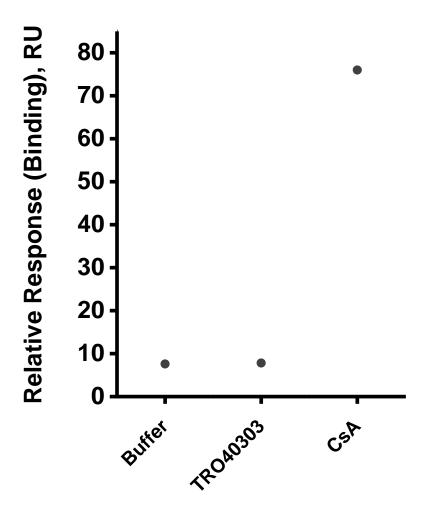


SUPPLEMENTAL FIGURE 1. TRO40303 reduced loss of mitochondrial membrane potential $(\Delta\psi_m)$ and overload of $[Ca^{2+}]_c$ in freshly isolated murine pancreatic acinar cells (PACs; confocal fluorescence; mean \pm s.e.m. ratio to basal, F/F $_0$). A, Taurolithocholic acid sulphate (TLCS, 500 μ M) induced falls in $\Delta\psi_m$ (tetramethyl rhodamine methyl ester, TMRM) and (B) large elevations in $[Ca^{2+}]_c$ (Fluo-4); positive control, protonophore carbonyl cyanide m-chloro phenyl hydrazone, CCCP). Pre-treatment with TRO40303 (3 μ M = T3) decreased the extent of depolarisation, preserving $\Delta\psi_m$. Pre-treatment with T3 did not affect the initial rise in $[Ca^{2+}]_c$ but reduced overload of $[Ca^{2+}]_c$ during the plateau phase. C, Although a lower concentration of TRO40303 (1 μ M = T1) protected against loss of $\Delta\psi_m$, (D) the effect on $[Ca^{2+}]_c$ was less pronounced .



Α

В

SUPPLEMENTAL FIGURE 2. TRO40303 reduced necrotic cell death pathway activation in freshly isolated murine and human pancreatic acinar cells (PACs). Taurolithocholic acid sulphate (TLCS, 500 μ M) induced necrotic cell death pathway activation indicated by propidium iodide (PI) uptake. Pre-treatment with TRO40303 (3 μ M, T3 or 1 μ M, T1) reduced necrotic cell death pathway activation in (A) murine and (B) human PACs, an effect that was concentration dependent (TLCS vs TLCS plus TRO40303, *P < 0.05).

SUPPLEMENTAL FIGURE 3. Surface plasmon resonance demonstrated no binding affinity of TRO40303 with cyclophilin D (Cyp-D). Experiments were performed by the addition of $100\mu M$ TRO40303 over recombinant Cyp-D immobilized on a CM5 sensor chip. TRO40303 resulted in the same response as buffer. Cyclosporine A (CsA), which has a strong binding affinity for Cyp-D, was used as a positive control. TRO40303 showed no binding with Cyp-D.