

(A) Schematic of two crRNAs correspond to targeting Cascade and non-targeting Cascade and a surface-immobilized, Cy3 labelled dsDNA that contains the target sequence (green) and the PAM (red). A 33-nt biotinylated adaptor is used as an anchor for surface immobilization. (B) Cy3 (green dot) and Cy5 (red dot) labelling locations shown in the Cascade-dsDNA bound crystal structure (PDB ID: 5H9F).
(C) Electrophoretic mobility shift assay for WT Cascade and Cy5 labelled Cascade (labelling efficiency > 90%) (1, 2, 5, 10, 20, 50, and 500 nM) binding to plasmid containing target sequence. (D) Fraction of DNA bound versus Cascade concentration were fit with a binding isotherm (solid lines).

Figure S2. Photobleaching rate for Cy3-labeled dsDNA. Related to Figures 1 and 2

Mean donor photobleaching time was obtained from fitting donor survival probability to a singleexponential decay equation.

Figure S3. Representative smFRET trajectories of targeting Cascade with dsDNA_{target}. Related to Figure 1.

(A-C) FRET histograms for FRET events existed in all extracted traces of Cascade with Cy5 labelled Cse2-Cas6e (A), Cy5 labelled Cse1 (B), and Cy5 labelled Cse2-Cas6e (C). The number of molecules used for FRET histograms was 392 (Cascade), 378 (Cse1), and 400 (Cse2).

Figure S5. Transition density plots for Cascade binding to different dsDNA substrates. Related to Figure 2.

Transition density plots for (A) dsDNA_{target} with non-targeting Cascade, (B) dsDNA_{0PAM} with non-targeting Cascade, (C) dsDNA_{0PAM} with targeting Cascade, (D) dsDNA_{1PAM} with non-targeting Cascade, (E) dsDNA_{3PAM} with non-targeting Cascade, and (F) dsDNA_{1PAM-12bp} with non-targeting Cascade. The number of molecules for each TDP ranged from 1050 to 4,775.

Figure S6. FRET appearance and disappearance at different Cascade concentrations. Related to Figure 2.

(A) k_{binding} for dsDNA_{0PAM}, dsDNA_{1PAM} and dsDNA_{3PAM} at three different Cascade concentrations (2.5 nM, 5 nM and 10 nM). (B) k_{off} for dsDNA_{0PAM}, dsDNA_{1PAM} and dsDNA_{3PAM} at three different Cascade concentrations (2.5 nM, 5 nM and 10 nM).

Figure S7. Cse1 and Cas7 motif mutations abolish target binding. Related to Figure 4. (A-C) FRET distribution for (A) WT Cascade, (B) G160A and lysine-rich β hairpin (K289A, K290A, and K296A) double mutation in Cse1, (C) Cas7 quadruple Lys-rich vise mutation (K137A, K138A, K141A and K144A) binding to dsDNA_{1PAM.} The number of molecules used for FRET histograms was 1517 (WT Cascade), 850 (Cse1 double mutant), and 744 (Cas7 Lys-rich vise mutant). (D) Coomassie blue-stained SDS-PAGE gel analysis of Cse2-Cas6e. Gel lanes: (1) WT Cse2-Cas6e; (2) WT Cse2-Cas6e with K137A Cas7; (3) WT Cse2-Cas6e with K137A, K138A, K141A and K144A Cas7. (E-F) Transition density plots for Cascade with (E) Cse1 G160A mutation and (F) Cascade with Cse1 Lys-rich β hairpin mutation (K289A, K290A, and K296A) binding to dsDNA_{1PAM}. (G) Electrophoretic mobility shift assay for G160A and lysine-rich β hairpin (K289A, K290A, and K296A) double mutation in Cse1 and quadruple Lys-rich vise mutation (K137A, K138A, K141A and K144A) in Cas7 at different time point (2, 5, and 30 min) and various Cascade concentrations (1, 5, 10, 50, and 500 nM).

 Table S1: Plasmids used in this study Related to Experimental procedures.

Plasmids	Description	Primers	Source
EcCse1-pSV272	<i>csel</i> expression vector with N-		(Sashital et
	terminal His ₆ -MBP-TEV site tag in		al., 2012)
	pSV272		
pWUR547	<i>E.coli</i> R44 CRISPR, 7×spacer		(Brouns et al.,
	number 2 in pACYCDuet-1		2008)
	expression vector used for non-		
	targeting Cascade		
pX965	E. coli CRISPR 2 spacer 1 (S2.1)		(Xue et al.,
	CRISPR template in pACYC-Duet		2016)
	used for targeting Cascade		
pX1154	csel with K289A, K290A, and	XCY1106+XCY1136	This study
	K296A expression vector with N-		
	terminal His ₆ -MBP-TEV site tag in		
	pSV272		
pX1484	csel with G160A expression vector	XCY1075+XCY1076	This study
	with N-terminal His ₆ -MBP-TEV site		
	tag in pSV272		
pX996	Cys-free <i>cas6e</i> in pCDF-1b with no		(Xue et al.,
	tag		2016)
pX1169	Minimal-Cys cse2-cas7-cas5e with		(Xue et al.,
	N-terminal His ₆ -TEV site tag is pET-		2016)
	52b(+)		
pX1187	E102C in <i>cas5e</i> in minimal Cys	XCY713+XCY718	This study
	<i>cse2-cas7-cas5e</i> with N-terminal		
	His ₆ -TEV site tag is pET-52b(+)		

pX1496	cas7 with K137A, K138A, K141A,	XCY1102+XCY1103	This study
	K144A in minimal-Cys <i>cse2-cas7-</i>		
	cas5e expression vector pX1169		
pX1500	E102C in <i>cas5e</i> and <i>cas7</i> with	XCY1102+XCY1103	This study
	K137A, K138A, K141A, K144A in		
	minimal-Cys cse2-cas7-cas5e		
	expression vector pX1169		
pX1534	E102C in <i>cas5e</i> and <i>cas7</i> with	XCY1124+XCY1126	This study
	K137A in minimal-Cys <i>cse2-cas7-</i>		
	cas5e expression vector pX1169		
pX1796	<i>cse1</i> with G160A, K289A, K290A,	XCY1106+XCY1136	This study
	and K296A expression vector with	XCY1075+XCY1076	
	N-terminal His6-MBP-TEV site tag		
	in pSV272		

Name Sequence (5'-3')Description XCY798 F-E102C minimal-TGTACGATTCAAACATGGCGCGAATATCTGAGTGAT GCC Cys cas5e XCY713 R-E102C minimal-ATGACTTTTCAAACCACGGTAATCTTCTCGCGCTCCA AGG Cys cas5e XCY1075 GGTTTTAAAAGCGGTTTACGTGGAGGAAC F-G160A csel XCY1076 TGCACCAAAACCTGGTGCCTGATTCGCCTG R-G160A csel XCY1136 GGGGAGGTTGAGGAAGCATTTCTTGCTTTCACCACCT F-K289A, K290A, С K296A, *csel* XCY1106 TGCAGCGACTGTTACCAGACAAGGGGAATG R-K289A, K290A, K296A, *csel* GCTGTTCTTGCTGAAGATATTGCCGCCATACG XCY1102 F-K137A, K138A, K141A, K144A cas7 XCY1103 GAGCAGAGCAGCATCATCCAGATTATCAGCCTC R-K137A, K138A, K141A, K144A cas7 XCY601 GGATCCGAATTCGAGCTCGCGAAGGCAAAAACCGGG F-Spacer 2.1 non-CAATCGCAAAAAGGCGTAATCGCCTGCAGGTCGACA target strand AGCTTG XCY602 CAAGCTTGTCGACCTGCAGGCGATTACGCCTTTTTGC R-Spacer 2.1 non-GATTGCCCGGTTTTTGCCTTCGCCGAGCTCGAATTCG target strand GATCC XCY1124 GAGCAGCTTAGCATCATCCAGATTATCAGCCTC F-K137A Cas7 XCY1126 AAAGTTCTTAAGGAAGATATTGCCGCCATACG R-K137A Cas7 XCY1187 CCCGCCGCCGCCGAAGAAGAAGAAGAAGAAGAAGA F-Competitor with 16 AGAAGAAGAAGAAGAAGAAGAAGAAGCCGCCGCCG AAG CCGT XCY1188 R-Competitor with 16 TTCTTCTTCTTCTTCTTCTTCGGCGGCGGCGGG AAG

 Table S2: Oligonucleotides used for plasmid construction and EMSA. Related to Figure 3 and

 Experimental procedures.

XCY1189	CCCGCCGCCGCCGAAGCCGAAGCCGAAGCCGAAGCC	F-Competitor with 8
	GAAGCCGAAGCCGAAGCCGAAGCCGCCGCCGCCGCC	AAG
	GT	
XCY1190	ACGGCGGCGGCGGCGGCTTCGGCTTCGGCTTCGGCT	R-Competitor with 8
	TCGGCTTCGGCTTCGGCTTCGGCGGCGGCGGCGG	AAG
	G	
XCY1191	CCCGCCGCCGCCGCCGAAGCCGAAGCCGCCGCC	F-Competitor with 4
	GAAGCCGAAGCCGCCGCCGCCGCCGCCGCCGCCGCC	AAG
	GT	
XCY1192	ACGGCGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	R-Competitor with 4
	TCGGCGGCGGCTTCGGCTTCGGCGGCGGCGGCGGCG	AAG
	GG	
XCY1197	GTCCGCCGCCGCCGCCGCCGCCGCCGCCGCCG	R-Competitor with 0
	CACGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGC	AAG
	CA	
XCY1198	TGGCGGCGTGCGGCGGCGGCGGCGGCGGCGGCGGC	R-Competitor with 0
	GTGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGC	AAG
	GGAC	

Name	Sequence (5'-3')	Description
XCY1018	GTGTATACGTGTGTGTGATTGGTGGACTGATC	Biotin anchor
	GAA/3Bio/	
XCY1019	/5Cy3/TCTGTGCAGTGCTCGAAGGCAAAAAC	Truncated non-target strand with
	CG	AAG PAM and S2.1 target, Cy3
		labelled at 5' end
XCY1407	/5Cy3/TCTGTGCAGTGCTCGAAGGCAAAAAC	Full length non-target strand with
	CGGGCAATCGCAAAAAGGCGTAATCTGTGG	AAG PAM and S2.1 target, Cy3
	GTG	labelled at 5' end
XCY1066	CGATCAGTCCACCAATCACACGTATACA	Target strand S2.1 AAG, annealed
	CCACCCACAGATTACGCCTTTTTGCGATTGC	with X1018 and X1019 for
	CCGGTTTTTGCCTTCGAGCACTGCACAGA	$dsDNA_{trunc}$ or X1018 and X1407
		for dsDNA _{target}
XCY1111	/5Cy3/ACGCCGCCGCCGCCGCCGCCACCGCC	All CCG, Cy3 labelled at 5' end
	GCCGCATCGCACCAACCCAGTAATCTGTGG	
	GTG	
XCY1112	ATCAGTCCACCAATCACACGTATACACCA	All CCG, annealed with X1018
	CCCACAGATTACTGGGTTGGTGCGATGCGG	and X1111 for dsDNA _{0PAM}
	CGGCGGTGGCGGCGGCGGCGGCGGCGT	
XCY1156	/5Cy3/ACGCCGCCGCCGCCGAAGCGCCGCCG	One AAG PAM at 16 th position,
	CCGCCGCCTCGCACCAACCCAGTAATCTGT	Cy3 labelled at 5' end
	GGGT	
XCY1157	ATCAGTCCACCAATCACACGTATACACAC	One AAG PAM at 16 th position,
	CCACAGATTACTGGGTTGGTGCGAGGCGGC	annealed with X1156 and X1018
	GGCGGCGGCG <mark>CTT</mark> CGGCGGCGGCGGCGT	for dsDNA _{1PAM}
XCY1092	/5Cy3/ACGCCGCCGCCAAGCCAAGCAAGCC	Three AAG PAMs, Cy3 labelled
	GCCGCCATCGCACCAACCCAGTAATCTGTG	at 5' end
	GGTG	

 Table S3: Oligonucleotides used for smFRET. Related to Figure 1-2, 4, and Figure S1, 3-7

XCY1093	ATCAGTCCACCAATCACACGTATACACCA	Three AAG PAMs, annealed with
	CCCACAGATTACTGGGTTGGTGCGATGGCG	X1092 and X1018 for
	GCGG <mark>CTTGCTT</mark> GG <mark>CTT</mark> GGCGGCGGCGT	dsDNA _{3PAM}
X1409	/5Cy3/ACGCCGCCGCCAAGCCCGCCGCCGCCG	One AAG PAM at 12 th position,
	CCGCCGCCTCGCACCAACCCAGTAATCTGT	Cy3 labelled at 5' end
	GGGT	
X1410	ATCAGTCCACCAATCACACGTATACACAC	One AAG PAM at 12 th position,
	CCACAGATTACTGGGTTGGTGCGAGGCGGC	annealed with X1409 and X1018
	GGCGGCGGCGCGGG <mark>CTT</mark> GGCGGCGGCGT	for dsDNA _{1PAM-12bp}

Supplemental Experimental Procedures

Plasmid Construction

K289, K290, and K296 in *cse1* were mutated to alanine using primers XCY1106 and XCY1136 in EcCse1pSV272. G160 in *cse1* was mutated to alanine using XCY1075 and XCY1076 in EcCse1-pSV272. K137, K138, K141, and K144 in *cas7* were mutated to alanine using XCY1102 and XCY1103 in pX1169 to produce pX1500. K137 in *cas7* was mutated to alanine using XCY1124 and XCY1126 in pX1169 to produce pX1534. E102C was introduced to the *cas5e* gene in the plasmid pX1169 or pX1500 for sitespecific labeling of Cas5e using XCY713 and XCY798.

Protein purification and Dye labeling

Minimal-Cys Cse2-Cas6e with different crRNA sequences containing E102C Cas5e was labeled by Cy5maleimide (Lumiprobe) as previously described (Xue et al., 2016). All labeling reactions were performed in sample storage buffer (20 mM Tris [pH 7.5], 100 mM NaCl, 5% glycerol, and 1 mM TCEP). Cse2-Cas6e (25 μ M) and Cy5 (200 μ M) were mixed in 5% DMSO. Reactions were incubated in the dark at 4 °C for 1 hr, then quenched by adding 10 mM DTT. Labeled Cse2-Cas6e was separated from free dye using a 10K protein concentrator (Corning), concentrated to 2 μ M, aliquoted and stored at -80 °C. Each labeled Cse2-Cas6e aliquot was only thawed one time. The labelling efficiency of Cse2-Cas6e was calculated by measuring the concentration of Cse2-Cas6e at 280 nm and the dye concentration at 650 nm after labelling. Labelling efficiency of Cse2-Cas6e was consistently greater than 90%.

Preparation of dsDNA used for smFRET and EMSA

Oligos were dissolved in ddH2O to 100 μ M. Two complementary oligos used for EMSA experiments were mixed in annealing buffer (10 mM Tris, pH 7.5, 50 mM NaCl, 1 mM EDTA) in 1:1 ratio. Two complementary oligos and a biotinylated anchor (X1018) used for surface immobilization were mixed in annealing buffer (10 mM Tris, pH 7.5, 50 mM NaCl, 1 mM EDTA) in 1:1:1 ratio (Fig. S1A). Samples were incubated at 95°C for 5 min in a heat block covered by aluminum foil to avoid light. The samples were slow-cooled by turning off the heat block until the block decreased to room temperature (2-3 h). Samples were purified on a 6% native polyacrylamide gel run at 4 °C.

Supplemental References

Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E. V., and Van Der Oost, J. (2008). Small Crispr Rnas Guide Antiviral Defense in Prokaryotes. Science (80). *321*, 960–964.

Sashital, D.G., Wiedenheft, B., and Doudna, J.A. (2012). Mechanism of Foreign DNA Selection in a Bacterial Adaptive Immune System. Mol. Cell *46*, 606–615.

Xue, C., Whitis, N.R., and Sashital, D.G. (2016). Conformational Control of Cascade Interference and Priming Activities in CRISPR Immunity. Mol. Cell *64*, 826–834.