
                        
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	  

Figure S1: Six tensor completion algorithms were benchmarked for both speed and accuracy. The 
algorithms are: Tmac (Xu, et al., 2013);  SiLRTC, HaLRTC, and FaLRTC (Liu, et al., 2013) and 
‘Constrained’ and ‘AsMatrix’ (Tomioka, et al., 2010). MATLAB code for all algorithms was downloaded 
and used without any algorithmic changes. Some hyperparameters were hand-tuned while others were kept 
at default values (see Table S3). 10-fold CV experiments were run on the small tensor (300 drugs by 15 cell 
lines). Results and runtimes are shown here, along with 1D-Mean, 2D-Mean and DNPP. FaLRTC was 
selected for further study due to its superior accuracy and efficiency. A. Accuracy (PCT) per fold for each 
algorithm. B The corresponding runtimes (in seconds) per fold. Notice that the y-axis is on a log-scale, so 
that ‘Constrained’ and ‘AsMatrix’ are more than an order-of-magnitude slower than FaLRTC. 
 
 



 
 
  

Figure S2: Two additional examples of cell-specific drugs where Tensor and DNPP have similar performance. A. ABT-751, a 
microtubule inhibitor. While not perfect, both Tensor and DNPP were able to recapitulate much of the detail in these highly 
cell-specific and complex expression responses, including patterns that are only observed in a single cell line. B. The cell-
specific response to GNF-2, a Bcr-Abl inhibitor (Adrián, et al., 2006). In this case, 5 cell types have been measured, including 
ASC (fat) cells on the left, and four breast cancer cell lines. We observe a striking anti-correlation between the responses of 
the fat cells versus the breast cancer cells, with the latter response enriched for several cancer-related processes, consistent 
with recent connections between Abl kinases and solid tumor cancers (Greuber, et al., 2013). In this case, all methods did well 
in predicting the breast cancer responses, but none captured the anti-correlated profile of the fat cells. However, we do observe 
that both Tensor and DNPP predictions for ASC cells are qualitatively different from the breast cancer predictions.  
 



 
 
 
 
 
 
 
 

 
Figure S3: Analysis of bias resulting from the presence of chemically-similar drugs in the tensor. As mentioned in the 
discussion, chemically similar drugs can (but don’t always) yield similar expression responses(Chen, et al., 2015), and this 
could lead to overly optimistic results, e.g. if a drug that is highly similar to the target drug is used in training.  To quantify 
this bias, we first computed ECFP6 chemical fingerprints using the rcdk package. Then for each drug, we computed the 
maximum Tanimoto coefficient (maxTc) in relationship to any other drug in the tensor. Then, as shown in the figure, PCT 
accuracy was computed on the cross-validation results, either for the entire tensor as reported in the main manuscript 
(corresponding to a maxTC threshold of 1), or for the tensor restricted to drugs that have a maxTc less than some threshold. 
As expected, we see that 1D-Mean and 2D-Mean are not biased by chemical similarity, while DNPP and Tensor do reveal a 
slight bias, i.e. the results on the restricted subsets are a bit lower than for the entire tensor (dashed lines). The maximum 
bias revealed by this analysis is a PCT difference of 0.016 for DNPP (0.007 for Tensor), calculated by computing the 
difference between endpoints, as indicated in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Algorithm Parameter Value 

FaLRTC alpha (1, 0.01,1) / 2.01 

FaLRTC mu 0.01 

FaLRTC C 0.5 

FaLRTC L0 1 x 10-5 

FaLRTC maxIter 20 

FaLRTC epsilon 0.1 

HaLRTC alpha (1, 0.001, 1) / 
2.001 

HaLRTC beta 1 

HaLRTC maxIter 500 

HaLRTC epsilon 0.05 

SiLRTC alpha (1, 0.001, 1) / 
2.001 

SiLRTC beta (32, 32, 32) 

SiLRTC maxIter 500 

SiLRTC epsilon 1 x 10-10 

Tmac estCoreNway (10, 10, 3) 

Tmac maxIter 100 

Tmac tol 1 x 10-4 

Tmac alpha-adj 0 

Tmac alpha (1, 1, 1) 

Tmac rank-adj (1, 1, 1) 

Tmac rank-max (50, 30, 6) 

Tmac rank-inc (1, 1, 1) 

Tmac rank-min (1, 1, 1) 

Asmatrix alpha (0.5, 0, 0.5) 

Asmatrix eta 32 

Asmatrix tol 5 x 10-2 

Constrained lambda 0 

Constrained eta 32 

Constrained tol 5 x 10-2 

2D-Mean lambda 0.5 

DNPP K 10 

 
Supplementary Table 1: Hyperparameters used throughout the manuscript for all profile prediction methods. 
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Algorithm Parameter Value 

regLogistic cost 2^(-10:20) 

regLogistic loss L2_dual 

regLogistic epsilon 0.1 

parRF mtry 10, 20, 30, 40 

knn k 1:10 

 
Supplementary Table 2: Hyperparameters tested for each ATC/target prediction experiment (i.e. for each input type 
and output prediction task).  
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