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Supplementary Information

Supplementary Notes

Supplementary Note 1: mRNA expression profiles

For all of the 30 samples, gene expression was analyzed using Affymetrix Human U133 Plus 2.0 arrays.
The analysis was performed at the Department of Environmental and Occupational Health Science’s
Functional Genomics Core Laboratory at the University of Washington. RNA was isolated using the
Qiagen RNeasy Mini kit (Qiagen Inc, Germantown MD). RNA quantity was assessed by measuring
OD240, and purity by OD 260280 and ODzeo230 ratios with the NanoDrop spectrophotometer (Thermo
Fisher Scientific Inc, Wilmington, DE). RNA integrity was assessed using the Agilent 2100 Bioanalyzer
(Agilent Technologies Inc., Santa Clara, CA). RNA samples were required to meet these stringent
quality control parameters and were then processed according to the manufacturer’s
recommendations. Briefly, 250 ng of total RNA was reverse transcribed. The resulting cDNA was
converted to biotinylated cRNA. The biotinylated fragments were hybridized to Affymetrix U133 Plus
2.0 arrays, washed and stained. The arrays were scanned with an Affymetrix GenChip® 3000 scanner.
Image generation and feature extraction were performed using Affymetrix GeneChip Command
Console software.

For the additional test set of 12 patient samples (from which we show the results in Fig. 3b), RNA-seq
data generation was performed at the Northwest Clinical Genomics Laboratory, UW Medicine Center
for Precision Diagnostics using the TruSeq® stranded mRNA kit from Illumina (San Diego, CA)
according to manufacturer’s instructions. We had two RNA-seq replicates for each of the 12 samples.
For MERGE experiments, we averaged the FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) values from the Cufflinks' output from the two replicates of each sample.

Gene expression for the 14 AML cell lines (EOL-1, MOLM/16, NB4, OCI-AML3, SKM1, HL60, KG1,
MOLM/13, MV4.11, OCI-AML2, PL-21, U937, KASUMI1, THP-1) was retrieved from the Cancer Cell
Line Encyclopedia (CCLE)>

Supplementary Note 2: Curve fitting to estimate drug sensitivity profiles

As was done in CCLE study?, from each does-response data for a combination of a drug and a patient
sample, we extracted summary statistics, including area under the curve (AUC), half maximal
inhibitory concentration (ICso), half maximal effective concentration (ECso), and maximal effect level
(Amax). In brief, we fitted the dose-response data (averaged over duplicates) to the following 4
parameter sigmoid model:
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Here, Ay and A, are the top and bottom asymptotes of the response (cell viability); ECso is the
inflection point of the curve; and Hill is the Hill slope, which describes the curve’s steepness. Other key
parameters derived from the models include ICso (the concentration where the fitted curve crosses 50%
in cell viability) and Amax (the maximal activity value reached within a model). We extracted these
parameters (AUC, ICso, ECso, and Amax) after curve fitting by using MATLAB’s ‘nlinfit’ function for
nonlinear curve fitting. For inactive compounds, it is impossible to derive an ICso; in this instance, as
was done in the CCLE study?, we simply used the maximum tested concentration as the default value -
which serves primarily as a placeholder to allow algorithms to work on all samples. Batch effects were
corrected using ComBat® for each drug sensitivity summary based on the three batches of experiments
for the 30 patients.

From these statistics, we chose AUC because it represents an average of drug sensitivity across a range
of drug concentrations. Indeed, AUC showed by far the strongest association with gene expression
levels; the number of significant associations (FDR corrected p-value < 0.1) between a gene and a drug
sensitivity measure was 53,967 for AUC, 23,641 for ICso, 15,112 for ECso, and 7,132 for Amax. Considering
additional drug sensitivity measures would increase the total number of hypotheses.

Supplementary Note 3: Summary of the clinical information and its consistency with our in vitro
drug sensitivity data

Of the 30 AML patient samples, 24 were newly diagnosed, and 6 had relapsed. The majority of samples
(19 of 30) were males. The median age was 54, and the age range was [19, 83]. Six patients had
antecedent hematologic disorders. According to European LeukemiaNet criteria*, seven samples were
in favorable risk group, eleven were in intermediate-1, 2 were in intermediate-2, and ten were in the
adverse risk cytogenetics group. Several different regimens were used to treat the patients, most of
which included cytarabine, and many of which included an anthracycline. Supplementary Data 3
contains the detailed clinical information including usual evaluation (including risk group category
and cytogenetic features), response to treatment, duration of remission, and the individual regimens
for each of the samples.

We measured the standard clinical mutation status on FLT3 and NPM1 for most of the 30 patients (26
patients tested for NPM1 mutation; 27 tested for FLT3 mutation). Seven of 26 patients had an NPM1
mutation, and seven of 27 patients had the FLT3 ITD mutation. We observed a statistically significant
association between FLT3 mutation status and 12 drugs (FDR corrected p-value < 0.1): AS101, AT-7519,
AZD7762, cladribine, mitomycin C, mitoxantrone, NVP-AUY-922, obatoclax, PIK-75, midostaurin
(PKC412), sunitinib, and tandutinib. Three of these drugs (midostaurin, sunitinib and tandutinib) are
known to have a FLT3 inhibitory role. None of the drugs is associated with NPM1 mutation status at
the same significance level.
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Additionally, we checked the statistical significance of the association between the complete remission
(CR) status and the drug sensitivity measure (AUC) across all 53 drugs. Interestingly, 12 of 15 drugs
(80%) (azacitidine, bortezomib, cladribine, clofarabine, daunorubicin, etoposide, fludarabine,
mitoxantrone, panobinostat, PKC412, tretinoin, vorinostat) that have shown clinical efficacy in AML
treatment were significantly associated with CR at FDR= 0.05, while only 21 of the other 38 drugs
(55.3%) showed significant association with CR (Table S2). Some of the 38 drugs in the latter set have
successor agents that have shown clinical efficacy in AML, such as the Bcl2 inhibitor ABT-199
(venetoclax), a successor to ABT-737 and ABT-263 that we tested. Moreover, drugs might have additive
or synergistic activity in combinations; however, in this study, the drugs were assayed as single agents.
We note that cytarabine, commonly used to treat AML, is not listed in Table S2 because it was not
selected by the procedure that we followed to select the 53 drugs we focused on in our computational
framework.

While cytarabine is commonly used to treat AML and a majority of the 30 AML patients received this
drug, it was not one of the 53 drugs included in our MERGE computational framework: our criterion
for selecting whether to include each of the 160 tested drugs in the study was exhibited activity (cell
viability < 50%) of the drug against at least half of the 30 patient samples; cytarabine did not satisfy this
criterion. One possible reason is that the tested concentrations were too low for the 12 patients in the
first batch (concentration range 2x1071% M to 1x107® M), and cytarabine did not exhibit any activity
for those patients until the highest concentration point. The concentrations were then increased for the
next 18 patient samples (range 4x1078 M to 1x10~* M). For comparison, the peak mean plasma
concentration after high dose cytarabine was 2x1073 M.

Supplementary Note 4: Extracting driver features from publicly available sources

The MERGE algorithm takes a set of driver features for each gene — namely, expression hubness,
candidate regulators, mutation, copy number variation, and methylation — as input and estimates a
MERGE score for each gene based on these features (Fig. 1b). These features were extracted from
publicly available sources, such as TCGA (The Cancer Genome Atlas) AML study®, AML expression
studies’, and gene annotation databases, as described in detail below.

Expression hubness: In our prior study, we developed a novel computational method, named SPARROW
(SPARse selected expRessiOn regulators identified With penalized regression), to estimate each gene’s
hubness purely based on expression data from cancer patients. SPARROW employs a sparse statistical
model in which each gene's expression level is modeled as a linear combination of a small set of other
genes (i.e., sparse basis), and determines the hubness of each gene based on how often it is chosen in
the sparse basis for any other gene®. To use gene hubness as a MERGE feature, we downloaded the R
data object (.rda) containing the SPARROW results for AML from http://sparrow-
leelab.cs.washington.edu/data. We then used ‘sparrow1’ scores (the number of downstream genes)
from the ‘basesFreq’ object as the expression hubness feature.

Candidate regulators: The genes known to regulate other genes are more likely disease drivers and hence
more reliable molecular markers for therapeutic response than those that are not. To incorporate this
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hypothesis, we used a list of genes known to have regulatory roles, including transcription factors,
chromatin remodelers and signal transduction genes, constructed based on gene annotation databases’.
Based on this list of 3,052 genes, we generated a binary feature for each gene by assigning 1 if the gene
was on the list and 0 otherwise.

Mutation: We downloaded significance measures of mutation frequencies for each gene measured in
the MutSig2CV Analysis of the AML study from TCGA (http://firebrowse.org/?cohort=LAML). Each
gene was given a p-value that measured the statistical significance that the gene had mutated more
often than expected by chance given background mutation processes across patients; we used
—logop-value as the feature value.

Copy number variation (CNV): We downloaded CNV measures (gdac.broadinstitute.org_ LAML-
TB.CopyNumber_Gistic2.Level_4.2015082100.0.0.tar.gz) from
http://gdac.broadinstitute.org/runs/analyses__2015_08_21/data/LAML/20150821/. Then, we used
all_data_by_genes.txt in this tar.gz file to assign 1 (having CNV) or 0 (no CNV) to each gene. We set the
CNV feature of a gene to 1 if the gene was amplified or deleted by at least .05 in at least 20 of 191
patients (~10%), and to 0 otherwise.

Methylation: We downloaded DNA methylation measures

(gdac.broadinstitute.org_ LAML.Methylation_Preprocess.Level_3.2015110100.0.0.tar.gz) from
http://gdac.broadinstitute.org/runs/stddata__2015_11_01/data/LAML/20151101/. We then used
LAML.meth.by_mean.data.txt in this tar.gz file to obtain the average methylation levels for each gene
across all patients.

Supplementary Note 5: Averaging the methylation values across the CpG probes and across the
samples

The AML study from TCGA includes preprocessed methylation profiles generated by four different
pipelines that retrieve the gene-based methylation values from the CpG probes. These four include: (1)
using the CpG probe with the highest anticorrelation with the gene’s expression level, (2) using the
CpG probe with the highest anticorrelation with the clinical data, (3) using the mean signal intensities
across all CpG probes in proximity to the gene, and (4) using the CpG probe with the maximum
standard deviation across all beta values.

A specific position of methylation (e.g., whether it occurs around the transcription start site or over a
gene body) offers important information to understand the epigenetic cause of variation of
downstream phenotypes, such as gene expression levels. Accordingly, the data generated by the first
two preceding approaches were generally chosen when the goal was to explain a phenotype of interest
(i.e., gene expression or clinical data) and to choose the probe likely to represent the molecular basis for
the phenotype. Since we sought to develop a general framework to utilize methylation data from the
external AML sources, our study used the data generated by the approach (3), which is independent
from any specific phenotype and provides a general summary of TCGA methylation data. We did not
use the data from approach (4) because it discards probes with a standard deviation below a specified
cutoff, so the dataset contained only ~2K genes, too small compared to the ~17K genes in the MERGE
model.
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After getting each sample’s (patient’s) methylation values for each gene as explained above, we used
the sample mean across patients to compute each gene’s methylation score. While other ways may
provide a summary statistic across all patients, we considered only the sample mean in the current
study: mean is the most commonly used measure of central tendency for continuous-valued variables,
and several authors have averaged methylation values over samples (e.g., Moarii, Boeva, Vert, & Reyal,
2015).

Supplementary Note 6: Standardization of driver features, predictors and response variables

We standardized each driver feature before running the MERGE algorithm so that each feature had
mean 0 and variance 1. We performed standardization so that despite different scales, driver features
were treated fairly when estimating MERGE scores. We standardized binary features (candidate
regulator and CNV) as we did other non-binary features. For any statistical model that combines data
from several different kinds of variables (i.e., features) and aims to learn weights for the variables with
regularization, one must provide all variables to the algorithm on the same scale to achieve

fairness!’. Binary variables are not exceptions!.

We also standardized predictor variables (gene expression levels) and response variables (drug
sensitivity measures) for MERGE and all other methods compared to MERGE in our experiments:
ElasticNet, multi-task learning, Pearson’s p-value, Spearman p-value, and Bayesian multi-task multiple
kernel learning (MKL).

Supplementary Note 7: Measuring the significance of association between a gene expression level
and a drug sensitivity measure

We computed the p-value of association between each gene and each drug using t statistics and
associated p-values, measuring the correlation between the gene and drug in a univariate linear
regression model. Then, we applied FDR correction for multiple hypotheses for all pairs of genes and
drugs, using the Benjamini & Hochberg (1995) method. We considered the (genome-wide) FDR
corrected p-value < 0.1 to be significant throughout the paper. When we measured the consistency of
gene-drug associations in CCLE data, we used an uncorrected p-value of 0.1 as a cutoff to indicate that
a gene-drug association discovered in patient data was replicated in validation data. We did not apply
the FDR correction method in validation data because the FDR correction process is designed to
maintain a certain FDR level when making a large number of hypotheses, and we do not make
hypotheses during validation.

Supplementary Note 8: The MERGE algorithm

To learn the MERGE scores, we developed a probabilistic graphical model approach that provides a
statistical model to represent relationships among variables in input data and a principled way of
learning the parameters of the model from data'®. Let w;; represent the magnitude and sign of the
impact of gene i on drug j. This relationship can be modeled as: y; ~ N (w;;x;, € %), where x; represents
the expression level of gene i and y; represents the drug response measure (i.e., AUC) of drug j. A
conventional statistical model widely used in a genome-wide association analysis does not model a
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marker potential (Fig. 1a). In the conventional model, we estimate w;; for each combination of a gene
and a drug by finding w;;, which minimizes the squared error of prediction across all samples (here,
patients):

minimize Snefal patients) 0~ Wi )%, Eq (1)

ij

where (1) means the nth sample. Then, the learned w;; value would equal Pearson’s correlation
coefficient between the two variables, x; and y;, when both x; and y; were scaled to have the same
standard deviance (specifically through the common standardization procedure).

MERGE's key innovation is the modeling of the prior probability distribution over each w;; such that it
incorporates prior knowledge on gene i in terms of its potential to be a molecular marker. We model
the prior distribution over each w;; as a normal distribution P(w;;) ~ NV (0, 0?), where af represents a
prior variance specific to gene i. If gene i has a low value on ¢/, the weight value w;; would be inclined
to be close to zero (i.e., low marker potential); if gene i has a high value on al-z, then, since there is more
probability mass away from zero, the weight value w;; would be more inclined to deviate from zero
(i.e., high marker potential). We model 67 as a function of a weighted combination of its driver features

2

of = , where d;j, is the value of the kth driver feature on gene i. Genes with a high value of

A=Y3_q vidik
(lec=1 Vg dik) would have a high variance al-z (i.e., high marker potential); thus, we define the MERGE
score of gene i as (Tj—1 Vkdix ). A is a regularization parameter: when it is high, each 6 would take a
lower value, which means a lower variance on the weight (w;;) values associated with each gene.

We learn the parameters — weight values w;; for each gene i and drug j, and the driver feature weights
vy — that optimize the joint log-likelihood function log P(X, Y, W, V), where X is the expression data
matrix (p genes X n patients), Y is the drug response data matrix (q drugs X n patients), W is the gene-
drug weight matrix (p genes X q drugs) that contains w;; for each gene i and drug j, and V is a vector
that contains 5 driver feature weights. The MERGE algorithm can be seen as a process of projecting
high-dimensional gene-drug associations (p genes X g drugs) onto a lower-dimensional space by
constraining weight values based on prior information on genes’ potential to drive the disease.

The objective function log P(X, Y, W, V) can be decomposed as
log[P(Y|X, W, V)P(X|W, V)P(W|V)P(V)]
=log P(Y|X, W) + P(X) + log P(W|V) + log P(V)
= log P(Y|X, W) + log P(W|V),

assuming a uniform prior distribution over X and V (i.e., P(X) and P(V) are constant). The conditional
log-likelihoods are:

i 2£2

= 1 \__ 2m (A=%Roy vidig)Wij?
log P(W|V) = log Hi,jN(O, A—Zizlvkdzk) = =i {log /A—Zizlvkdik + 2 :

for each gene i, drug j, and a sample n. Maximizing log P(X, Y, W, V) with respect to W and V leads to
the following optimization problem when constants are dropped and €2 is set to 1 (since we

m_. M52
logP(Y|X,W) = log]—[i,]-,n]\f (Wijx(n)’gz) = —Zi,]-,n {1ogv2£2n + w},
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standardize X and Y before we apply the algorithm, £2 = 1 is a reasonable choice that simplifies the
optimization).

minimize Y ; {Zn(yj(n) - Wijxi(n))z} + 30 j(A = Zpaq viedir) wij? — i j10g(A — Tioq viedix) »

Wi €W, eV
subject to A — ¥3_; v dy > 0 for each gene i. Eq (2)

The first term is the loss function for learning the value of w;; (for each gene i and drug j) that captures
the degree of association between gene i and drug j. The second term can be viewed as a weighted L2
regularization term that favors small values on w;; (which improves generalizability of the learned
model) with a different strength for each gene depending on the value of (2 — Y3_; v d ). A gene i
with a high value of (¥3-; vxd ) (i-e., MERGE score) would be regularized weakly and more inclined
to have a weight value w;; with a large magnitude. The last term requires the regularization parameter
(2 — X3-1vkdii) to be positive and encourages it to take on relatively larger values.

We iteratively estimate the optimization variables W and V using a block coordinate descent
procedure'+'® until convergence. The objective function of MERGE is not jointly convex with respect to
W and V, though it is convex with respect to each set of parameters with the other set held fixed. When
Vis held fixed, the objective is convex with respect to W; when W is held fixed, the objective is convex
with respect to V. This means that each learning step in the block coordinate descent algorithm
(learning an element in V or in W) is a convex optimization problem with a single local minimum that
is also the global minimum.

We performed our MERGE runs using R (version 3.3.2) on a machine with an Intel(R) Xeon(R) E5645
2.40GHz CPU and 24GB RAM. A MERGE run on the data with ~17K genes, 53 drugs and 30 samples
took 12 seconds on that machine.

No modifications or improvements on the algorithm were made based on any validation analyses, i.e.,
the cross-validation tests involving two groups of samples, the leave-one-out cross-validation (LOOCV)
test for prediction, and testing on 14 AML cell lines or the additional 12 patient samples. In each of
these experiments, we chose the value of the hyperparameter A by cross-validation (Supplementary
Note 15).

Supplementary Note 9: Clinical information on the validation data from additional 12 AML patient
samples

The additional 12 patients we used for validation (Fig. 3c) were enrolled in an open clinical trial (High
Throughput Drug Sensitivity Assay and Genomics-Guided Treatment of Patients with Relapsed or
Refractory Acute Leukemia NCT02551718). For those 12 samples, we measured gene expression levels
using the newer RNA-seq technology while we had the microarray gene expression from the initial 30
patient samples (Supplementary Note 1). The median age was 58, and 5 had antecedent hematologic
disorders. According to European LeukemiaNet criteria?, 7 samples were in favorable risk group, 3 in
intermediate-1, 1 in intermediate-2, and 8 were in the adverse risk cytogenetics group. Four samples
were primary refractory, and 6 samples relapsed after allogeneic transplant. The average number of
prior regimens used was 5.
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Supplementary Note 10: Details on the implementations of the methods compared to MERGE

For ElasticNet, we used the R package glmnet'” available on CRAN. For multi-task learning'é, the
MATLAB implementation was available from Pong, Tseng, Ji, & Ye (2010) (on
http://www.mypolyuweb.hk/~tkpong/). For Bayesian multi-task MKL, we used the R code provided as
supplementary to Costello et al. (2014).

As mentioned in Supplementary Note 6, we standardized both the predictor and response variables
before applying each method, as we did for MERGE. In addition, as with MERGE, we chose the tuning
parameters for each method in the comparison using LOOCV. These include the mixing parameter a
and regularization parameter A for ElasticNet, the regularization parameter u for multi-task learning,
and a and S, which are, respectively, the shape and rate parameters of the Gamma priors, for Bayesian
multi-task MKL.

Comparing MERGE to the other methods in Fig. 3 and 4c requires ordering of the gene-drug
associations by the other methods, as with MERGE. For Pearson’s P-value or Spearman P-value
methods, we sorted the gene-drug pairs based on decreasing significance of correlation (Pearson’s or
Spearman correlation, depending on the method). ElasticNet and multi-task learning are regression
methods, and they learn coefficients for the predictor-response variable pairs. For ElasticNet, we ran
the method for each of the 53 drugs separately and concatenated the resulting gene coefficients to get a
matrix of size #genes X #drugs. The multi-task learning method, on the other hand, learns the
coefficients for all drugs jointly; thus, a single run of this algorithm gives us a coefficient matrix of size
#genes X #drugs. After determining a coefficient matrix, we sorted gene-drug pairs, for each of
ElasticNet and multi-task learning methods, based on decreasing absolute value of the coefficients (i.e.,
decreasing strength of gene-drug associations). After sorting gene-drug pairs for each method in
comparison to MERGE, we incremented the number of considered top gene-drug pairs by 53 (the
number of drugs per gene in our application) for each increment of 1 in the x-axis in Fig. 3 and 4c.

To generate heat maps for the alternative methods (Supplementary Fig. 3), we computed gene scores
(as with MERGE scores) based on each method. For this purpose, we first sorted the gene-drug pairs in
increasing order of their importance for each method (i.e., in increasing significance of correlation for
the Pearson’s and Spearman P-value methods, and in increasing absolute value of the coefficients for
the ElasticNet and multi-task learning methods). For each gene G, the score was computed as the sum
over all indices corresponding to that gene’s associations in the sorted weight matrix. If a gene had
many drug associations with high absolute weights, then those associations would be positioned
towards the end of the sorted weight matrix, which would increase the score of G.

For the Bayesian multi-task MKL method, we used only gene-set views and the discretized view?
computed on gene expression data since we had no epigenomic or proteomic profiling data from the 30
AML patient samples.

Supplementary Note 11: Computing the significance of the enrichment of the drug classes based on
mechanism of action within drug clusters showing similar patient responses

To verify that drugs with similar mechanisms of action indeed showed similar response across patients,
we used the dendrogram (Fig. 4a) generated by agglomerative hierarchical clustering. For hierarchical
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clustering, we used Euclidean distance as the dissimilarity metric, and we used average linkage as the
clustering method to cluster the drugs based on the response of 30 patient samples to those drugs.

In the dendrogram, for each internal node that had 3 to 8 drugs in its leaves, we first retrieved a unique
set of drug classes that contained at least one drug from the node’s downstream drugs. Then, we
checked the enrichment of each of these drug classes in the set of the downstream drugs of that node
using Fisher’s exact test. Each of the enrichment p-values we present in Fig. 4a is FDR-corrected for the
number of drug classes tested for the corresponding node using the Benjamini & Hochberg (1995)
method.

Supplementary Note 12: Computing each gene’s drug class specificity (DCS) measure

First, for each pair of [gene A, class B], we computed the significance of the overlap between the drugs
in B and the drugs gene A’s expression level is significantly associated with, measured by Fisher’s exact
test p-value. Then, for each gene A, we computed a specificity measure that we named drug class
specificity (DCS) score, by combining the p-values across all classes, as follows:

1

DCS, =
A ™ total # of drug classes

—log, o[Fisher's exact test p-value

AB ]
Be{drug classes}

Mathematically, Fisher’s exact test is based on the following numbers for each pair of [gene A, class B]:
(1) the total number of drugs with which A is significantly associated, (2) the number of drugs in class
B with which A is significantly associated, (3) the number of drugs in class B, and (4) the total number
of drugs (53 in our experiments). The p-value measures the significance of (2) based on the
hypergeometric distribution. Therefore, it measures the specificity of the association between gene A
and class B.

Supplementary Note 13: Summary description of the MERGE probabilistic model

MERGE is a probabilistic, model-based approach that uses MAP to estimate parameters. A
probabilistic, model-based approach provides an expressive model to describe relationships among
variables. Moreover, the probabilistic relationships can be read from the learned model and thus, often
directly lead to a comprehensive biological interpretation. In MERGE, the prior variance of the gene-
drug weights is interpreted as the corresponding gene’s biomarker potential.

We modeled W and V in a Bayesian sense (i.e., they are parameters for which belief in their values is
modeled), where W is modeled as a Gaussian random variable whose variance is modeled based on V,
and V is modeled as a uniform random variable (i.e., P(V) is constant).

Instead of using a traditional Bayesian approach (i.e., estimating P(6 | D), the full posterior
distribution, over parameters & where D represents the data), we employed maximum a posteriori
probability (MAP) estimation, i.e., obtaining a point estimate of 6 that maximizes P(6 | D). In other
words, we optimized log P(X,Y, W, V) with respect to W and V. MAP estimation has two advantages
over the traditional Bayesian approach. First, estimating specific parameter values makes biological
interpretation straightforward. For example, specific parameter values of v, coefficients enable an

9
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efficient computation of MERGE scores and straightforward interpretation of how driver features affect
the MERGE score (i.e., biomarker potential). Second, MAP estimation allows a much simpler parameter
learning procedure, especially when P(6 | D) does not have a closed-form solution. Penalized linear
regression models, such as LASSO (or Ridge), also employ MAP estimation for a probabilistic model
(specifically, linear regression model) with a Laplacian (or Gaussian) prior for P(6), where the
parameter 6 means the W values. MERGE extends the penalized linear regression models by explicitly
modeling the variance of the W parameters based on V and the driver features of genes.

Supplementary Note 14: Initialization of MERGE parameters and identifiability of the MERGE
model

In our application of MERGE, we initialized all five v;, values to zero, which provided an unbiased
starting point (i.e., giving an equal prior variance to the weight values of all genes).

As noted previously, the MERGE objective function represented in Eq (2) is non-convex; thus, different
initializations of the V vector (of vj values, each for a different driver feature) may lead to different
learned parameters, i.e., different local minima of the objective function. In practice, however,
depending on the objective function and the input data, it is possible that a roughly unique solution can
be empirically identified. One way to check is to try multiple runs with different parameter
initializations and see whether these runs converge to roughly the same point.

We observed that when we tried different initializations of V (and correspondingly W), the learned
parameters were very similar to each other. Below, we describe our results on the consistency between
the zero and random initializations.

We performed 20 different runs of MERGE where we initialized v, values so they could be generated
randomly from a standard normal distribution. Then, we compared the resulting training objective
function values and the MERGE scores from these 20 runs to those from the MERGE run used in our
paper (i.e., where we initialized all five vy values to zero). We performed this experiment with the same
hyperparameter value selected by LOOCYV and used for the final model (A = 20) (Supplementary Fig.
11a) as well as with a different A value (A = 50) (Supplementary Fig. 11b). As shown in the top of
Supplementary Fig. 11a, for A = 20, only 4 of 20 runs resulted in a smaller objective function (i.e., better
local optima) compared to our initialization with zero vy values, and the difference was very small. All
20 runs with random initializations resulted in almost the same vy values shown in Fig. 2, and exactly
the same gene rankings as those from the zero initialization of MERGE (Supplementary Fig. 11a,
bottom). This indicates that different random initializations converged to roughly the same point. A
different value of A (A =50) showed consistent patterns (Supplementary Fig. 11b).

Supplementary Note 15: Cross-validation experiments and selection of the hyperparameter 4

In each of our experiments, the regularization parameter 4 was determined via cross-validation, a
standard way to choose tuning parameters. Since our sample size was low, we employed LOOCYV since
it provides the maximum number of training samples for each fold. Cross-validation experiments were
performed when measuring the prediction accuracy on left-out test data (Fig. 5) besides when selecting
the value of the hyperparameter (sparsity tuning parameter 1).
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We performed LOOCV within the training data to choose one 4 value from the 19 4 values in the wide
range of [1,100]. We used LOOCYV to choose the values of the tuning parameters for other methods as
well: elastic net regression, the multitask learning method, and the DREAM challenge winner Bayesian
multi-task MKL method.

We used cross-validation tests in three settings to select the A value: (1) Training the model using all 30
samples (Fig. 3). We first performed LOOCV on 30 samples to choose the 4 value using mean squared
error (MSE), and then trained the model using all 30 samples with the chosen 4 value. The test MSE
from the LOOCYV test on 30 samples is shown for varying A values in Supplementary Fig. 12. (2)
Measuring the prediction accuracy by training the model using one 12-sample batch and testing on the other 12-
sample batch (Fig. 5a). We performed LOOCYV tests within 12 samples in each batch to choose the value
of . We used rank correlation between the actual and predicted responses as the evaluation metric.
Then we trained the model using the selected A value in each batch and tested the prediction
performance on the other batch. (3) Measuring the prediction accuracy via LOOCV (Fig. 5b). In each fold
for which we omitted one sample and used the remaining (1-1) samples to train the model, we
performed the “inner loop” LOOCV using those (1-1) samples to choose the A value and trained the
model using (n-1) samples with the chosen 4 value. We used rank correlation between the actual and
predicted responses as the evaluation metric.
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Supplementary Figure 1: Comparison of MERGE and four alternative methods to the 100 MERGE
runs on random data permutations in terms of the percentage of the significant associations replicated
in the left-out test data. Feature consistency achieved by 100 MERGE runs (light red) each of which uses
different permutations of the training samples is compared to the consistency achieved by the actual
MERGE run that uses the original training data as well as to the alternative four methods as in Fig. 3. We
discovered gene-drug associations within the data from 30 patient samples, and tested on (a) the 14 cell
line samples, and (b) additional 12 refractory patient samples.
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Supplementary Figure 3: Heat maps that correspond to Fig. 6a-c for the four alternative methods
(shown in Fig. 3 and Fig. 4c). (a) ElasticNet, (b) Multi-task learning, (c¢) Pearson’s P-value, and (d)
Spearman P-value. In (a)-(d), the heat map on the left shows the level of specificity of each gene to each
drug class, measured by —log;q[Fisher's exact test p-value] for the top 3 genes selected using the
corresponding method; the right heat map shows the gene-drug association for the genes and drug
classes shown on the left heat map.
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Supplementary Figure 4: For each of the genes in Fig. 6a and b, the amount of contribution of each
driver feature on the MERGE score, measured by [driver feature weight x driver feature value] for a
driver feature. The genes highlighted in red are associated with a single drug (i.e., the genes
corresponding to the rows in Fig. 6b that have a single unique red or green square). We note that the
genes with a high hubness contribution (blue bar > 3) tend to have significant associations with more
than one drug (Fisher’s exact test p-value = 1.7x107°).
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Supplementary Figure 5: Comparison of FLT3 expression level to FLT3 mutation status in terms of
significance of correlation with drug response. For each of the 53 drugs, the —log;op-value representing
the degrees of association between the drug response and FLT3 expression level (y-axis) vs. FLT3
mutation status (x-axis) is shown for (a) patients and (b) cell lines. The drugs highlighted in red on each
scatter plot correspond to the four FLT3 inhibitors (AP24534, Sunitinib, Tandutinib, Tozasertib) in the set
of 53 drugs that we studied.
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Supplementary Figure 6: Uncropped image of the Western blot of control and SMARCA4 plasmid
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Supplementary Figure 7: The dose-response curves for cell lines treated with etoposide (left panel)
and mitoxantrone (right panel) after 24 hours (a)-(d) and 48 hours (e)-(h). Each plot compares KG1 with
transfected KG1 in (a)-(b) and (e)-(f), and U937 and transfected U937 in (¢)-(d) and (g)-(h). Triangular
marks indicate individual data points in duplicates and the average among them. Lines connect averages
of duplicates in each concentration measured.
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Supplementary Figure 8: The dose-response curves for cell lines treated with etoposide (left panel)
and mitoxantrone (right panel) after 24 hours (a)-(d), 48 hours (e)-(h), and 72 hours (i)-(I). Each plot
compares HL60 with transfected HL60 in (a)-(b), (e)-(f), and (i)-(j) and MV4.11 and transfected MV4.11
in (c)-(d), (g)-(h), and (k)-(1). Triangular marks indicate individual data points in duplicates and the
average over them. Lines connect averages over duplicates in each concentration measured.
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—log10 0.05. Each dot corresponds to one of the 119 unique gene-drug associations shown as red or green
on the heat map in Fig. 6b.
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5 Supplementary Figure 11: For 20 random initializations of the learning parameters (x-axis), the
6 training objective function values (top) and the Spearman correlation of the learned MERGE scores
7  from each random initialization with those from zero initialization (used for our paper) (bottom). (a)
8  Weused the same A value as the final MERGE model (i.e., trained based on 30 samples) that was selected
9 by LOOCV (4 = 20). (b) We used an additional value for the hyperparameter 1 = 50.
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Supplementary Figure 12: The test MSE measured by the LOOCYV test for varying A values. 1 value
(combined with the driver features) is used to regularize weight values (w;;) for gene-drug pairs. Based
on this plot, in our experiment with 30 samples, we use 4 = 20 since it results in the lowest test MSE.
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Supplementary Tables

Supplementary Table 1: Some properties for each of the 53 drugs. p-values listed in the 4t column are
FDR-corrected for the number of drugs. Since some drugs are in multiple classes, the last column
shows the number of genes significantly associated with the drug for each class the drug is in. This
column is empty for the 3 drugs (Acrichine, U 73122 and YM-155) assigned only to the “Other” class,
which contains the drugs that do not belong to any of the 24 drug mechanism classes based on their
mechanisms of action. The footnotes (a)-(k) present details of the drugs that have a “1” in the 3+
column or have a “-” in the last column. We note that for the drugs ABT-263 and ABT-737, the “1” in
the 3 column reports a successor drug that is effective in AML.

Drug Name Reported | Whether Significa | #Signif | #Significantly | #Significantly
Clinical | Any nce of icantly | Associated Associated Genes
Efficacy | Undergoing | Associati | Associ | Genes after after Cell Line
in AML | Clinical on of ated Cell Line Consistency and
Treatme | Evaluations | AUC Genes | Consistency Drug Class
nt in AML with CR Filter Specificity Filters
ABT-263 0 1@ 0.0023 1825 142 | [Bcl2 inhb: 10]
ABT-737 0 1®) 0.0039 1727 122 | [Bcl2 inhb: 11]
Acrichine 0 0 0.0267 1169 119 | -
AP24534 0 [F1t3 inhb: 11];
(=Ponatinib) 0 0.0153 1911 93 | [Kinase inhb: 5]
ARQ-197 0
(=Tivantinib) 0 0.003 1103 73 | [Met inhb: 6]
0 [Immunomodulat
AS101 0 0.0086 2011 123 | ion: 12]
0 [CDK inhb: 1];
AT-7519 0 0.4349 653 61 | [GSK-3 inhb: 14]
0 [Kinase inhb: 0];
[VEGFRI1 or 2
Axitinib 0 0.9724 35 2 | inhb: 0]
0 [Nucleoside
Azacitidine 1 0.0379 1477 76 | analogue: 22]
AZD7762 0 0 0.8083 171 15 | [CHK inhb: 5]
AZD-8055 0 0 0.0039 649 32 | [mTOR inhb: 1]
BAY 11-7082 0 0 0.003 2568 141 | [NFkB inhb: 25]
BAY 11-7085 0 0 0.0021 1554 66 | [NFkB inhb: 11]
Belinostat 0 1 0.0159 696 42 | [HDAC inhb: 16]
0 [AKT/PI3K inhb:
BEZ-235 0 0.2664 138 11 | 4]
0 [Proteosome
Bortezomib 1 0.0094 263 4 | inhb: 0]
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Drug Name Reported | Whether Significa | #Signif | #Significantly | #Significantly
Clinical | Any nce of icantly | Associated Associated Genes
Efficacy | Undergoing | Associati | Associ | Genes after after Cell Line
in AML | Clinical on of ated Cell Line Consistency and
Treatme | Evaluations | AUC Genes | Consistency Drug Class
nt in AML with CR Filter Specificity Filters
0 [Nucleoside
Cladribine 1 0.0497 1420 169 | analogue: 69]
0 [Nucleoside
Clofarabine 1 0.0267 908 93 | analogue: 54]
0 [Topoisomerase
Daunorubicin 1 0.0224 1833 73 | inhb: 12]
0 [Topoisomerase
Etoposide 1 0.0317 1699 78 | inhb: 12]
Flavopiridol 1 0 0.6414 346 13 | [CDK inhb: 2]
0 [Nucleoside
Fludarabine 1 0.0086 1169 95 | analogue: 42]
1@ [Nucleoside
Melphalan 0 0.0098 2323 151 | analogue: 45]
0 [Nucleoside
Mitomycin C 0 0.073 1428 80 | analogue: 33]
0 [Topoisomerase
Mitoxantrone 1 0.0457 2106 90 | inhb: 14]
MS-275 0 0 0.1161 679 26 | [HDAC inhb: 7]
NVP-AUY-922 0 0 0.5051 121 4 | [Hsp90 inhb: 2]
Obatoclax 0 1@ 0.0276 1177 48 | [Bcl2 inhb: 6]
0 [Microtubule
Paclitaxel 0 0.0684 590 27 | inhb: 4]
Panobinostat 1 0 0.0159 680 41 | [HDAC inhb: 18]
PD0332991 10 [CDK inhb: 0];
(=Palbociclib) 0 0.0023 1739 194 | [Kinase inhb: 3]
0 [AKT/PI3K inhb:
0]; [mTOR inhb:
PF-04691502 0 0.9764 63 1]0]
0 [AKT/PI3K inhb:
0]; [mTOR inhb:
P1-103 0 0.4311 47 0]0]
0 [AKT/PI3K inhb:
PIK-75 0 0.0171 2151 103 | 1]
PKC412 0 [Kinase inhb: 4];
(=Midostaurin) 1 0.0344 794 38 | [PKC inhb: 1]
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Drug Name Reported | Whether Significa | #Signif | #Significantly | #Significantly
Clinical | Any nce of icantly | Associated Associated Genes
Efficacy | Undergoing | Associati | Associ | Genes after after Cell Line
in AML | Clinical on of ated Cell Line Consistency and
Treatme | Evaluations | AUC Genes | Consistency Drug Class
nt in AML with CR Filter Specificity Filters
1® [AKT/PI3K inhb:
PKI-587 1]; [MTOR inhb:
(=Gedatolisib) 0 0.0385 677 86 | 1]
Pp-242 0 0 0.868 179 11 | [mTOR inhb: 0]
0 [Pim Kinase inhb:
SGI-1776 0 0.0039 1758 95 | 2]
0 [CDK inhb: 1];
SNS-032 0 0.3771 178 15 | [GSK-3 inhb: 4]
Staurosporine 0 0 0.3771 83 11 | [Kinase inhb: 1]
1® [F1t3 inhb: 9];
[Kinase inhb: 4];
[VEGFRI1 or 2
Sunitinib 0 0.0344 1045 48 | inhb: 1]
0 [F1t3 inhb: 11];
Tandutinib 0 0.0053 961 43 | [Kinase inhb: 8]
Tanespimycin 0 0 0.2049 459 28 | [Hsp90 inhb: 6]
0 [JAK/STAT inhb:
TG-101348 0 0.0344 1602 90 | 1]
0 [Farnesyl trans
Tipifarnib 1 0.1329 1592 67 | inhb: 9]
0 [Topoisomerase
Topotecan 1 0.1088 856 38 | inhb: 10]
0 [Aurora kinase
inhb: 0]; [FIt3
inhb: 9];
Tozasertib 0 0.0239 984 46 | [Kinase inhb: 6]
Tretinoin 1 0 0.0039 534 69 | [Retinoid: 4]
U 73122 0 0.0344 679 36 | -0
0 [Microtubule
Vinblastine 0 0.07 1469 180 | inhb: 10]
0 [Microtubule
Vincristine 0 0.0874 1154 102 | inhb: 8]
Vorinostat 1 0 0.0171 621 29 | [HDAC inhb: 15]
YM-155 0 0 0.3771 249 9 |-

HPWN R

() Its successor Bcl2 inhibitor ABT199 is effective in AML.

(b) Its successor Bcl2 inhibitor ABT199 is effective in AML.

() It has been tested in phase II trial in AML as a single agent.

(d) Itis one of the 2 drugs of the fludarabine-melphalan preparative regimen for allogeneic transplant that has been used frequently in AML.
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(e) It has been studied in a phase I/II clinical trial as a single agent in AML.
(f) It is undergoing clinical trial in AML.
(9) It is undergoing clinical trial in AML.
(h) It has been studied in a phase I/II clinical trial in AML with chemotherapy.

(i) It is an antimalarial drug in the “Other” class.

(i) It is a phospholipase inhibitor in the “Other” class.
(k) It is a survivin suppressant in the “Other” class.

Supplementary Table 2: Top 10 MERGE-scoring genes in each drug class shown in Fig. 6a. Some drug
classes have less than 10 genes that are specifically associated with that class and whose associations are
conserved in CCLE data. Column 2 (#Drugs) indicates the number of drugs in the corresponding drug
class. Column 3 (#Genes) indicates the number of top MERGE genes specifically associated with the
corresponding class (the full list is in Supplementary Data 6). The classes highlighted in red contain only
1 drug, and the genes highlighted in yellow are those discussed in the main text.

Drug Class #Drugs #Genes | Top 10 Genes
Alkylating agent/ ) sg | RAB31 CCNGI, TERF2, ZNRD1, RNFI134,
Nucleoside analogue SMARCC1, ZNF697, MDM4, CNOT6L, ADAM?28
AKT/PI3K inhibitor 5 2 PRMT6, RPS19
Topoisomerase A o4 SMARCA4, MZF1, TP53, LEO1, BCL2, ILF3, PRMT7,
inhibitor CEP41, CLNS1A, GPT?2
o CASP8AP2, SMAD7, RAB5A, ZNF420, FBXO45,
Bel2 inhibitor 3 13 ILK, BCL7A, ZUESP, SHQ1, KCTD3
CDK inhibitor 4 1 L2HGDH
| CHK Inhibitor 1 2 NUPS88, GGT5
r 1 6 SNAPC3, TNIK, UBFD1, MYL6B, FAIM, LENEP
o FLT3, ADRBK2, ZNF473, ZDHHC15, GPR34,
FIt3 inhibitor 4 16 | ATATI, FAM1024, FCHO2, MYH3, PITRM1
LPAR4, MAPK1IP1L, RAD23B, NXF3, RNASE2,
GSK-3 inhibitor 2 10 TNERSF18, CALCOCO2, RNASE3, SPON2,
C1IQTNF3
o MNT, BAZ2B, RNF24, MZF1, ZNF785, ZNF763,
HDAC inhibitor 4 25| RAB3D, PSMC5, CCDC167, CMAHP
Hsp90 inhibitor 2 2 PDLIM1, SEZ6L
1 4 DVL2, PEMT, DNAL4, SESN1
Kinase inhibitor . " FLT3, ADRBK2, GPR34, FAM102A, FCHO?,
PITRM1, SRSF3, C1501f48, SOCS2, CLEC5A
| Met inhibitor 1 5 HSF5, ELAVLI, STOML2, DBF4, HHATL
Microtubule inhibitor 3 2 LILRAb5, IL10
mTOR inhibitor 5 1 PKD1
NEKB inhibitor ) o | ARHGEF9, BEX2, Clorfo4, AIM1, YYIAP1, NDNL2,

C90rf85, GGA2, PMP22, RGS3
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Drug Class

VEGFR1 or 2 inhibitor

#Drugs #Genes | Top 10 Genes
1 1 SRSF5
1 1 ANPEP
2 1 ACAP2

Supplementary Table 3: Whether each of the 8 expression markers identified by MERGE (rows)

would have been identified by the alternative methods in Fig. 3 and 4a (columns). A checkmark means

the marker in the corresponding row was identified by the method in the corresponding column. The

rows of heat maps in Fig. 6 show the entire list of genes identified by each method.

Gene ElasticNet

Multi-task
learning

Pearson’s P-value Spearman P-value

SMARCA4

CASPSAP2

L2HGDH

FLT3

MNT

BAZ2B

MZF1

BEX2

Supplementary Table 4: IC50 and AUC values in the KG1, transfected KG1, U937 and transfected U937

cell lines.

AUC (24 hr) | KG1 t-KG1 | U937 t-U937
Etoposide 594.318 | 575.157 | 583.107 | 575.956
Mitoxantrone | 479.329 | 457.108 | 466.419 | 453.636
AUC (48 hr) | KG1 t-KG1 | U937 t-U937
Etoposide 603.722 | 503.202 | 463.981 | 464.517
Mitoxantrone || 417.081 | 358.726 | 312.344 | 308.787
AUC (72 hr) || KG1 t-KG1 | U937 t-U937
Etoposide 602.589 | 462 446.642 | 429.982
Mitoxantrone | 427.033 | 306.129 | 293.408 | 292.742
ICso (24 hr) KG1 t-KG1 | U937 t-U937
Etoposide -5252 | -5384 | -5 -5.09
Mitoxantrone | -6.95 -7.034 | -6.782 | -6.932
ICso (48 hr) KG1 t-KG1 | U937 t-U937
Etoposide -5.318 | -5.948 |-6.374 |-6.38
Mitoxantrone || -7.052 | -7.496 | -8.018 | -8.03
ICso (72 hr) KG1 t-KG1 | U937 t-U937
Etoposide -5.354 | -6.308 | -6.548 | -6.71
Mitoxantrone || -7.088 | -8 -8.102 | -8.108
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