 3 4 Supplemental Figure 2. Histological analysis and lipid content of the livers from bone marrow-specific CCR2-deficient MC4R-KO mice.

5 Histological scores for hepatic steatosis, lobular inflammation, ballooning degeneration, 6 NAFLD activity score (NAS) (A), and fibrosis stage (B). (C) Hepatic content of triglyceride 7 and total cholesterol. (D) Representative images of immunostaining for aSMA. CV, central 8 veins. Scale bars, 50 μ m. Data represent mean \pm SEM. ** P < 0.01 (Tukey-Kramer test); n.s.,

- 9 not significant. n = 5-9.
- 10

Supplemental Figure 3. Dose-dependent effect of CCl₄ on hCLS formation and liver 4 fibrosis.

- 5 (A) Serum alanin aminotransferase (ALT) concentrations 1 day after CCl₄ injection. (B) hCLS
- 6 number evaluated by F4/80 immunostaining. (C) Fibrosis area evaluated by Sirius red staining 7 days after CCl₄ injection. Data represent mean \pm SEM. * P < 0.05, ** P < 0.01 vs. veh (day
- 7 7) (2-tailed unpaired Student's *t* test). n = 5. 8
- 9

Supplemental Figure 4. Effect of low-dose CCl₄ on wildtype mice fed standard diet.

4 (A) Experimental protocol of CCl₄ injection to wildtype mice fed SD. Eight-week-old wildtype 5 mice were kept under SD for 4 weeks, and received a single injection of CCl₄ at a dose of 6 0.1ml/kg or olive oil as vehicle (Veh) intraperitoneally. (B) Time course of serum ALT 7 concentrations after CCl₄ administration. Data represent mean \pm SEM. ** *P* < 0.01 vs. veh (day 7); ## *P* < 0.01 (Tukey-Kramer test). Representative images of F4/80 immunostaining (C) and 9 Sirius red staining (D). Arrows, swollen hapatocytes. CV, central veins; PV, portal veins. Scale 10 bars, 50 µm. *n* = 5-6.

11

Supplemental Figure 5. Effect of low-dose CCl₄ on wildtype mice fed Western diet.

2 3 4 (A) Experimental protocol of CCl₄ injection to wildtype mice fed WD. Eight-week-old 5 wildtype mice were fed WD for 16 weeks, and received a single injection of CCl₄ at a dose of

6 0.1ml/kg or olive oil as vehicle (Veh) intraperitoneally. (B) F4/80 immunostaining, and (C)

- 7 Sirius red staining 7 days after CCl₄ injection. Arrows, hCLS. CV, central veins. Scale bars, 50
- 8 µm. Data represent mean \pm SEM. * P < 0.05, ** P < 0.01 (2-tailed unpaired Student's t test). n
- 9 = 7-8.

3 Supplemental Figure 6. Anti-Fas antibody-induced hepatocyte death and hCLS 4 formation.

5 (A) Experimental protocol for induction of hepatocyte death by anti-Fas antibody. Eight-week-old MC4R-KO mice were fed WD for 4 weeks, and received injection of anti-Fas 6 7 antibody at a dose of 10 μ g /kg (Fas) or normal saline (Veh) intravenously. n= 5. (B) Changes in serum ALT levels 7 days after antibody injection. (C) TUNEL staining, (D) F4/80 immunostaining, and (E) Sirius red staining 7 days after antibody injection. Arrowheads, 8 9 TUNEL-positive cells; Arrows, hCLS. Scale bars, 50 µm. (F) Hepatic mRNA expression of 10 genes related to inflammation (Emr1 (F4/80), Tnfa, and Itgax (CD11c)) and fibrogenesis 11 (*Tgfb1* and *Colla1*). Data represent mean \pm SEM. * P < 0.05, ** P < 0.01 (2-tailed unpaired 12 13 Student's *t* test).

14

2
3 Supplemental Figure 7. Role of CD11c-positive macrophages in hCLS formation in
4 wildtype mice fed WD.

5 Representative images of immunofluorescent staining for Clec4f and CD169 (A), and F4/80 6 and CD11c (B) of the livers from wildtype fed WD for 8 months. (C) Experimental protocol 7 for depletion of CD11c-positive cells in CD11c-DTR bone marrow-chimeric wildtype 8 (CD11c-DTR-BM WT) mice fed WD for 20 weeks. (D) Representative images of F4/80 9 immunostaining and the number of hCLS. WT/SD, SD-fed WT-BM wildtype mice with DT treatment; Dep (-), WT-BM wildtype mice fed WD for 20 weeks with DT treatment; Dep (+), 10 CD11c-DTR-BM wildtype mice fed WD for 20 weeks with DT treatment. Arrows, hCLS. 11 scale bars, 50 μ m. N.D., not detected. ** P < 0.01 (Tukey-Kramer test). n = 3-4. 12

Supplemental information M. Itoh et al. 12

1

2 3 4 Supplemental Figure 8. Expression of CD11c in the restored macrophages after diphtheria toxin treatment in the conventional NASH model using MC4R-KO mice.

Representative images of immunofluorescent staining for F4/80 and CD11c of the livers from

5 6 CD11c-DTR-BM MC4R-KO mice with or without macrophage depletion (4 and 10 days after

7 DT treatment). Dep (-), WT-BM MC4R-KO mice fed WD for 20 weeks with DT treatment;

8 9 Dep (+) day4 or 10, CD11c-DTR-BM MC4R-KO mice fed WD for 20 weeks at each time

point after DT treatment. scale bars, 50 µm.

Supplemental Figure 9. Potential role of CD11c-positive resident macrophages in
 hepatocyte death-triggered liver fibrosis in NASH.

4 During the development of NASH, resident ($CD169^+ F4/80^{hi}$) macrophages aggregate arround

5 dying or dead hepatocytes to constitute hCLS, where CD11c-positive resident macrophages

6 promote liver fibrosis. Our data suggests that these macrophages in hCLS become

7 CD11c-positive in response to hepatocyte death, with unique polarization profiles. Therefore,

8 CD11c-positive resident macrophages in hCLS would be a novel macrophage subset that

9 drives hepatocyte death-induced liver fibrosis.