Supporting Information # Antiplasmodial alkaloids from bulbs of Amaryllis belladonna Namki Cho, Yongle Du, Ana Lisa Valenciano, Maria L. Fernández-Murga, Michael Goetz, Jason Clement, Maria B. Cassera, David G. I. Kingston ## **Experimental Section** ### General experimental procedures UV spectra were measured on a Shimadzu UV-1201 spectrophotometer and specific rotations were recorded on a JASCO P-2000 polarimeter. NMR spectra were obtained on a Bruker Avance 400 spectrometer; chemical shifts are given in δ (ppm), and coupling constants are reported in Hz. Mass spectra were obtained on an Agilent 6220 LC-TOF-MS in the positive ion mode. ECD spectra were obtained on a JASCO J-810 spectropolarimeter with a 1 cm cell in MeOH at room temperature with constant nitrogen flushing under the following conditions: speed 100 nm/min, time constant 1 s, bandwidth 1.0 nm. Semipreparative HPLC was performed using Shimadzu LC-10AT instrument with a semipreparative C_{18} Phenomenex Luna column (5 μ m, 250 × 10 mm). Solid phase extractions were performed with Thermo Scientific HyperSep C_{18} 500 mg, 3 mL SPE cartridges, and all RP TLC was conducted with Sorbtech C_{18} -W silica TLC plates. All isolated compounds were purified to 95% or better, as judged by HPLC (UV and ELSD detection) and NMR before antiplasmodial assay. #### Plant material Specimens of bulbs of *Amaryllis belladonna* Steud. (C. Morenburg 128) were collected and identified by Cori Morenberg of the New York Botanical Garden in the succulent garden of the Quail Botanical Gardens, Encinitas, CA on September 6, 1995. http://sweetgum.nybg.org/science/vh/specimen_details.php?irn=269183 #### **Extraction and isolation** Dried, powdered plant material (1.17 Kg) was exhaustively extracted with MeOH at room temperature to give 39 g of an extract which was partitioned into aqueous MeOH and dichloromethane soluble portions. The aqueous MeOH-soluble portion of the crude extract was passed through a polyvinyl pyrrolidone column to give a detanninized extract designated CM00128a (X-4283), and 2.0 g of this extract was made available to Virginia Tech. A 1.5 g portion of this extract, which had an IC₅₀ against *P. falciparum* Dd2 of 1.25 μ g/mL, was suspended in aqueous MeOH (MeOH–H₂O, 9:1, 100 mL) and extracted with hexane (4 × 100 mL portions) to give an inactive hexane-soluble fraction (165.0 mg, IC₅₀ >10 μ g/mL). The aqueous fraction was then diluted to MeOH–H₂O, 6:4 (150 mL) and further extracted with CH₂Cl₂ (4 × 100 mL portions) and EtOAc (4 × 100 mL portions) to yield the CH₂Cl₂-soluble (310.0 mg, IC₅₀ approximately 2.5 μ g/mL) and EtOAc-soluble fractions (210.0 mg, IC₅₀ approximately 2.5 μ g/mL). The active CH₂Cl₂ fraction was chromatographed by open column on a normal silica gel with the solvent system from 30:1 to 1:1 CH₂Cl₂:MeOH. Five fractions (AC1-AC5) were collected based on TLC analyses. The active fraction AC2 (IC₅₀ < 1.25 μ g/mL) was further separated by HPLC on a semi-preparative C₁₈ column (Phenomenex Luna column, 5 μ m, 25 × 10 mm) eluted with a solvent gradient from 60:40 to 80:20 CH₃CN:H₂O over 25 min at a flow rate of 2.5 mL/min. This process gave compounds 5 (10.4 mg) and 6 (0.4 mg), and semi-pure compound 2 (5.1 mg). The collected semi-pure compound 2 was then further purified by HPLC on the same column eluted with an isocratic CH₃OH:H₂O flow of 75:25 for 15 min, which yielded compound 2 (1.0 mg) and compound 3 (0.8 mg). The active EtOAc fraction was chromatographed by open column on a normal Silica gel with the solvent system from 20:1 to 3:1 CH₂Cl₂:MeOH. Four fractions (AE1-AE4) were collected according to TLC analyses and the fraction AE2 (2.5 < IC50 < 5.0 μ g/mL) was further separated by HPLC on a semi-preparative C₁₈ column eluted with isocratic 50:50 CH₃CN:H₂O for 25 min, which yielded compound 1 (6.4 mg). The active fraction AE3 (2.5 < IC₅₀ < 5.0 μ g/mL) was chromatographed by open column on a RP C₁₈ Silica gel with the solvent system from 20:80 to 60:40 MeOH:H₂O, which yielded compound 4 (7.0 mg). ### Antimalarial and antiproliferative bioassays Dose-dependent growth inhibition of each fraction and pure compounds was assessed against *P. falciparum* strain Dd2 (chloroquine-resistant) in a 72h growth assay in the presence of inhibitor as described previously with minor modifications. Ring stage parasite cultures (100 μ L/well, 1% hematocrit and 1% parasitaemia) were grown for 72 h in the presence of increasing concentrations of the inhibitor in a humidified chamber at 37 °C and low oxygen conditions. After 72 h in culture, parasite viability was determined by DNA quantitation using SYBR Green I. Artemisinin was used as a positive control with an IC₅₀ value of 12.1 \pm 0.1 nM. Parasite growth was normalized to untreated controls. The IC₅₀ calculations were performed with GraphPad Prism software using a nonlinear regression curve fitting, and the reported values represent averages of three independent determinations with each determination in duplicate, and are expressed \pm SEM. The A2780 ovarian cancer cell line assay was performed by the protocol of Virginia Polytechnic Institute and State University, as previously reported. ### 3.5. Compound information 1,4-Dihydroxy-3-methoxypowellan (1): white amorphous powder; $[\alpha]^{25}_D$ -37 (c 0.3, MeOH); UV (MeOH) λ_{max} (log ϵ) 254 nm; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) data, see Table 1 and Figures S1 – S6; HRESIMS found m/z 349.1492 [M]⁺ (calcd for C₁₈H₂₃NO₆ 349.1520). Distichamine (2): yellow amorphous powder; $[\alpha]^{25}_D$ -49 (c 0.3, MeOH); UV (MeOH) λ_{max} (log ϵ) 254 nm; ¹H NMR (400 MHz, DMSO) and ¹³C NMR (100 MHz, DMSO) data, see Figures S7 – S8; HRESIMS found m/z 329.1269 [M]⁺ (calcd for $C_{18}H_{19}NO_5$ 329.1263). 11-O-Acetylambelline (3): white amorphous powder; $[\alpha]^{25}_D$ +25 (c 0.3, MeOH); UV (MeOH) λ_{max} (log ϵ) 254 nm; ¹H NMR (400 MHz, DMSO) and ¹³C NMR (100 MHz, DMSO) data, see Table 1 and Figures S9 – S10. HRESIMS found m/z 374.1621 [M+H]⁺ (calcd for C₂₀H₂₄NO₆ 374.1604). Ambelline (4): white amorphous powder; $[\alpha]^{25}_D$ +37 (c 0.3, MeOH); UV (MeOH) λ_{max} (log ϵ) 254 nm; ¹H NMR (400 MHz, DMSO) and ¹³C NMR (100 MHz, DMSO) data, see Figures S11 – S12. HRESIMS found m/z 332.1497 [M+H]⁺ (calcd for C₁₈H₂₂NO₅ 332.1492). Acetylcaranine (5): yellow amorphous powder; $[\alpha]^{25}_D$ -30 (c 0.3, MeOH); UV (MeOH) λ_{max} (log ϵ) 254 nm; 1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) data, see Table 1 and Figures S13 – S15; HRESIMS found m/z 313.1413 [M+H]⁺ (calcd for $C_{18}H_{20}NO_4$ 313.1387). Hippadine (6): yellow amorphous powder; $[\alpha]^{25}_D$ +17 (c 0.3, MeOH); UV (MeOH) λ_{max} (log ε) 254 nm; ¹H NMR (400 MHz, DMSO) data, see Figure S16; HRESIMS found m/z 264.0633 [M+H]⁺ (calcd for C₁₆H₁₀NO₃ 264.0661). ## **List of Supporting Information** - S1. ¹H NMR spectrum (400 MHz) of compound 1 in CDCl₃ - S2. ¹³C NMR spectrum (400 MHz) of compound 1 in CDCl₃ - S3. COSY spectrum of compound 1 in CDCl₃ - S4. HSQC spectrum of compound 1 in CDCl₃ - S5. HMBC spectrum of compound 1 in CDCl₃ - S6. NOESY spectrum of compound 1 in CDCl₃ - S7. ¹H NMR spectrum (400 MHz) of compound **2** in DMSO - S8. ¹³C NMR spectrum (400 MHz) of compound 2 in DMSO - S9. ¹H NMR spectrum (400 MHz) of compound **3** in DMSO - S10. ¹³C NMR spectrum (400 MHz) of compound **3** in DMSO - S11. ¹H NMR spectrum (400 MHz) of compound 4 in DMSO - S12. ¹³C NMR spectrum (400 MHz) of compound 4 in DMSO - S13. ¹H NMR spectrum (400 MHz) of compound **5** in CDCl₃ - S14. ¹³C NMR spectrum (400 MHz) of compound **5** in CDCl₃ - S15. HMBC spectrum of compound 5 in CDCl₃ - S16. ¹H NMR spectrum (400 MHz) of compound **6** in DMSO - S17. CD spectrums of compounds 1-6 - S18. Dose-response curves for antiplasmodial assays of compounds 1, 3, 4, and 5. Figure S1. ¹H NMR spectrum (400 MHz) of compound 1 in CDCl₃ Figure S2. ¹³C NMR spectrum (400 MHz) of compound 1 in CDCl₃ Figure S3. COSY spectrum of compound 1 in CDCl₃ Figure S4. HSQC spectrum of compound 1 in CDCl₃ Figure S5. HMBC spectrum of compound 1 in CDCl₃ Figure S6. NOESEY spectrum of compound 1 in CDCl₃ Figure S7. ¹H NMR spectrum (400 MHz) of compound 2 in DMSO Figure S8. ¹³C NMR spectrum (400 MHz) of compound 2 in DMSO Figure S9. ¹H NMR spectrum (400 MHz) of compound 3 in DMSO Figure S10. ¹³C NMR spectrum (400 MHz) of compound 3 in DMSO Figure S11. ¹H NMR spectrum (400 MHz) of compound 4 in DMSO Figure S12. ¹³C NMR spectrum (400 MHz) of compound 4 in DMSO Figure S13. ¹H NMR spectrum (400 MHz) of compound 5 in CDCl₃ Figure S14. ¹³C NMR spectrum (400 MHz) of compound 5 in CDCl₃ Figure S15. HMBC spectrum of compound 5 in CDCl₃ Figure S16. ¹H NMR spectrum (400 MHz) of compound 6 in DMSO Figure S17. CD spectra of compounds 1-6 Figure S18. Dose-response curves for antiplasmodial assays of compounds 1, 3, 4, and 5.