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Supplementary Note 1: mRNA expression profiles 6 

For all of the 30 samples, gene expression was analyzed using Affymetrix Human U133 Plus 2.0 arrays. 7 

The analysis was performed at the Department of Environmental and Occupational Health Science’s 8 

Functional Genomics Core Laboratory at the University of Washington. RNA was isolated using the 9 

Qiagen RNeasy Mini kit (Qiagen Inc, Germantown MD). RNA quantity was assessed by measuring 10 

OD260, and purity by OD 260/280 and OD260/230 ratios with the NanoDrop spectrophotometer (Thermo 11 

Fisher Scientific Inc, Wilmington, DE). RNA integrity was assessed using the Agilent 2100 Bioanalyzer 12 

(Agilent Technologies Inc., Santa Clara, CA). RNA samples were required to meet these stringent 13 

quality control parameters and were then processed according to the manufacturer’s 14 

recommendations. Briefly, 250 ng of total RNA was reverse transcribed. The resulting cDNA was 15 

converted to biotinylated cRNA. The biotinylated fragments were hybridized to Affymetrix U133 Plus 16 

2.0 arrays, washed and stained. The arrays were scanned with an Affymetrix GenChip® 3000 scanner. 17 

Image generation and feature extraction were performed using Affymetrix GeneChip Command 18 

Console software. 19 

For the additional test set of 12 patient samples (from which we show the results in Fig. 3b), RNA-seq 20 

data generation was performed at the Northwest Clinical Genomics Laboratory, UW Medicine Center 21 

for Precision Diagnostics using the TruSeq® stranded mRNA kit from Illumina (San Diego, CA) 22 

according to manufacturer’s instructions. We had two RNA-seq replicates for each of the 12 samples. 23 

For MERGE experiments, we averaged the FPKM (Fragments Per Kilobase of transcript per Million 24 

mapped reads) values from the Cufflinks1 output from the two replicates of each sample. 25 

Gene expression for the 14 AML cell lines (EOL-1, MOLM/16, NB4, OCI-AML3, SKM1, HL60, KG1, 26 

MOLM/13, MV4.11, OCI-AML2, PL-21, U937, KASUMI1, THP-1) was retrieved from the Cancer Cell 27 

Line Encyclopedia (CCLE)2. 28 

29 

Supplementary Note 2: Curve fitting to estimate drug sensitivity profiles 30 

As was done in CCLE study2, from each does-response data for a combination of a drug and a patient 31 

sample, we extracted summary statistics, including area under the curve (AUC), half maximal 32 

inhibitory concentration (IC50), half maximal effective concentration (EC50), and maximal effect level 33 

(Amax). In brief, we fitted the dose-response data (averaged over duplicates) to the following 4 34 

parameter sigmoid model: 35 
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Here, 𝐴0 and 𝐴inf are the top and bottom asymptotes of the response (cell viability); EC50 is the 2 

inflection point of the curve; and Hill is the Hill slope, which describes the curve’s steepness. Other key 3 

parameters derived from the models include IC50 (the concentration where the fitted curve crosses 50% 4 

in cell viability) and Amax (the maximal activity value reached within a model). We extracted these 5 

parameters (AUC, IC50, EC50, and Amax) after curve fitting by using MATLAB’s ‘nlinfit’ function for 6 

nonlinear curve fitting. For inactive compounds, it is impossible to derive an IC50; in this instance, as 7 

was done in the CCLE study2, we simply used the maximum tested concentration as the default value – 8 

which serves primarily as a placeholder to allow algorithms to work on all samples. Batch effects were 9 

corrected using ComBat3 for each drug sensitivity summary based on the three batches of experiments 10 

for the 30 patients. 11 

From these statistics, we chose AUC because it represents an average of drug sensitivity across a range 12 

of drug concentrations. Indeed, AUC showed by far the strongest association with gene expression 13 

levels; the number of significant associations (FDR corrected 𝑝-value < 0.1) between a gene and a drug 14 

sensitivity measure was 53,967 for AUC, 23,641 for IC50, 15,112 for EC50, and 7,132 for Amax. Considering 15 

additional drug sensitivity measures would increase the total number of hypotheses.  16 

 17 

Supplementary Note 3: Summary of the clinical information and its consistency with our in vitro 18 

drug sensitivity data 19 

Of the 30 AML patient samples, 24 were newly diagnosed, and 6 had relapsed. The majority of samples 20 

(19 of 30) were males. The median age was 54, and the age range was [19, 83]. Six patients had 21 

antecedent hematologic disorders. According to European LeukemiaNet criteria4, seven samples were 22 

in favorable risk group, eleven were in intermediate-1, 2 were in intermediate-2, and ten were in the 23 

adverse risk cytogenetics group. Several different regimens were used to treat the patients, most of 24 

which included cytarabine, and many of which included an anthracycline. Supplementary Data 3 25 

contains the detailed clinical information including usual evaluation (including risk group category 26 

and cytogenetic features), response to treatment, duration of remission, and the individual regimens 27 

for each of the samples. 28 

We measured the standard clinical mutation status on FLT3 and NPM1 for most of the 30 patients (26 29 

patients tested for NPM1 mutation; 27 tested for FLT3 mutation). Seven of 26 patients had an NPM1 30 

mutation, and seven of 27 patients had the FLT3 ITD mutation. We observed a statistically significant 31 

association between FLT3 mutation status and 12 drugs (FDR corrected 𝑝-value < 0.1): AS101, AT-7519, 32 

AZD7762, cladribine, mitomycin C, mitoxantrone, NVP-AUY-922, obatoclax, PIK-75, midostaurin 33 

(PKC412), sunitinib, and tandutinib. Three of these drugs (midostaurin, sunitinib and tandutinib) are 34 

known to have a FLT3 inhibitory role. None of the drugs is associated with NPM1 mutation status at 35 

the same significance level. 36 
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Additionally, we checked the statistical significance of the association between the complete remission 1 

(CR) status and the drug sensitivity measure (AUC) across all 53 drugs. Interestingly, 12 of 15 drugs 2 

(80%) (azacitidine, bortezomib, cladribine, clofarabine, daunorubicin, etoposide, fludarabine, 3 

mitoxantrone, panobinostat, PKC412, tretinoin, vorinostat) that have shown clinical efficacy in AML 4 

treatment were significantly associated with CR at FDR= 0.05, while only 21 of the other 38 drugs 5 

(55.3%) showed significant association with CR (Table S2). Some of the 38 drugs in the latter set have 6 

successor agents that have shown clinical efficacy in AML, such as the Bcl2 inhibitor ABT-199 7 

(venetoclax), a successor to ABT-737 and ABT-263 that we tested. Moreover, drugs might have additive 8 

or synergistic activity in combinations; however, in this study, the drugs were assayed as single agents. 9 

We note that cytarabine, commonly used to treat AML, is not listed in Table S2 because it was not 10 

selected by the procedure that we followed to select the 53 drugs we focused on in our computational 11 

framework.   12 

While cytarabine is commonly used to treat AML and a majority of the 30 AML patients received this 13 

drug, it was not one of the 53 drugs included in our MERGE computational framework:  our criterion 14 

for selecting whether to include each of the 160 tested drugs in the study was exhibited activity (cell 15 

viability ≤ 50%) of the drug against at least half of the 30 patient samples; cytarabine did not satisfy this 16 

criterion. One possible reason is that the tested concentrations were too low for the 12 patients in the 17 

first batch (concentration range 2×10−10 M to 1×10−6 M), and cytarabine did not exhibit any activity 18 

for those patients until the highest concentration point. The concentrations were then increased for the 19 

next 18 patient samples (range 4×10−8 M to 1×10−4 M). For comparison, the peak mean plasma 20 

concentration after high dose cytarabine was 2×10−3 M5. 21 

 22 

Supplementary Note 4: Extracting driver features from publicly available sources 23 

The MERGE algorithm takes a set of driver features for each gene – namely, expression hubness, 24 

candidate regulators, mutation, copy number variation, and methylation – as input and estimates a 25 

MERGE score for each gene based on these features (Fig. 1b). These features were extracted from 26 

publicly available sources, such as TCGA (The Cancer Genome Atlas) AML study6, AML expression 27 

studies7, and gene annotation databases, as described in detail below. 28 

Expression hubness: In our prior study, we developed a novel computational method, named SPARROW 29 

(SPARse selected expRessiOn regulators identified With penalized regression), to estimate each gene’s 30 

hubness purely based on expression data from cancer patients. SPARROW employs a sparse statistical 31 

model in which each gene's expression level is modeled as a linear combination of a small set of other 32 

genes (i.e., sparse basis), and determines the hubness of each gene based on how often it is chosen in 33 

the sparse basis for any other gene8. To use gene hubness as a MERGE feature, we downloaded the R 34 

data object (.rda) containing the SPARROW results for AML from http://sparrow-35 

leelab.cs.washington.edu/data. We then used ‘sparrow1’ scores (the number of downstream genes) 36 

from the ‘basesFreq’ object as the expression hubness feature. 37 

Candidate regulators: The genes known to regulate other genes are more likely disease drivers and hence 38 

more reliable molecular markers for therapeutic response than those that are not. To incorporate this 39 
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hypothesis, we used a list of genes known to have regulatory roles, including transcription factors, 1 

chromatin remodelers and signal transduction genes, constructed based on gene annotation databases7. 2 

Based on this list of 3,052 genes, we generated a binary feature for each gene by assigning 1 if the gene 3 

was on the list and 0 otherwise. 4 

Mutation: We downloaded significance measures of mutation frequencies for each gene measured in 5 

the MutSig2CV Analysis of the AML study from TCGA (http://firebrowse.org/?cohort=LAML). Each 6 

gene was given a 𝑝-value that measured the statistical significance that the gene had mutated more 7 

often than expected by chance given background mutation processes across patients; we used 8 

−log10p-value as the feature value. 9 

Copy number variation (CNV): We downloaded CNV measures (gdac.broadinstitute.org_LAML-10 

TB.CopyNumber_Gistic2.Level_4.2015082100.0.0.tar.gz) from 11 

http://gdac.broadinstitute.org/runs/analyses__2015_08_21/data/LAML/20150821/. Then, we used 12 

all_data_by_genes.txt in this tar.gz file to assign 1 (having CNV) or 0 (no CNV) to each gene. We set the 13 

CNV feature of a gene to 1 if the gene was amplified or deleted by at least .05 in at least 20 of 191 14 

patients (~10%), and to 0 otherwise. 15 

Methylation: We downloaded DNA methylation measures 16 

(gdac.broadinstitute.org_LAML.Methylation_Preprocess.Level_3.2015110100.0.0.tar.gz) from 17 

http://gdac.broadinstitute.org/runs/stddata__2015_11_01/data/LAML/20151101/. We then used 18 

LAML.meth.by_mean.data.txt in this tar.gz file to obtain the average methylation levels for each gene 19 

across all patients. 20 

 21 

Supplementary Note 5: Averaging the methylation values across the CpG probes and across the 22 

samples 23 

The AML study from TCGA includes preprocessed methylation profiles generated by four different 24 

pipelines that retrieve the gene-based methylation values from the CpG probes.  These four include: (1) 25 

using the CpG probe with the highest anticorrelation with the gene’s expression level, (2) using the 26 

CpG probe with the highest anticorrelation with the clinical data, (3) using the mean signal intensities 27 

across all CpG probes in proximity to the gene, and (4) using the CpG probe with the maximum 28 

standard deviation across all beta values. 29 

A specific position of methylation (e.g., whether it occurs around the transcription start site or over a 30 

gene body) offers important information to understand the epigenetic cause of variation of 31 

downstream phenotypes, such as gene expression levels. Accordingly, the data generated by the first 32 

two preceding approaches were generally chosen when the goal was to explain a phenotype of interest 33 

(i.e., gene expression or clinical data) and to choose the probe likely to represent the molecular basis for 34 

the phenotype. Since we sought to develop a general framework to utilize methylation data from the 35 

external AML sources, our study used the data generated by the approach (3), which is independent 36 

from any specific phenotype and provides a general summary of TCGA methylation data. We did not 37 

use the data from approach (4) because it discards probes with a standard deviation below a specified 38 

cutoff, so the dataset contained only ~2K genes, too small compared to the ~17K genes in the MERGE 39 

model. 40 
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After getting each sample’s (patient’s) methylation values for each gene as explained above, we used 1 

the sample mean across patients to compute each gene’s methylation score. While other ways may 2 

provide a summary statistic across all patients, we considered only the sample mean in the current 3 

study: mean is the most commonly used measure of central tendency for continuous-valued variables, 4 

and several authors have averaged methylation values over samples (e.g., Moarii, Boeva, Vert, & Reyal, 5 

2015). 6 

 7 

Supplementary Note 6: Standardization of driver features, predictors and response variables 8 

We standardized each driver feature before running the MERGE algorithm so that each feature had 9 

mean 0 and variance 1. We performed standardization so that despite different scales, driver features 10 

were treated fairly when estimating MERGE scores. We standardized binary features (candidate 11 

regulator and CNV) as we did other non-binary features. For any statistical model that combines data 12 

from several different kinds of variables (i.e., features) and aims to learn weights for the variables with 13 

regularization, one must provide all variables to the algorithm on the same scale to achieve 14 

fairness10. Binary variables are not exceptions11. 15 

We also standardized predictor variables (gene expression levels) and response variables (drug 16 

sensitivity measures) for MERGE and all other methods compared to MERGE in our experiments: 17 

ElasticNet, multi-task learning, Pearson’s 𝑝-value, Spearman 𝑝-value, and Bayesian multi-task multiple 18 

kernel learning (MKL). 19 

 20 

Supplementary Note 7: Measuring the significance of association between a gene expression level 21 

and a drug sensitivity measure 22 

We computed the 𝑝-value of association between each gene and each drug using t statistics and 23 

associated 𝑝-values, measuring the correlation between the gene and drug in a univariate linear 24 

regression model. Then, we applied FDR correction for multiple hypotheses for all pairs of genes and 25 

drugs, using the Benjamini & Hochberg (1995) method. We considered the (genome-wide) FDR 26 

corrected 𝑝-value < 0.1 to be significant throughout the paper. When we measured the consistency of 27 

gene-drug associations in CCLE data, we used an uncorrected 𝑝-value of 0.1 as a cutoff to indicate that 28 

a gene-drug association discovered in patient data was replicated in validation data. We did not apply 29 

the FDR correction method in validation data because the FDR correction process is designed to 30 

maintain a certain FDR level when making a large number of hypotheses, and we do not make 31 

hypotheses during validation. 32 

 33 

Supplementary Note 8: The MERGE algorithm 34 

To learn the MERGE scores, we developed a probabilistic graphical model approach that provides a 35 

statistical model to represent relationships among variables in input data and a principled way of 36 

learning the parameters of the model from data13. Let 𝑤𝑖𝑗 represent the magnitude and sign of the 37 

impact of gene 𝑖 on drug 𝑗. This relationship can be modeled as: y𝑗  ~ 𝒩(𝑤𝑖𝑗𝑥𝑖, ℰ2), where 𝑥𝑖 represents 38 

the expression level of gene 𝑖 and 𝑦𝑗 represents the drug response measure (i.e., AUC) of drug 𝑗. A 39 

conventional statistical model widely used in a genome-wide association analysis does not model a 40 
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marker potential (Fig. 1a). In the conventional model, we estimate 𝑤𝑖𝑗 for each combination of a gene 1 

and a drug by finding 𝑤𝑖𝑗, which minimizes the squared error of prediction across all samples (here, 2 

patients): 3 

minimize
𝑤𝑖𝑗

∑ (𝑦𝑗
(𝑛)

− 𝑤𝑖𝑗𝑥𝑖
(𝑛)

)2
𝑛∈{all patients} ,                                       Eq (1) 4 

where (n) means the nth sample. Then, the learned 𝑤𝑖𝑗 value would equal Pearson’s correlation 5 

coefficient between the two variables, 𝑥𝑖 and 𝑦𝑗 , when both 𝑥𝑖 and 𝑦𝑗 were scaled to have the same 6 

standard deviance (specifically through the common standardization procedure). 7 

MERGE’s key innovation is the modeling of the prior probability distribution over each 𝑤𝑖𝑗 such that it 8 

incorporates prior knowledge on gene 𝑖 in terms of its potential to be a molecular marker. We model 9 

the prior distribution over each 𝑤𝑖𝑗 as a normal distribution 𝑃(𝑤𝑖𝑗) ~ 𝒩(0, 𝜎𝑖
2), where 𝜎𝑖

2 represents a 10 

prior variance specific to gene 𝑖. If gene 𝑖 has a low value on 𝜎𝑖
2, the weight value 𝑤𝑖𝑗 would be inclined 11 

to be close to zero (i.e., low marker potential); if gene 𝑖 has a high value on 𝜎𝑖
2, then, since there is more 12 

probability mass away from zero, the weight value 𝑤𝑖𝑗 would be more inclined to deviate from zero 13 

(i.e., high marker potential). We model 𝜎𝑖
2 as a function of a weighted combination of its driver features 14 

𝜎𝑖
2 =  

1

𝜆−∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1

, where 𝑑𝑖𝑘 is the value of the 𝑘th driver feature on gene 𝑖. Genes with a high value of 15 

(∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1 ) would have a high variance 𝜎𝑖

2 (i.e., high marker potential); thus, we define the MERGE 16 

score of gene 𝑖 as (∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1 ). 𝜆 is a regularization parameter:  when it is high, each 𝜎𝑖

2 would take a 17 

lower value, which means a lower variance on the weight (𝑤𝑖𝑗) values associated with each gene. 18 

We learn the parameters – weight values 𝑤𝑖𝑗 for each gene 𝑖 and drug 𝑗, and the driver feature weights 19 

𝑣𝑘 – that optimize the joint log-likelihood function log 𝑃(𝐗, 𝐘, 𝐖, 𝐕), where 𝐗 is the expression data 20 

matrix (𝑝 genes × 𝑛 patients), 𝐘 is the drug response data matrix (𝑞 drugs × 𝑛 patients), 𝐖 is the gene-21 

drug weight matrix (𝑝 genes × 𝑞 drugs) that contains 𝑤𝑖𝑗 for each gene 𝑖 and drug 𝑗, and 𝐕 is a vector 22 

that contains 5 driver feature weights. The MERGE algorithm can be seen as a process of projecting 23 

high-dimensional gene-drug associations (𝑝 genes × 𝑞 drugs) onto a lower-dimensional space by 24 

constraining weight values based on prior information on genes’ potential to drive the disease. 25 

The objective function log 𝑃(𝐗, 𝐘, 𝐖, 𝐕) can be decomposed as 26 

log[𝑃(𝐘|𝐗, 𝐖, 𝐕)𝑃(𝐗|𝐖, 𝐕)𝑃(𝐖|𝐕)𝑃(𝐕)] 27 

= log 𝑃(𝐘|𝐗, 𝐖) + 𝑃(𝐗) + log 𝑃(𝐖|𝐕) + log 𝑃(𝐕) 28 

= log 𝑃(𝐘|𝐗, 𝐖) + log 𝑃(𝐖|𝐕), 29 

assuming a uniform prior distribution over 𝐗 and 𝐕 (i.e., 𝑃(𝐗) and 𝑃(𝐕) are constant). The conditional 30 

log-likelihoods are: 31 

log 𝑃(𝐘|𝐗, 𝐖) = log ∏ 𝒩 (𝑤𝑖𝑗𝑥𝑖
(𝑛)

, ℰ2)𝑖,𝑗,𝑛 = − ∑ {log √2ℰ2𝜋 +  
(𝑦𝑗

(𝑛)
−𝑤𝑖𝑗𝑥𝑖

(𝑛)
)2

2ℰ2 }𝑖,𝑗,𝑛 , 32 

log 𝑃(𝐖|𝐕) = log ∏ 𝒩 (0,
1

𝜆−∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1

)𝑖,𝑗 = − ∑ {log √
2𝜋

𝜆−∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1

+  
(𝜆−∑ 𝑣𝑘𝑑𝑖𝑘

5
𝑘=1 )𝑤𝑖𝑗

2

2
}𝑖,𝑗 , 33 

for each gene 𝑖, drug 𝑗, and a sample 𝑛. Maximizing log 𝑃(𝐗, 𝐘, 𝐖, 𝐕) with respect to 𝐖 and 𝐕 leads to 34 

the following optimization problem when constants are dropped and ℰ2 is set to 1 (since we 35 
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standardize 𝐗 and 𝐘 before we apply the algorithm, ℰ2 = 1 is a reasonable choice that simplifies the 1 

optimization). 2 

minimize
𝑤𝑖𝑗∈𝐖, 𝑣𝑘∈𝐕 

∑ {∑ (𝑦𝑗
(𝑛)

− 𝑤𝑖𝑗𝑥𝑖
(𝑛)

)2
𝑛 }𝑖,𝑗 + ∑ (𝜆 − ∑ 𝑣𝑘𝑑𝑖𝑘

5
𝑘=1 ) 𝑤𝑖𝑗

2
𝑖,𝑗 − ∑ log(𝜆 − ∑ 𝑣𝑘𝑑𝑖𝑘

5
𝑘=1 ) 𝑖,𝑗 , 3 

subject to 𝜆 − ∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1 > 0  for each gene 𝑖.                                 Eq (2) 4 

The first term is the loss function for learning the value of 𝑤𝑖𝑗 (for each gene 𝑖 and drug 𝑗) that captures 5 

the degree of association between gene 𝑖 and drug 𝑗. The second term can be viewed as a weighted L2 6 

regularization term that favors small values on 𝑤𝑖𝑗 (which improves generalizability of the learned 7 

model) with a different strength for each gene depending on the value of (𝜆 − ∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1 ). A gene 𝑖 8 

with a high value of (∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1 ) (i.e., MERGE score) would be regularized weakly and more inclined 9 

to have a weight value 𝑤𝑖𝑗 with a large magnitude. The last term requires the regularization parameter 10 

(𝜆 − ∑ 𝑣𝑘𝑑𝑖𝑘
5
𝑘=1 ) to be positive and encourages it to take on relatively larger values. 11 

We iteratively estimate the optimization variables 𝐖 and 𝐕 using a block coordinate descent 12 

procedure14–16 until convergence. The objective function of MERGE is not jointly convex with respect to 13 

𝐖 and 𝐕, though it is convex with respect to each set of parameters with the other set held fixed. When 14 

𝐕 is held fixed, the objective is convex with respect to 𝐖; when 𝐖 is held fixed, the objective is convex 15 

with respect to 𝐕. This means that each learning step in the block coordinate descent algorithm 16 

(learning an element in 𝐕 or in 𝐖) is a convex optimization problem with a single local minimum that 17 

is also the global minimum. 18 

We performed our MERGE runs using R (version 3.3.2) on a machine with an Intel(R) Xeon(R) E5645 19 

2.40GHz CPU and 24GB RAM.  A MERGE run on the data with ~17K genes, 53 drugs and 30 samples 20 

took 12 seconds on that machine. 21 

No modifications or improvements on the algorithm were made based on any validation analyses, i.e., 22 

the cross-validation tests involving two groups of samples, the leave-one-out cross-validation (LOOCV) 23 

test for prediction, and testing on 14 AML cell lines or the additional 12 patient samples. In each of 24 

these experiments, we chose the value of the hyperparameter 𝜆 by cross-validation (Supplementary 25 

Note 15). 26 

 27 

Supplementary Note 9: Clinical information on the validation data from additional 12 AML patient 28 

samples 29 

The additional 12 patients we used for validation (Fig. 3c) were enrolled in an open clinical trial (High 30 

Throughput Drug Sensitivity Assay and Genomics-Guided Treatment of Patients with Relapsed or 31 

Refractory Acute Leukemia NCT02551718). For those 12 samples, we measured gene expression levels 32 

using the newer RNA-seq technology while we had the microarray gene expression from the initial 30 33 

patient samples (Supplementary Note 1). The median age was 58, and 5 had antecedent hematologic 34 

disorders. According to European LeukemiaNet criteria4, 7 samples were in favorable risk group, 3 in 35 

intermediate-1, 1 in intermediate-2, and 8 were in the adverse risk cytogenetics group. Four samples 36 

were primary refractory, and 6 samples relapsed after allogeneic transplant. The average number of 37 

prior regimens used was 5. 38 

 39 
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Supplementary Note 10: Details on the implementations of the methods compared to MERGE 1 

For ElasticNet, we used the R package glmnet17 available on CRAN. For multi-task learning18, the 2 

MATLAB implementation was available from Pong, Tseng, Ji, & Ye (2010) (on 3 

http://www.mypolyuweb.hk/~tkpong/). For Bayesian multi-task MKL, we used the R code provided as 4 

supplementary to Costello et al. (2014). 5 

As mentioned in Supplementary Note 6, we standardized both the predictor and response variables 6 

before applying each method, as we did for MERGE. In addition, as with MERGE, we chose the tuning 7 

parameters for each method in the comparison using LOOCV. These include the mixing parameter 𝛼 8 

and regularization parameter 𝜆 for ElasticNet, the regularization parameter 𝜇 for multi-task learning, 9 

and 𝛼 and 𝛽, which are, respectively, the shape and rate parameters of the Gamma priors, for Bayesian 10 

multi-task MKL. 11 

Comparing MERGE to the other methods in Fig. 3 and 4c requires ordering of the gene-drug 12 

associations by the other methods, as with MERGE. For Pearson’s P-value or Spearman P-value 13 

methods, we sorted the gene-drug pairs based on decreasing significance of correlation (Pearson’s or 14 

Spearman correlation, depending on the method). ElasticNet and multi-task learning are regression 15 

methods, and they learn coefficients for the predictor-response variable pairs. For ElasticNet, we ran 16 

the method for each of the 53 drugs separately and concatenated the resulting gene coefficients to get a 17 

matrix of size #𝑔𝑒𝑛𝑒𝑠 × #𝑑𝑟𝑢𝑔𝑠. The multi-task learning method, on the other hand, learns the 18 

coefficients for all drugs jointly; thus, a single run of this algorithm gives us a coefficient matrix of size 19 

#𝑔𝑒𝑛𝑒𝑠 × #𝑑𝑟𝑢𝑔𝑠. After determining a coefficient matrix, we sorted gene-drug pairs, for each of 20 

ElasticNet and multi-task learning methods, based on decreasing absolute value of the coefficients (i.e., 21 

decreasing strength of gene-drug associations). After sorting gene-drug pairs for each method in 22 

comparison to MERGE, we incremented the number of considered top gene-drug pairs by 53 (the 23 

number of drugs per gene in our application) for each increment of 1 in the x-axis in Fig. 3 and 4c. 24 

To generate heat maps for the alternative methods (Supplementary Fig. 3), we computed gene scores 25 

(as with MERGE scores) based on each method. For this purpose, we first sorted the gene-drug pairs in 26 

increasing order of their importance for each method (i.e., in increasing significance of correlation for 27 

the Pearson’s and Spearman P-value methods, and in increasing absolute value of the coefficients for 28 

the ElasticNet and multi-task learning methods). For each gene 𝐺, the score was computed as the sum 29 

over all indices corresponding to that gene’s associations in the sorted weight matrix. If a gene had 30 

many drug associations with high absolute weights, then those associations would be positioned 31 

towards the end of the sorted weight matrix, which would increase the score of 𝐺. 32 

For the Bayesian multi-task MKL method, we used only gene-set views and the discretized view20 33 

computed on gene expression data since we had no epigenomic or proteomic profiling data from the 30 34 

AML patient samples. 35 

 36 

Supplementary Note 11: Computing the significance of the enrichment of the drug classes based on 37 

mechanism of action within drug clusters showing similar patient responses 38 

To verify that drugs with similar mechanisms of action indeed showed similar response across patients, 39 

we used the dendrogram (Fig. 4a) generated by agglomerative hierarchical clustering. For hierarchical 40 

http://www.mypolyuweb.hk/~tkpong/
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clustering, we used Euclidean distance as the dissimilarity metric, and we used average linkage as the 1 

clustering method to cluster the drugs based on the response of 30 patient samples to those drugs.  2 

In the dendrogram, for each internal node that had 3 to 8 drugs in its leaves, we first retrieved a unique 3 

set of drug classes that contained at least one drug from the node’s downstream drugs. Then, we 4 

checked the enrichment of each of these drug classes in the set of the downstream drugs of that node 5 

using Fisher’s exact test. Each of the enrichment 𝑝-values we present in Fig. 4a is FDR-corrected for the 6 

number of drug classes tested for the corresponding node using the Benjamini & Hochberg (1995) 7 

method. 8 

 9 

Supplementary Note 12: Computing each gene’s drug class specificity (DCS) measure  10 

First, for each pair of [gene A, class B], we computed the significance of the overlap between the drugs 11 

in B and the drugs gene A’s expression level is significantly associated with, measured by Fisher’s exact 12 

test 𝑝-value. Then, for each gene A, we computed a specificity measure that we named drug class 13 

specificity (DCS) score, by combining the p-values across all classes, as follows: 14 

DCSA =
1

total # of drug classes
 ∑ − log10[Fisher's exact test p-value

𝐴𝐵
]

𝐵∈{drug classes}

 

 

. 

Mathematically, Fisher’s exact test is based on the following numbers for each pair of [gene A, class B]: 15 

(1) the total number of drugs with which A is significantly associated, (2) the number of drugs in class 16 

B with which A is significantly associated, (3) the number of drugs in class B, and (4) the total number 17 

of drugs (53 in our experiments). The 𝑝-value measures the significance of (2) based on the 18 

hypergeometric distribution. Therefore, it measures the specificity of the association between gene A 19 

and class B. 20 

 21 

Supplementary Note 13: Summary description of the MERGE probabilistic model 22 

MERGE is a probabilistic, model-based approach that uses MAP to estimate parameters. A 23 

probabilistic, model-based approach provides an expressive model to describe relationships among 24 

variables. Moreover, the probabilistic relationships can be read from the learned model and thus, often 25 

directly lead to a comprehensive biological interpretation. In MERGE, the prior variance of the gene-26 

drug weights is interpreted as the corresponding gene’s biomarker potential. 27 

We modeled 𝑊 and 𝑉 in a Bayesian sense (i.e., they are parameters for which belief in their values is 28 

modeled), where 𝑊 is modeled as a Gaussian random variable whose variance is modeled based on 𝑉, 29 

and 𝑉 is modeled as a uniform random variable (i.e., 𝑃(𝑉) is constant). 30 

Instead of using a traditional Bayesian approach (i.e., estimating 𝑃(𝛳 | 𝐷), the full posterior 31 

distribution, over parameters 𝛳 where D represents the data), we employed maximum a posteriori 32 

probability (MAP) estimation, i.e., obtaining a point estimate of 𝛳 that maximizes 𝑃(𝛳 | 𝐷). In other 33 

words, we optimized log 𝑃(𝑋, 𝑌, 𝑊, 𝑉) with respect to 𝑊 and 𝑉. MAP estimation has two advantages 34 

over the traditional Bayesian approach. First, estimating specific parameter values makes biological 35 

interpretation straightforward. For example, specific parameter values of 𝑣𝑘  coefficients enable an 36 
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efficient computation of MERGE scores and straightforward interpretation of how driver features affect 1 

the MERGE score (i.e., biomarker potential). Second, MAP estimation allows a much simpler parameter 2 

learning procedure, especially when 𝑃(𝛳 | 𝐷) does not have a closed-form solution. Penalized linear 3 

regression models, such as LASSO (or Ridge), also employ MAP estimation for a probabilistic model 4 

(specifically, linear regression model) with a Laplacian (or Gaussian) prior for 𝑃(𝛳), where the 5 

parameter 𝛳 means the 𝑊 values. MERGE extends the penalized linear regression models by explicitly 6 

modeling the variance of the 𝑊 parameters based on 𝑉 and the driver features of genes. 7 

 8 

Supplementary Note 14: Initialization of MERGE parameters and identifiability of the MERGE 9 

model 10 

In our application of MERGE, we initialized all five 𝑣𝑘 values to zero, which provided an unbiased 11 

starting point (i.e., giving an equal prior variance to the weight values of all genes). 12 

As noted previously, the MERGE objective function represented in Eq (2) is non-convex; thus, different 13 

initializations of the 𝑉 vector (of 𝑣𝑘 values, each for a different driver feature) may lead to different 14 

learned parameters, i.e., different local minima of the objective function. In practice, however, 15 

depending on the objective function and the input data, it is possible that a roughly unique solution can 16 

be empirically identified. One way to check is to try multiple runs with different parameter 17 

initializations and see whether these runs converge to roughly the same point.  18 

We observed that when we tried different initializations of 𝑉 (and correspondingly 𝑊), the learned 19 

parameters were very similar to each other. Below, we describe our results on the consistency between 20 

the zero and random initializations. 21 

We performed 20 different runs of MERGE where we initialized 𝑣𝑘 values so they could be generated 22 

randomly from a standard normal distribution. Then, we compared the resulting training objective 23 

function values and the MERGE scores from these 20 runs to those from the MERGE run used in our 24 

paper (i.e., where we initialized all five vk values to zero). We performed this experiment with the same 25 

hyperparameter value selected by LOOCV and used for the final model (λ = 20) (Supplementary Fig. 26 

11a) as well as with a different λ value (λ = 50) (Supplementary Fig. 11b). As shown in the top of 27 

Supplementary Fig. 11a, for λ = 20, only 4 of 20 runs resulted in a smaller objective function (i.e., better 28 

local optima) compared to our initialization with zero vk values, and the difference was very small. All 29 

20 runs with random initializations resulted in almost the same vk values shown in Fig. 2, and exactly 30 

the same gene rankings as those from the zero initialization of MERGE (Supplementary Fig. 11a, 31 

bottom). This indicates that different random initializations converged to roughly the same point. A 32 

different value of λ (λ =50) showed consistent patterns (Supplementary Fig. 11b). 33 

 34 

Supplementary Note 15: Cross-validation experiments and selection of the hyperparameter 𝝀 35 

In each of our experiments, the regularization parameter 𝜆 was determined via cross-validation, a 36 

standard way to choose tuning parameters. Since our sample size was low, we employed LOOCV since 37 

it provides the maximum number of training samples for each fold. Cross-validation experiments were 38 

performed when measuring the prediction accuracy on left-out test data (Fig. 5) besides when selecting 39 

the value of the hyperparameter (sparsity tuning parameter 𝜆). 40 
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We performed LOOCV within the training data to choose one 𝜆 value from the 19 𝜆 values in the wide 1 

range of [1,100]. We used LOOCV to choose the values of the tuning parameters for other methods as 2 

well: elastic net regression, the multitask learning method, and the DREAM challenge winner Bayesian 3 

multi-task MKL method. 4 

We used cross-validation tests in three settings to select the 𝜆 value: (1) Training the model using all 30 5 

samples (Fig. 3). We first performed LOOCV on 30 samples to choose the 𝜆 value using mean squared 6 

error (MSE), and then trained the model using all 30 samples with the chosen 𝜆 value. The test MSE 7 

from the LOOCV test on 30 samples is shown for varying 𝜆 values in Supplementary Fig. 12. (2) 8 

Measuring the prediction accuracy by training the model using one 12-sample batch and testing on the other 12-9 

sample batch (Fig. 5a). We performed LOOCV tests within 12 samples in each batch to choose the value 10 

of 𝜆. We used rank correlation between the actual and predicted responses as the evaluation metric. 11 

Then we trained the model using the selected 𝜆 value in each batch and tested the prediction 12 

performance on the other batch. (3) Measuring the prediction accuracy via LOOCV (Fig. 5b). In each fold 13 

for which we omitted one sample and used the remaining (n-1) samples to train the model, we 14 

performed the “inner loop” LOOCV using those (n-1) samples to choose the 𝜆 value and trained the 15 

model using (n-1) samples with the chosen 𝜆 value. We used rank correlation between the actual and 16 

predicted responses as the evaluation metric. 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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Supplementary Figures 1 

 2 
 3 

 4 
Supplementary Figure 1: Comparison of MERGE and four alternative methods to the 100 MERGE 5 

runs on random data permutations in terms of the percentage of the significant associations replicated 6 

in the left-out test data. Feature consistency achieved by 100 MERGE runs (light red) each of which uses 7 

different permutations of the training samples is compared to the consistency achieved by the actual 8 

MERGE run that uses the original training data as well as to the alternative four methods as in Fig. 3. We 9 

discovered gene-drug associations within the data from 30 patient samples, and tested on (a) the 14 cell 10 

line samples, and (b) additional 12 refractory patient samples. 11 

(a) 

(b) 
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 1 

 2 
Supplementary Figure 2: Detailed view of the prediction performance of MERGE and the three 3 

alternative methods in each of the two settings shown in Fig. 5. The performance (y-axis) is measured 4 

by the rank-based (Spearman) correlation between the predicted response and actual drug response in 5 

(a) split test, and (b) LOOCV. The numbers inside the parentheses in the figure’s legend (bottom right) 6 

represent the number of drugs for which the corresponding method achieved the best prediction 7 

performance. 8 
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 1 

    2 
3 

(a) Genes identified by ElasticNet 

(b) Genes identified by multi-task learning 
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   1 

   2 

(c) Genes identified by Pearson’s P-value 

(d) Genes identified by Spearman P-value 
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Supplementary Figure 3: Heat maps that correspond to Fig. 6a-c for the four alternative methods 1 

(shown in Fig. 3 and Fig. 4c). (a) ElasticNet, (b) Multi-task learning, (c) Pearson’s P-value, and (d) 2 

Spearman P-value. In (a)-(d), the heat map on the left shows the level of specificity of each gene to each 3 

drug class, measured by − log10[Fisher's exact test p-value]  for the top 3 genes selected using the 4 

corresponding method; the right heat map shows the gene-drug association for the genes and drug 5 

classes shown on the left heat map. 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
 17 

Supplementary Figure 4: For each of the genes in Fig. 6a and b, the amount of contribution of each 18 

driver feature on the MERGE score, measured by [driver feature weight × driver feature value] for a 19 

driver feature. The genes highlighted in red are associated with a single drug (i.e., the genes 20 

corresponding to the rows in Fig. 6b that have a single unique red or green square). We note that the 21 

genes with a high hubness contribution (blue bar > 3) tend to have significant associations with more 22 

than one drug (Fisher’s exact test 𝑝-value =  1.7×10−5). 23 
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 1 

  
 2 

Supplementary Figure 5: Comparison of FLT3 expression level to FLT3 mutation status in terms of 3 

significance of correlation with drug response. For each of the 53 drugs, the −log10p-value representing 4 

the degrees of association between the drug response and FLT3 expression level (y-axis) vs. FLT3 5 

mutation status (x-axis) is shown for (a) patients and (b) cell lines. The drugs highlighted in red on each 6 

scatter plot correspond to the four FLT3 inhibitors (AP24534, Sunitinib, Tandutinib, Tozasertib) in the set 7 

of 53 drugs that we studied. 8 

(a) (b) 
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 1 
 2 

Supplementary Figure 6: Uncropped image of the Western blot of control and SMARCA4 plasmid 3 

transfected AML cell lines: KG1, U937, HL60, and MV4.11. (a) Film. (b) Nitrocellulose membrane. 4 

 5 
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 1 

Supplementary Figure 7: The dose-response curves for cell lines treated with etoposide (left panel) 2 

and mitoxantrone (right panel) after 24 hours (a)-(d) and 48 hours (e)-(h). Each plot compares KG1 with 3 

transfected KG1 in (a)-(b) and (e)-(f), and U937 and transfected U937 in (c)-(d) and (g)-(h). Triangular 4 

marks indicate individual data points in duplicates and the average among them. Lines connect averages 5 

of duplicates in each concentration measured. 6 
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 1 

Supplementary Figure 8: The dose-response curves for cell lines treated with etoposide (left panel) 2 

and mitoxantrone (right panel) after 24 hours (a)-(d), 48 hours (e)-(h), and 72 hours (i)-(l). Each plot 3 

compares HL60 with transfected HL60 in (a)-(b), (e)-(f), and (i)-(j) and MV4.11 and transfected MV4.11 4 

in (c)-(d), (g)-(h), and (k)-(l). Triangular marks indicate individual data points in duplicates and the 5 

average over them. Lines connect averages over duplicates in each concentration measured. 6 
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 1 
 2 

Supplementary Figure 9: Comparison of the significance of the gene-drug associations 3 

(−𝐥𝐨𝐠𝟏𝟎 p-value) with (y-axis) vs. without (x-axis) adding the available risk group/cytogenetic features 4 

as covariates. Red corresponds to cytogenetic risk covariate, blue corresponds to FLT3 mutation status, 5 

and green corresponds to NPM1 mutation status. The red vertical and horizontal lines correspond to 6 

− log10 0.05. Each dot corresponds to one of the 119 unique gene-drug associations shown as red or green 7 

on the heat map in Fig. 6b. 8 

 9 
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 1 

Supplementary Figure 10: Scatter plot demonstrating the reproducibility of high-throughput drug 2 

sensitivity assay. Each dot corresponds to a combination of a drug, a sample, and a specific 3 

concentration. The correlation coefficient, R2 (squared correlation coefficient), and 𝑝-value are computed 4 

based on Pearson’s correlation. 5 

 6 
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 1 
 2 

 3 
 4 

Supplementary Figure 11: For 20 random initializations of the learning parameters (x-axis), the 5 

training objective function values (top) and the Spearman correlation of the learned MERGE scores 6 

from each random initialization with those from zero initialization (used for our paper) (bottom). (a) 7 

We used the same 𝜆 value as the final MERGE model (i.e., trained based on 30 samples) that was selected 8 

by LOOCV (𝜆 = 20). (b) We used an additional value for the hyperparameter 𝜆 = 50. 9 

(a) 

(b) 
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 1 
 2 

Supplementary Figure 12: The test MSE measured by the LOOCV test for varying 𝝀 values. 𝜆 value 3 

(combined with the driver features) is used to regularize weight values (𝑤𝑖𝑗) for gene-drug pairs. Based 4 

on this plot, in our experiment with 30 samples, we use 𝜆 = 20 since it results in the lowest test MSE. 5 

 6 

7 
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Supplementary Tables 1 

 2 

Supplementary Table 1: Some properties for each of the 53 drugs. 𝑝-values listed in the 4th column are 3 

FDR-corrected for the number of drugs. Since some drugs are in multiple classes, the last column 4 

shows the number of genes significantly associated with the drug for each class the drug is in. This 5 

column is empty for the 3 drugs (Acrichine, U 73122 and YM-155) assigned only to the “Other” class, 6 

which contains the drugs that do not belong to any of the 24 drug mechanism classes based on their 7 

mechanisms of action. The footnotes (a)-(k) present details of the drugs that have a “1” in the 3rd 8 

column or have a “-” in the last column. We note that for the drugs ABT-263 and ABT-737, the “1” in 9 

the 3rd column reports a successor drug that is effective in AML. 10 

Drug Name Reported 

Clinical 

Efficacy 

in AML 

Treatme

nt 

Whether 

Any 

Undergoing 

Clinical 

Evaluations 

in AML 

Significa

nce of 

Associati

on of 

AUC 

with CR 

#Signif

icantly 

Associ

ated 

Genes 

#Significantly 

Associated 

Genes after 

Cell Line 

Consistency 

Filter 

#Significantly 

Associated Genes 

after Cell Line 

Consistency and 

Drug Class 

Specificity Filters 

ABT-263 0 1(a) 0.0023 1825 142 [Bcl2 inhb: 10] 

ABT-737 0 1(b) 0.0039 1727 122 [Bcl2 inhb: 11] 

Acrichine 0 0 0.0267 1169 119 - (i) 

AP24534 

(=Ponatinib) 0 

0 

0.0153 1911 93 

[Flt3 inhb: 11];  

[Kinase inhb: 5] 

ARQ-197 

(=Tivantinib) 0 

0 

0.003 1103 73 [Met inhb: 6] 

AS101 0 

0 

0.0086 2011 123 

[Immunomodulat

ion: 12] 

AT-7519 0 

0 

0.4349 653 61 

[CDK inhb: 1];  

[GSK-3 inhb: 14] 

Axitinib 0 

0 

0.9724 35 2 

[Kinase inhb: 0]; 

[VEGFR1 or 2 

inhb: 0] 

Azacitidine 1 

0 

0.0379 1477 76 

[Nucleoside 

analogue: 22] 

AZD7762 0 0 0.8083 171 15 [CHK inhb: 5] 

AZD-8055 0 0 0.0039 649 32 [mTOR inhb: 1] 

BAY 11-7082 0 0 0.003 2568 141 [NFkB inhb: 25] 

BAY 11-7085 0 0 0.0021 1554 66 [NFkB inhb: 11] 

Belinostat 0 1(c) 0.0159 696 42 [HDAC inhb: 16] 

BEZ-235 0 

0 

0.2664 138 11 

[AKT/PI3K inhb: 

4] 

Bortezomib 1 

0 

0.0094 263 4 

[Proteosome 

inhb: 0] 
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Drug Name Reported 

Clinical 

Efficacy 

in AML 

Treatme

nt 

Whether 

Any 

Undergoing 

Clinical 

Evaluations 

in AML 

Significa

nce of 

Associati

on of 

AUC 

with CR 

#Signif

icantly 

Associ

ated 

Genes 

#Significantly 

Associated 

Genes after 

Cell Line 

Consistency 

Filter 

#Significantly 

Associated Genes 

after Cell Line 

Consistency and 

Drug Class 

Specificity Filters 

Cladribine 1 

0 

0.0497 1420 169 

[Nucleoside 

analogue: 69] 

Clofarabine 1 

0 

0.0267 908 93 

[Nucleoside 

analogue: 54] 

Daunorubicin 1 

0 

0.0224 1833 73 

[Topoisomerase 

inhb: 12] 

Etoposide 1 

0 

0.0317 1699 78 

[Topoisomerase 

inhb: 12] 

Flavopiridol 1 0 0.6414 346 13 [CDK inhb: 2] 

Fludarabine 1 

0 

0.0086 1169 95 

[Nucleoside 

analogue: 42] 

Melphalan 0 

1(d) 

0.0098 2323 151 

[Nucleoside 

analogue: 45] 

Mitomycin C 0 

0 

0.073 1428 80 

[Nucleoside 

analogue: 33] 

Mitoxantrone 1 

0 

0.0457 2106 90 

[Topoisomerase 

inhb: 14] 

MS-275 0 0 0.1161 679 26 [HDAC inhb: 7] 

NVP-AUY-922 0 0 0.5051 121 4 [Hsp90 inhb: 2] 

Obatoclax 0 1(e) 0.0276 1177 48 [Bcl2 inhb: 6] 

Paclitaxel 0 

0 

0.0684 590 27 

[Microtubule 

inhb: 4] 

Panobinostat 1 0 0.0159 680 41 [HDAC inhb: 18] 

PD0332991 

(=Palbociclib) 0 

1(f) 

0.0023 1739 194 

[CDK inhb: 0];  

[Kinase inhb: 3] 

PF-04691502 0 

0 

0.9764 63 1 

[AKT/PI3K inhb: 

0]; [mTOR inhb: 

0] 

PI-103 0 

0 

0.4311 47 0 

[AKT/PI3K inhb: 

0]; [mTOR inhb: 

0] 

PIK-75 0 

0 

0.0171 2151 103 

[AKT/PI3K inhb: 

1] 

PKC412 

(=Midostaurin) 1 

0 

0.0344 794 38 

[Kinase inhb: 4];  

[PKC inhb: 1] 
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Drug Name Reported 

Clinical 

Efficacy 

in AML 

Treatme

nt 

Whether 

Any 

Undergoing 

Clinical 

Evaluations 

in AML 

Significa

nce of 

Associati

on of 

AUC 

with CR 

#Signif

icantly 

Associ

ated 

Genes 

#Significantly 

Associated 

Genes after 

Cell Line 

Consistency 

Filter 

#Significantly 

Associated Genes 

after Cell Line 

Consistency and 

Drug Class 

Specificity Filters 

PKI-587 

(=Gedatolisib) 0 

1(g) 

0.0385 677 86 

[AKT/PI3K inhb: 

1]; [mTOR inhb: 

1] 

Pp-242 0 0 0.868 179 11 [mTOR inhb: 0] 

SGI-1776 0 

0 

0.0039 1758 95 

[Pim Kinase inhb: 

2] 

SNS-032 0 

0 

0.3771 178 15 

[CDK inhb: 1];  

[GSK-3 inhb: 4] 

Staurosporine 0 0 0.3771 83 11 [Kinase inhb: 1] 

Sunitinib 0 

1(h) 

0.0344 1045 48 

[Flt3 inhb: 9];  

[Kinase inhb: 4]; 

[VEGFR1 or 2 

inhb: 1] 

Tandutinib 0 

0 

0.0053 961 43 

[Flt3 inhb: 11];  

[Kinase inhb: 8] 

Tanespimycin 0 0 0.2049 459 28 [Hsp90 inhb: 6] 

TG-101348 0 

0 

0.0344 1602 90 

[JAK/STAT inhb: 

1] 

Tipifarnib  1 

0 

0.1329 1592 67 

[Farnesyl trans 

inhb: 9] 

Topotecan 1 

0 

0.1088 856 38 

[Topoisomerase 

inhb: 10] 

Tozasertib 0 

0 

0.0239 984 46 

[Aurora kinase 

inhb: 0]; [Flt3 

inhb: 9];  

[Kinase inhb: 6] 

Tretinoin 1 0 0.0039 534 69 [Retinoid: 4] 

U 73122 0 0 0.0344 679 36 -(j) 

Vinblastine 0 

0 

0.07 1469 180 

[Microtubule 

inhb: 10] 

Vincristine 0 

0 

0.0874 1154 102 

[Microtubule 

inhb: 8] 

Vorinostat 1 0 0.0171 621 29 [HDAC inhb: 15] 

YM-155 0 0 0.3771 249 9 -(k) 
(a) Its successor Bcl2 inhibitor ABT199 is effective in AML. 1 
(b) Its successor Bcl2 inhibitor ABT199 is effective in AML. 2 
(c) It has been tested in phase II trial in AML as a single agent. 3 
(d) It is one of the 2 drugs of the fludarabine-melphalan preparative regimen for allogeneic transplant that has been used frequently in AML. 4 



28 
 

(e) It has been studied in a phase I/II clinical trial as a single agent in AML. 1 
(f) It is undergoing clinical trial in AML. 2 
(g) It is undergoing clinical trial in AML. 3 
(h) It has been studied in a phase I/II clinical trial in AML with chemotherapy. 4 
(i) It is an antimalarial drug in the “Other” class. 5 
(j) It is a phospholipase inhibitor in the “Other” class. 6 
(k) It is a survivin suppressant in the “Other” class. 7 

 8 

Supplementary Table 2: Top 10 MERGE-scoring genes in each drug class shown in Fig. 6a. Some drug 9 

classes have less than 10 genes that are specifically associated with that class and whose associations are 10 

conserved in CCLE data. Column 2 (#Drugs) indicates the number of drugs in the corresponding drug 11 

class. Column 3 (#Genes) indicates the number of top MERGE genes specifically associated with the 12 

corresponding class (the full list is in Supplementary Data 6). The classes highlighted in red contain only 13 

1 drug, and the genes highlighted in yellow are those discussed in the main text. 14 

Drug Class #Drugs  #Genes Top 10 Genes 

Alkylating agent/ 

Nucleoside analogue 
6 58 

RAB31, CCNG1, TERF2, ZNRD1, RNF113A, 

SMARCC1, ZNF697, MDM4, CNOT6L, ADAM28 

AKT/PI3K inhibitor 5 2 PRMT6, RPS19 

Topoisomerase 

inhibitor 
4 24 

SMARCA4, MZF1, TP53, LEO1, BCL2, ILF3, PRMT7, 

CEP41, CLNS1A, GPT2 

Bcl2 inhibitor 3 13 
CASP8AP2, SMAD7, RAB5A, ZNF420, FBXO45, 

ILK, BCL7A, ZUFSP, SHQ1, KCTD3 

CDK inhibitor 4 1 L2HGDH 

CHK Inhibitor 1 2 NUP88, GGT5 

Farnesyl transferase 

inhibitor 
1 6 SNAPC3, TNIK, UBFD1, MYL6B, FAIM, LENEP 

Flt3 inhibitor 4 16 
FLT3, ADRBK2, ZNF473, ZDHHC15, GPR34, 

ATAT1, FAM102A, FCHO2, MYH3, PITRM1 

GSK-3 inhibitor 2 10 

LPAR4, MAPK1IP1L, RAD23B, NXF3, RNASE2, 

TNFRSF18, CALCOCO2, RNASE3, SPON2, 

C1QTNF3 

HDAC inhibitor 4 25 
MNT, BAZ2B, RNF24, MZF1, ZNF785, ZNF763, 

RAB3D, PSMC5, CCDC167, CMAHP 

Hsp90 inhibitor 2 2 PDLIM1, SEZ6L 

Immunomodulation, 

anti-inflammatory 
1 4 DVL2, PEMT, DNAL4, SESN1 

Kinase inhibitor 8 11 
FLT3, ADRBK2, GPR34, FAM102A, FCHO2, 

PITRM1, SRSF3, C15orf48, SOCS2, CLEC5A 

Met inhibitor 1 5 HSF5, ELAVL1, STOML2, DBF4, HHATL 

Microtubule inhibitor 3 2 LILRA5, IL10 

mTOR inhibitor 5 1 PKD1 

NFkB inhibitor 2 10 
ARHGEF9, BEX2, C1orf54, AIM1, YY1AP1, NDNL2, 

C9orf85, GGA2, PMP22, RGS3 
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Drug Class #Drugs  #Genes Top 10 Genes 

Pim Kinase inhibitor 1 1 SRSF5 

PKC inhibitor 1 1 ANPEP 

VEGFR1 or 2 inhibitor 2 1 ACAP2 

 1 

 2 

Supplementary Table 3: Whether each of the 8 expression markers identified by MERGE (rows) 3 

would have been identified by the alternative methods in Fig. 3 and 4a (columns). A checkmark means 4 

the marker in the corresponding row was identified by the method in the corresponding column. The 5 

rows of heat maps in Fig. 6 show the entire list of genes identified by each method.  6 

Gene ElasticNet Multi-task 

learning 

Pearson’s P-value Spearman P-value 

SMARCA4     

CASP8AP2 ✓    

L2HGDH ✓ ✓ ✓ ✓ 

FLT3     

MNT     

BAZ2B     

MZF1     

BEX2 ✓    

 7 

Supplementary Table 4: IC50 and AUC values in the KG1, transfected KG1, U937 and transfected U937 8 

cell lines. 9 

AUC (24 hr) KG1 t-KG1 U937 t-U937 

Etoposide 594.318 575.157 583.107 575.956 

Mitoxantrone 479.329 457.108 466.419 453.636 

AUC (48 hr) KG1  t-KG1  U937  t-U937  

Etoposide 603.722 503.202 463.981 464.517 

Mitoxantrone 417.081 358.726 312.344 308.787 

AUC (72 hr) KG1  t-KG1  U937  t-U937  

Etoposide 602.589 462 446.642 429.982 

Mitoxantrone 427.033 306.129 293.408 292.742 

IC50 (24 hr) KG1  t-KG1  U937  t-U937  

Etoposide -5.252 -5.384 -5 -5.09 

Mitoxantrone -6.95 -7.034 -6.782 -6.932 

IC50 (48 hr) KG1  t-KG1  U937  t-U937  

Etoposide -5.318 -5.948 -6.374 -6.38 

Mitoxantrone -7.052 -7.496 -8.018 -8.03 

IC50 (72 hr) KG1  t-KG1  U937  t-U937  

Etoposide -5.354 -6.308 -6.548 -6.71 

Mitoxantrone -7.088 -8 -8.102 -8.108 
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