SUPPLEMENTAL MATERIAL

Supplemental Methods 1

Image quality measurements

To assess image quality, we measured the signal-to-noise ratio defined as the mean coronary luminal CT attenuation in Hounsfield units (HU) adjacent to the plaque in a healthy segment divided by the standard deviation of the CT attenuation in the aorta measured in a region of interest at least 2 cm^2 at the level of the left main trunk. Contrast-to-noise ratio was calculated as the mean luminal HU minus the perivascular HU at the site of the plaque divided by the standard deviation of the aortic HU. All measurements were performed on a clinical workstation (IntelliSpace portal, Philips Healthcare, Best, The Netherlands). Detailed information regarding image quality can be found in *table 2*.

Image acquisition

Images were acquired using 256-slice scanner (Brilliance iCT 256, Philips Healthcare, Best, The Netherlands) with prospective ECG-triggered acquisition mode. If the initial heart rate was above 65 beats per minutes we administered heart rate lowering medication (beta blocker or ivabradine, if beta blocker was contraindicated) orally and intravenous to the patients. To ensure optimal visualization of the coronary vessels 0.8 mg of sublingual nitroglycerin was given to all patients 2 minutes before the image acquisition. Images were acquired in cranio-caudal direction during a single breath-hold in inspiration. Four-phasic injection protocol with 90-100 ml of Iomeprol contrast agent was used (Iomeron 400, Bracco Ltd, Milan, Italy) for the coronary CTA examinations.¹ Examinations were performed using 128×0.625 mm detector collimation, 270 ms gantry rotation time, 120 kV, mAs 250-300 depending on patient's body mass index and chest size. All images were reconstructed to a 512×512 matrix with a slice thickness of 0.8 mm and 0.4 mm spacing between slices using an iterative image reconstruction algorithm (iDOSE⁴ level 5, Philips Healthcare, Best, The Netherlands).

Calculation of radiomic features

Using Radiomics Image Analysis (RIA) software package, we calculated 44 first-order statistics, 3585 gray level co-occurrence matrix (GLCM) based parameters, 55 gray level run length matrix (GLRLM) based metrics and 756 geometry based statistics. For first-order statistics 3D arrays containing the HU values were transformed to a 1D vector, from which the statistics were calculated. For GLCM, GLRLM and geometry based analysis images were discretized by dividing the voxel values into 2, 4, 8, 16 and 32 equally probable bins each containing the same number of voxels. This resulted in 5 replicas of the images. The different bin sizes significantly affect the calculated radiomic feature values. Fewer bins mean more robust values, however result in information loss, while more bins are susceptible to noise, but preserve more information.² We conducted our analysis hypothesis free, in a data driven manner by calculating statistics for each discretized image.

GLCM calculations were done based on the concept proposed by Halarick et al.³ GLCM are matrices, where the element in the i^{th} row and j^{th} column represents the probability of finding a voxel with value *j* next to a voxel of value *i* in a given direction and distance. Each statistic was calculated for each of the 26 possible directions in 3D space and then averaged to receive rotationally independent measures. All statistics were calculated for distances 1, 2 and 3 voxels.

GLRLM calculations were done as proposed by Galloway.⁴ In the GLRLM matrix the element in the i^{th} row and j^{th} column represents how many times i value voxels occur next to each other j times in a given direction. Each statistic was calculated for each possible run direction in 3D space and then averaged to obtain rotationally independent measures.

Geometry-based statistics were done on raw data as well as discretized images. Surfaces, volumes and radiomic parameters were calculated from the dimensions of the raw image, where the voxels in-plane dimensions were equal to pixel spacing, while the cross-plane dimension was equal to the spacing between the slices. Fractal dimensions were calculated by padding the lesion into an isovolumetric cube with sides equal to the next greatest power of two of the longest dimension of the lesion. Consecutively smaller and smaller cubes were used to cover the lesion and calculate the given statistic. Detailed description of statistical parameters can be found in *supplemental methods 2*.

Supplemental Methods 2

Radiomic features calculated using Radiomics Image Analysis (RIA) Toolbox for Grayscale Images

First-order statistics

First-order statistics discard all spatial information and analyze the data points only considering their values.

For all proceeding first-order statistics let:

- *x*: ordered data points from smallest to largest
- x_i : ith data point, indexing starts from 1
- *n*: number of elements in *x*

Statistics describing the average and spread of the data

MEAN

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}$$

MEDIAN

$$\begin{cases} x_{ceil(\frac{n}{2})} & x:odd \\ \frac{x\frac{n}{2} + x\frac{n}{2} + 1}{2} & x:even \end{cases}$$

MODE

Most frequent value in a data set

HARMONIC MEAN
For all cases if
$$x_i = 0$$
, then $x_i = 1$.
$$\frac{1}{\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}}$$

GEOMETRIC MEAN 1

Since the geometric mean of data sets containing negative numbers is not trivial, different geometric means have been proposed. For all cases if $x_i = 0$, then $x_i = 1$. $\exp(mean(\log_2 |x|))$

GEOMETRIC MEAN 2

 $\exp(mean(\frac{x}{|x|}\log_2|x|))$

GEOMETRIC MEAN 3

 $\exp(mean(\log_2(x + min(x) + 1)))$

MEDIAN ABSOLUTE DEVIATION (MAD)

median(|x - median(x)|) * 1.4826

MAXIMUM ABSOLUTE DEVIATION FROM THE MEDIAN

max(|x - median(x)|)

MAXIMUM ABSOLUTE DEVIATION FROM THE MEAN

max(|x - mean(x)|)

ROOT MEAN SQUARE (RMS)

$\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}$

MINIMUM Lowest value in a data set

MAXIMUM Highest value in a data set

QUARTILES

 $x_{25\%}, x_{75\%},$

INTERQUARTILE RANGE (IQR)

 $abs(x_{75\%} - x_{25\%})$

LOWER-NOTCH

 $x_{25\%} - 1.5 * IQR$

TRIMMED MEAN

If d = 50%, then the trimmed mean is also

called interquartile mean

 $mean(y) \mid y \in [x_{\frac{d}{2}\%}, x_{100-\frac{d}{2}\%}], d = \% \ to \ discard$

TRIMEAN

 $\frac{x_{25\%} + 2 * x_{50\%} + x_{75\%}}{4}$

MEAN ABSOLUTE DEVIATION FROM THE MEDIAN

mean(|x - median(x)|)

MEDIAN ABSOLUTE DEVIATION FROM THE MEDIAN

median(|x - median(x)|)

MEAN ABSOLUTE DEVIATION FROM THE MEAN

mean(|x - mean(x)|)

MEDIAN ABSOLUTE DEVIATION FROM THE MEAN

median(|x - mean(x)|)

UPPER-NOTCH

 $x_{75\%} + 1.5 * IQR$

RANGE

abs(max(x) - min(x))

Statistics describing the shape of the distribution of data points

VARIANCE

$$\frac{1}{n}\sum_{i=1}^{n}(x_i - mean(x))^2$$

SKEWNESS

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(x_i - mean(x))^3}{SD(x)^3}$$

 $x_{10\%}, x_{30\%}, x_{30\%}, x_{40\%}, x_{50\%}, x_{60\%}, x_{70\%}, x_{80\%}, x_{90\%}$

STANDARD DEVIATION (SD)

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i - mean(x))^2}$$

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-mean(x))^{4}}{SD(x)^{4}}-3$$

Statistics describing the diversity of the data points

ENERGY

$$\sum_{i=1}^{n} p(x_i)^2$$

 $\sum_{i=1}^{n} x_i^2$

$$\sum_{i=1}^{n} -p(x_i)\log_2 p(x_i)$$

KURTOSIS

$$\frac{1}{n}\sum_{i=1}^{n}($$

DECILES

Gray level co-occurrence matrices (GLCM)

Many statistics calculated from GLCMs are a function (f) of the elements in the GLCM (glcm) matrix multiplied by a weighing matrix (w). Using mathematical notation, we can write:

w*f(glcm)

These modified values are then summed to receive the statistic. By choosing different weights and functions, we can emphasize specific elements of the *glcm* over others, depending on what attribute of heterogeneity we wish to highlight. Basic concepts which help to understand the information stored in the *glcm* are:

- *glcm[i,j]*: the probability of a value *j* occurring next to value *i* at a given angle and direction.
- The main diagonal elements of the glcm store the probabilities of identical voxel occurring next to each other at given distance and direction.
- The further away we move perpendicular to the main diagonal we receive probabilities of voxel occurring next to each other with increasingly different values.
- The upper left quadrant of the matrix holds probabilities of low attenuations voxels occurring next to each other.
- The lower left and the upper right quadrant of the matrix hold probabilities of low attenuations voxels occurring next to high attenuation voxels.
- The lower right quadrant of the matrix holds probabilities of high attenuations voxels occurring next to each other.

For all proceeding glcm statistics let:

g: the number of gray levels the image has been discretized into

 g_l : the values of the discretized gray levels, usually $g_l = [1, g]$

glcm: the gray level co-occurrence matrices matrix, with g number of rows and columns

f: function of the elements in the *glcm*

w: the weighing matrix, with *g* number of rows and columns

i: the i^{th} row

j: the j^{th} row

For all calculated statistics the following functions of the glcm are considered:

f(x) = x: glcm is unchanged

$f(x)=x^2$:	all elements of the glcm are squared
$f(x) = -x \log_2(x)$:	elements of the glcm are replaced by entropy

The following *glcm* matrix is used for calculations:

glcm =	0.14	0.07	0.03	0.01
	0.07	0.08	0.06	0.04
	0.03	0.06	0.06	0.06
	0.01	0.04	0.06	0.18
	L .			-

For all statistics, the *w* matrix is given.

CONTRAST

$$w_{ij} = (i-j)^2 \qquad \qquad w = \begin{bmatrix} 0 & 1 & 4 & 9 \\ 1 & 0 & 1 & 4 \\ 4 & 1 & 0 & 1 \\ 9 & 4 & 1 & 0 \end{bmatrix}$$

Contrast gives higher weights in cases where the neighboring voxels have different values. The higher the *Contrast* of an image, the bigger the differences in voxel values of neighboring voxels.

HOMOGENEITY²

$$w_{ij} = \frac{1}{(i-j)^2 + 1} \qquad \qquad w = \begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{2} & \frac{1}{1} & \frac{1}{2} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{2} & \frac{1}{1} & \frac{1}{2} \\ \frac{1}{10} & \frac{1}{5} & \frac{1}{2} & \frac{1}{1} \\ \frac{1}{10} & \frac{1}{5} & \frac{1}{2} & \frac{1}{1} \end{bmatrix}$$

*Homogeneity*² is the counterpart of *Contrast*. It takes the same weights, but takes the reciprocal value of them. Therefore, higher weights are given to elements close to the main diagonal, which decreases perpendicular to the main diagonal. The higher the *Homoheneity*² of an image, the more similar voxels are next to each other.

HOMOGENEITY² NON-DIAGONAL

$$w_{ij} = \frac{1}{(i-j)^2 + 1} \qquad w = \begin{bmatrix} 0.0 & 0.5 & 0.2 & 0.1 \\ 0.5 & 0.0 & 0.5 & 0.2 \\ 0.2 & 0.5 & 0.0 & 0.5 \\ 0.1 & 0.2 & 0.5 & 0.0 \end{bmatrix}$$

*Homogeneity*² *non-diagonal* is similar to *Homogeneity*² except that the diagonal

elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

DISSIMILARITY

$$w_{ij} = |i - j| \qquad \qquad w = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

Dissimilarity gives higher weights in cases where the neighboring voxels have different values. It differs from *Contrast*, in that the weights grow linearly perpendicular to the main diagonal, as opposed to *Contrast*, where the weights grow as a quadratic function.

HOMOGENEITY

$$w_{ij} = \frac{1}{|i-j|+1} \qquad \qquad w = \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{1} & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{1} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{1} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{vmatrix}$$

Homogeneity is the counterpart of Dissimilarity. It takes the same weights, but takes the reciprocal value of them. Therefore, higher weights are given to elements close to the main diagonal, which decreases perpendicular to the main diagonal. It differs from $Homogeneity^2$, in that the weights decrease linearly perpendicular to the main diagonal, as opposed to Contrast, where the weights decrease as a quadratic function.

HOMOGENEITY NON-DIAGONAL

$$w_{ij} = \frac{1}{|i-j|+1} \qquad w = \begin{bmatrix} 0.00 & 0.50 & 0.33 & 0.25 \\ 0.50 & 0.00 & 0.50 & 0.33 \\ 0.33 & 0.50 & 0.00 & 0.50 \\ 0.25 & 0.33 & 0.50 & 0.00 \end{bmatrix}$$

Homogeneity non-diagonal is similar to Homogeneity except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

DIFFERENCE MOMENTUM NORMALIZED (DMN)

$$w_{ij} = \frac{(i-j)^2}{g^2} \qquad \qquad w = \begin{bmatrix} 0.00 & 0.06 & 0.25 & 0.56 \\ 0.06 & 0.00 & 0.06 & 0.25 \\ 0.25 & 0.06 & 0.00 & 0.06 \\ 0.56 & 0.25 & 0.06 & 0.00 \end{bmatrix}$$

DMN is very similar to *Contrast*, except in that it normalizes the weights by the square of the number of gray levels in the image. This results in different weights, where they increase at a slower rate further away from the main diagonal, as compared to *Contrast*.

INVERSE DIFFERENCE MOMENTUM NORMALIZED (IDMN)

$$w_{ij} = \frac{1}{\frac{(i-j)^2}{g^2} + 1} \qquad w = \begin{bmatrix} 1.00 & 0.94 & 0.80 & 0.64 \\ 0.94 & 1.00 & 0.94 & 0.80 \\ 0.80 & 0.94 & 1.00 & 0.94 \\ 0.64 & 0.80 & 0.94 & 1.00 \end{bmatrix}$$

IDMN is very similar to $Homogeneity^2$, except in that it normalizes the weights by square of the number of gray levels in the image. This results in different weights, where they decline at a slower rate further

away from the main diagonal, as compared to $Homogeneity^2$.

IDMN NON-DIAGONAL

$$w_{ij} = \frac{1}{\frac{(i-j)^2}{g^2} + 1} \qquad w = \begin{bmatrix} 0.00 & 0.94 & 0.80 & 0.64 \\ 0.94 & 0.00 & 0.94 & 0.80 \\ 0.80 & 0.94 & 0.00 & 0.94 \\ 0.64 & 0.80 & 0.94 & 0.00 \end{bmatrix}$$

IDMN non diagonal is very similar to *IDMN* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

DIFFERENCE NORMALIZED (DN)

$$w_{ij} = \frac{|i-j|}{g} \qquad \qquad w = \begin{vmatrix} 0.00 & 0.25 & 0.50 & 0.75 \\ 0.25 & 0.00 & 0.25 & 0.50 \\ 0.50 & 0.25 & 0.00 & 0.25 \\ 0.75 & 0.50 & 0.25 & 0.00 \end{vmatrix}$$

DN is very similar to *Dissimilarity*, except in that it normalizes the weights by the number of gray levels in the image. This results in different weights, where they increase at a slower rate further away from the main diagonal, as compared to *Dissimilarity*.

INVERSE DIFFERENCE NORMALIZED (IDN)

$$w_{ij} = \frac{1}{\frac{|i-j|}{g} + 1} \qquad w = \begin{vmatrix} 1.00 & 0.80 & 0.67 & 0.57 \\ 0.80 & 1.00 & 0.80 & 0.67 \\ 0.67 & 0.80 & 1.00 & 0.80 \\ 0.57 & 0.67 & 0.80 & 1.00 \end{vmatrix}$$

IDN is very similar to *Homogeneity*, except in that it normalizes the weights by the number of gray levels in the image. This results in different weights, where they decline at a slower rate further away from the main diagonal, as compared to *Homogeneity*.

INVERSE DIFFERENCE NORMALIZED (IDN) NON-DIAGONAL

_		0.00	0.80	0.67	0.57
$w_{ij} = \frac{1}{\frac{ i-j }{2} + 1}$	w =	0.80	0.00	0.80	0.67
		0.67	0.80	0.00	0.80
g –		0.57	0.67	0.80	0.00

IDN non-diagonal is very similar to *IDN* except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

AUTOCORRELATION

$$w_{ij} = ij \qquad \qquad w = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{bmatrix}$$

Autocorrelation uses weights which increase in the direction of the lower right quadrant, therefore emphasizing the lower right quadrant of the *glcm*, where we have the probabilities of high intensity value voxels occurring next to similarly high value voxels.

AUTOCORRELATION NON-DIAGONAL

		0	2	3	4
av = ii	au —	2	0	6	8
$w_{ij} = \iota j$	w =	3	6	0	12
		4	8	12	0

Autocorrelation non-diagonal is very similar to *Autocorrelation* except that the diagonal

elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE AUTOCORRELATION

$w_{ij} = \frac{1}{ij}$	w =	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$	12141618	$\frac{1}{31}$ $\frac{1}{61}$ $\frac{1}{91}$ $\frac{1}{12}$	$\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{12}$ $\frac{1}{16}$	
-------------------------	-----	---	----------	---	---	--

Inverse autocorrelation is the counterpart of *autocorrelation*, it uses weights which are the reciprocal value of the *autocorrelation* weights and thus increase in the direction of the upper left quadrant, therefore emphasizing the upper left quadrant of the *glcm*, where we have the probabilities of low intensity value voxels occurring next to similarly low value voxels.

INVERSE AUTOCORRELATION NON-DIAGONAL

		0.00	0.50	0.33	0.25
$w_{ij} = \frac{1}{ij}$		0.50	0.00	0.17	0.12
	w =	0.33	0.17	0.00	0.08
ũ.		0.25	0.12	0.08	0.00

Inverse autocorrelation non-diagonal is very similar to *Inverse autocorrelation* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

GAUSSIAN

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.26 & 0.47 & 0.47 & 0.26\\ 0.47 & 0.86 & 0.86 & 0.47\\ 0.47 & 0.86 & 0.86 & 0.47\\ 0.26 & 0.47 & 0.47 & 0.26 \end{bmatrix}$$

Gaussian uses a 2 dimensional Gaussian distribution as weights. Elements in the middle of the *glcm* which represent voxels with intermediate values next to each other receive the highest weights. The degree of the weights decreases in all directions exponentially.

GAUSSIAN NON-DIAGONAL

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.00 & 0.47 & 0.47 & 0.26\\ 0.47 & 0.00 & 0.86 & 0.47\\ 0.47 & 0.86 & 0.00 & 0.47\\ 0.26 & 0.47 & 0.47 & 0.00 \end{bmatrix}$$

Gaussian non-diagonal is very similar to *Gaussian* except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE GAUSSIAN

$$w_{ij} = \frac{1}{exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)}$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 3.86 & 2.12 & 2.12 & 3.86\\ 2.12 & 1.16 & 1.16 & 2.12\\ 2.12 & 1.16 & 1.16 & 2.12\\ 3.86 & 2.12 & 2.12 & 3.86 \end{bmatrix}$$

Inverse Gaussian uses the reciprocal values of a 2 dimensional Gaussian distribution as weights. Elements in the middle of the *glcm* which represent voxels with intermediate values next to each other receive the smallest weights. The degree of the weights increases in all directions exponentially, therefore elements in the four corners of the *glcm* receive higher weights as compared to the center.

INVERSE GAUSSIAN NON-DIAGONAL

			1		
$w_{ij} = \frac{1}{exp(-i)}$	$\frac{1}{2\sigma^2}(i -$	$(-\mu)^2)$	* exp($-\frac{1}{2\sigma^2}(j$	$(-\mu)^2)$
$\mu = mean($	([1,g]))	$\sigma =$	sd([1	,g])
	0.00	2.12	2.12	3.86	
· · · ·	2.12	0.00	1.16	2.12	
w =	2.12	1.16	0.00	2.12	
	3.86	2.12	2.12	0.00	

Inverse Gaussian non-diagonal is very similar to *Inverse Gaussian* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

GAUSSIAN LEFT POLAR

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 1.00 & 0.74 & 0.30 & 0.07\\ 0.74 & 0.55 & 0.22 & 0.05\\ 0.30 & 0.22 & 0.09 & 0.02\\ 0.07 & 0.05 & 0.02 & 0.00 \end{bmatrix}$$

Gaussian left polar uses a 2 dimensional Gaussian distribution as weights similar to

the simple *Gaussian*, except that the center of the distribution is in the top felt of the w matrix, therefore the probability of low value voxels occurring next to each other is emphasized.

GAUSSIAN LEFT POLAR NON-DIAGONAL

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.00 & 0.74 & 0.30 & 0.07\\ 0.74 & 0.00 & 0.22 & 0.05\\ 0.30 & 0.22 & 0.00 & 0.02\\ 0.07 & 0.05 & 0.02 & 0.00 \end{bmatrix}$$

Gaussian left polar non-diagonal is very similar to the *Gaussian left polar* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE GAUSSIAN LEFT POLAR

au _			1		
$w_{ij} = \frac{1}{exp}$	$\left(-\frac{1}{2\sigma^2}\right)$	$(-\mu)^2)$	* exp(-	$-\frac{1}{2\sigma^2}(j-1)$	$\mu)^2)$
$\mu = mea$	n([1,g]])	$\sigma = s$	sd([1,g])	
	1.00	1.35	3.32	14.88	
<i>au</i> —	1.35	1.82	4.48	20.09	
<i>w</i> =	3.32	4.48	11.02	49.40	
	14.88	20.09	49.40	221.41	

Inverse Gaussian left polar uses the reciprocal values of a 2 dimensional Gaussian distribution as weights. It is very similar to the *Inverse Gaussian*, except that the center of the distribution is in the top left, therefore elements in the top left of the *glcm*

which represent voxels with low values next to each other receive the smallest weights.

INVERSE GAUSSIAN LEFT POLAR NON-DIAGONAL

au			1		
$w_{ij} = \frac{1}{exp(}$	$-\frac{1}{2\sigma^2}(i$	$(-\mu)^{2})$	* exp(-	$\frac{1}{2\sigma^2}(j -$	$\mu)^2)$
$\mu = mea$	n([1,g])	$\sigma = s$	sd([1,g]])
	0.00	1.35	3.32	14.88	
au —	1.35	0.00	4.48	20.09	
<i>w</i> =	3.32	4.48	0.00	49.40	
	14.88	20.09	49.40	0.00	

1

Inverse Gaussian left polar non-diagonal is very similar to *Inverse Gaussian left polar* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

GAUSSIAN LEFT FOCUS

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.86 & 0.86 & 0.47 & 0.14 \\ 0.86 & 0.86 & 0.47 & 0.14 \\ 0.47 & 0.47 & 0.26 & 0.08 \\ 0.14 & 0.14 & 0.08 & 0.02 \end{bmatrix}$$

Gaussian left focus uses a 2 dimensional Gaussian distribution as weights similar to the simple *Gaussian*, except that the center of the distribution is in the middle of the upper left quadrant of the *w* matrix, therefore the probability of low-intermediate value voxels occurring next to each other is emphasized.

GAUSSIAN LEFT FOCUS NON-DIAGONAL

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$
$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$
$$w = \begin{bmatrix} 0.00 & 0.86 & 0.47 & 0.14\\ 0.86 & 0.00 & 0.47 & 0.14\\ 0.47 & 0.47 & 0.00 & 0.08\\ 0.14 & 0.14 & 0.08 & 0.00 \end{bmatrix}$$

Gaussian left focus non-diagonal is very similar to the *Gaussian left focus* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE GAUSSIAN LEFT FOCUS

			1		
$w_{ij} = \frac{1}{exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)}$					
$\mu=mean$	([1, g])	$\sigma =$	sd([1,	g])
	1.16	1.16	2.12	7.03	1
	1.16	1.16	2.12	7.03	
w =	2.12	2.12	3.86	12.81	
	7.03	7.03	12.81	42.52	

Inverse Gaussian left focus uses the reciprocal values of a 2 dimensional Gaussian distribution as weights. It is very similar to the *Inverse Gaussian*, except that the center of the distribution is in the middle of the upper left quadrant of the *w* matrix, therefore elements in the upper left of the *glcm* which represent voxels with low-intermediate values next to each other receive the smallest weights.

INVERSE GAUSSIAN LEFT FOCUS NON-DIAGONAL

$$w_{ij} = \frac{1}{exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)}$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.00 & 1.16 & 2.12 & 7.03\\ 1.16 & 0.00 & 2.12 & 7.03\\ 2.12 & 2.12 & 0.00 & 12.81\\ 7.03 & 7.03 & 12.81 & 0.00 \end{bmatrix}$$

Inverse Gaussian left focus non-diagonal is very similar to *Inverse Gaussian left focus* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

GAUSSIAN RIGHT FOCUS

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.02 & 0.08 & 0.14 & 0.14 \\ 0.08 & 0.26 & 0.47 & 0.47 \\ 0.14 & 0.47 & 0.86 & 0.86 \\ 0.14 & 0.47 & 0.86 & 0.86 \end{bmatrix}$$

Gaussian right focus uses a 2 dimensional Gaussian distribution as weights similar to the simple *Gaussian*, except that the center of the distribution is in the middle of the lower right quadrant of the *w* matrix, therefore the probability of intermediate-high value voxels occurring next to each other is emphasized.

GAUSSIAN RIGHT FOCUS NON-DIAGONAL

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$
$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$
$$w = \begin{bmatrix} 0.00 & 0.08 & 0.14 & 0.14 \\ 0.08 & 0.00 & 0.47 & 0.47 \\ 0.14 & 0.47 & 0.00 & 0.86 \\ 0.14 & 0.47 & 0.86 & 0.00 \end{bmatrix}$$

Gaussian right focus non-diagonal is very similar to the Gaussian right focus except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE GAUSSIAN RIGHT FOCUS

		1			
$w_{ij} = \frac{1}{exp(-)}$	$-\frac{1}{2\sigma^2}(i -$	$(\mu)^{2}) *$	exp(-	$-\frac{1}{2\sigma^2}(j$	$(-\mu)^2)$
$\mu=mean$	([1, g])		$\sigma = s$	d([1,	g])
	42.52	12.81	7.03	7.03	
	12.81	3.86	2.12	2.12	
w =	7.03	2.12	1.16	1.16	
	7.03	2.12	1.16	1.16	

Inverse Gaussian right focus uses the reciprocal values of a 2 dimensional Gaussian distribution as weights. It is very similar to the *Inverse Gaussian*, except that the center of the distribution is in the middle of the lower right quadrant of the *w* matrix, therefore elements in the lower right of the *glcm* which represent voxels with intermediate-high values next to each other receive the smallest weights.

INVERSE GAUSSIAN RIGHT FOCUS NON-DIAGONAL

$$w_{ij} = \frac{1}{exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)}$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.00 & 12.81 & 7.03 & 7.03\\ 12.81 & 0.00 & 2.12 & 2.12\\ 7.03 & 2.12 & 0.00 & 1.16\\ 7.03 & 2.12 & 1.16 & 0.00 \end{bmatrix}$$

Inverse Gaussian right focus non-diagonal is very similar to *Inverse Gaussian right focus* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

GAUSSIAN RIGHT POLAR

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$

$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$

$$w = \begin{bmatrix} 0.00 & 0.02 & 0.05 & 0.07\\ 0.02 & 0.09 & 0.22 & 0.30\\ 0.05 & 0.22 & 0.55 & 0.74\\ 0.07 & 0.30 & 0.74 & 1.00 \end{bmatrix}$$

Gaussian right polar uses a 2 dimensional Gaussian distribution as weights similar to the simple *Gaussian*, except that the center of the distribution is in the lower right of the *w* matrix, therefore the probability of high value voxels occurring next to each other is emphasized.

GAUSSIAN RIGHT POLAR NON-DIAGONAL

$$w_{ij} = exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)$$
$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$
$$w = \begin{bmatrix} 0.00 & 0.02 & 0.05 & 0.07\\ 0.02 & 0.00 & 0.22 & 0.30\\ 0.05 & 0.22 & 0.00 & 0.74\\ 0.07 & 0.30 & 0.74 & 0.00 \end{bmatrix}$$

Gaussian right polar non-diagonal is very similar to the Gaussian right polar except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE GAUSSIAN RIGHT POLAR

		_	L		
$w_{ij} = \frac{1}{exp}$	$\left(-\frac{1}{2\sigma^2}\left(i-\frac{1}{2\sigma^2}\right)\right)$	$(-\mu)^2)$ *	exp(-	$\frac{1}{2\sigma^2}(j -$	$(\mu)^2)$
$\mu = mea$	n([1,g]))	$\sigma = sc$	d([1,g])
	221.41	49.40	20.09	14.88	
	49.40	11.02	4.48	3.32	
w =	20.09	4.48	1.82	1.35	
	14.88	3.32	1.35	1.00	

Inverse Gaussian right polar uses the reciprocal values of a 2 dimensional Gaussian distribution as weights. It is very similar to the *Inverse Gaussian*, except that the center of the distribution is in the lower right of the *w* matrix, therefore elements in the lower right of the *glcm* which represent voxels with high values next to each other receive the smallest weights.

INVERSE GAUSSIAN RIGHT POLAR NON-DIAGONAL

$$w_{ij} = \frac{1}{exp(-\frac{1}{2\sigma^2}(i-\mu)^2) * exp(-\frac{1}{2\sigma^2}(j-\mu)^2)}$$
$$\mu = mean([1,g]) \qquad \sigma = sd([1,g])$$
$$w = \begin{bmatrix} 0.00 & 49.40 & 20.09 & 14.88\\ 49.40 & 0.00 & 4.48 & 3.32\\ 20.09 & 4.48 & 0.00 & 1.35\\ 14.88 & 3.32 & 1.35 & 0.00 \end{bmatrix}$$

Inverse Gaussian right polar non-diagonal is very similar to *Inverse Gaussian right polar* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

GAUSSIAN 2 FOCUS

$$\begin{split} w_{ij} &= \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-\mu_1)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-\mu_1)^2) + \\ &\quad \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-\mu_2)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-\mu_2)^2) \\ \mu_1 &= mean([1,ceil(g/2)]) \ \mu_2 &= mean([floor(g/2),g]) \\ &\quad \sigma &= sd([1,g]) \\ w &= \begin{bmatrix} 0.88 & 0.94 & 0.61 & 0.28 \\ 0.94 & 1.12 & 0.94 & 0.61 \\ 0.61 & 0.94 & 1.12 & 0.94 \\ 0.28 & 0.61 & 0.94 & 0.88 \end{bmatrix} \end{split}$$

Gaussian 2 focus uses two Gaussian functions. One is centered in the middle of the upper left quadrant, while the other is centered at the lower right quadrant. The resulting w is the sum of the two Gaussians. Elements in the top left and lower right (low value voxels with low value neighbors and high value voxels with high value neighbors) are emphasized over voxels where low value voxels occur next to high value ones

GAUSSIAN 2 FOCUS NON-DIAGONAL

$$w_{ij} = \sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(i-\mu_1)^2) * \sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(j-\mu_1)^2) + \sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(i-\mu_2)^2) * \sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(j-\mu_2)^2)$$

$$\mu_1 = mean([1, ceil(g/2)]) \quad \mu_2 = mean([floor(g/2), g])$$

$$\sigma = sd([1, g])$$

$$w = \begin{bmatrix} 0.00 & 0.94 & 0.61 & 0.28\\ 0.94 & 0.00 & 0.94 & 0.61\\ 0.61 & 0.94 & 0.00 & 0.94\\ 0.28 & 0.61 & 0.94 & 0.00 \end{bmatrix}$$

Gaussian 2 focus non-diagonal is very similar to *Gaussian 2 focus* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE GAUSSIAN 2 FOCUS

$$\begin{split} w_{ij} &= \frac{1}{\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(i-\mu_1)^2)*\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(j-\mu_1)^2)}} + \\ &\frac{1}{\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(i-\mu_2)^2)*\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(j-\mu_2)^2)}} \\ \mu_1 &= mean([1,ceil(g/2)]) \ \mu_2 &= mean([floor(g/2),g]) \\ &\sigma &= sd([1,g]) \\ w &= \begin{bmatrix} 43.68 & 13.97 & 9.15 & 14.06 \\ 13.97 & 5.02 & 4.23 & 9.15 \\ 9.15 & 4.23 & 5.02 & 13.97 \\ 14.06 & 9.15 & 13.97 & 43.68 \end{bmatrix} \end{split}$$

Inverse Gaussian 2 focus uses the reciprocal value of two Gaussian functions. One is centered in the middle of the upper left quadrant, while the other is centered at the lower right quadrant. The resulting w is the sum of the two Gaussians. Elements on the perimeter of the matrix are emphasized over values in the middle of the matrix in a way, that elements closer to the main diagonal receive higher weights.

INVERSE GAUSSIAN 2 FOCUS NON-DIAGONAL

$$\begin{split} w_{ij} &= \frac{1}{\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(i-\mu_1)^2)*\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(j-\mu_1)^2)} + \\ &\frac{1}{\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(i-\mu_2)^2)*\sqrt{2\pi}\sigma exp(-\frac{1}{2\sigma^2}(j-\mu_2)^2)} \end{split}$$

$$\mu_1 = mean([1, ceil(g/2)]) \ \mu_2 = mean([floor(g/2), g])$$
$$\sigma = sd([1, g])$$
$$w = \begin{bmatrix} 0.00 & 13.97 & 9.15 & 14.06\\ 13.97 & 0.00 & 4.23 & 9.15\\ 9.15 & 4.23 & 0.00 & 13.97\\ 14.06 & 9.15 & 13.97 & 0.00 \end{bmatrix}$$

Inverse Gaussian 2 focus non-diagonal is very similar to *Inverse Gaussian 2 focus* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

GAUSSIAN 2 POLAR

$$\begin{split} w_{ij} &= \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-1)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-1)^2) + \\ &\sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-g)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-g)^2) \\ &\sigma &= sd([1,g]) \\ w &= \begin{bmatrix} 1.00 & 0.76 & 0.35 & 0.13 \\ 0.76 & 0.64 & 0.45 & 0.35 \\ 0.35 & 0.45 & 0.64 & 0.76 \\ 0.13 & 0.35 & 0.76 & 1.00 \end{bmatrix} \end{split}$$

Inverse Gaussian 2 polar uses two Gaussian functions. One is centered in the top left, the other is centered in the bottom right. The resulting *w* is the sum of the two Gaussians. Elements in the top left and lower right (low value voxels with low value neighbors and high value voxels with high value neighbors) are emphasized over voxels where low value voxels occur next to high value ones.

GAUSSIAN 2 POLAR NON-DIAGONAL

$$\begin{split} w_{ij} &= \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-1)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-1)^2) + \\ &\sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-g)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-g)^2) \\ &\sigma &= sd([1,g]) \\ w &= \begin{bmatrix} 0.00 & 0.76 & 0.35 & 0.13 \\ 0.76 & 0.00 & 0.45 & 0.35 \\ 0.35 & 0.45 & 0.00 & 0.76 \\ 0.13 & 0.35 & 0.76 & 0.00 \end{bmatrix} \end{split}$$

Inverse Gaussian 2 polar non-diagonal is very similar to *Inverse Gaussian 2 polar* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE GAUSSIAN 2 POLAR

$$\begin{split} w_{ij} &= \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-1)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-1)^2) + \\ &\sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-g)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-g)^2) \\ &\sigma &= sd([1,g]) \\ w &= \begin{bmatrix} 222.41 & 50.75 & 23.41 & 29.76 \\ 50.75 & 12.85 & 8.96 & 23.41 \\ 23.41 & 8.96 & 12.85 & 50.75 \\ 29.76 & 23.41 & 50.75 & 222.41 \end{bmatrix} \end{split}$$

Inverse Gaussian 2 polar uses the reciprocal value of two Gaussian functions. One is centered in the top left, the other is centered in the bottom right. The resulting w is the sum of the two Gaussians. Elements on the perimeter of the matrix are emphasized over values in the middle of the matrix in a way, that elements closer to the main diagonal receive higher weights.

INVERSE GAUSSIAN 2 POLAR NON-DIAGONAL

$$\begin{split} w_{ij} &= \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-1)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-1)^2) + \\ &\sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(i-g)^2) * \sqrt{2\pi} \sigma exp(-\frac{1}{2\sigma^2}(j-g)^2) \\ &\sigma &= sd([1,g]) \\ w &= \begin{bmatrix} 0.00 & 50.75 & 23.41 & 29.76 \\ 50.75 & 0.00 & 8.96 & 23.41 \\ 23.41 & 8.96 & 0.00 & 50.75 \\ 29.76 & 23.41 & 50.75 & 0.00 \end{bmatrix} \end{split}$$

Inverse Gaussian 2 polar non-diagonal is very similar to *Inverse Gaussian 2 polar* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

CLUSTER PROMINENCE

	$w_{ij} = (i$	$+j-\mu_{s}$	$r_x(i) - \mu_y(i)$	$(j))^4$	
$\mu_x(i) = mea$	$n(glcm_i$	$* g_l) \mu$	$u_y(j) = m$	ean(glcm)	$(j * g_l)$
	F 10.38	57.61	198.81	467.53	
<i>au</i> —	57.61	190.47	494.23	990.49	
w =	198.81	494.23	1066.76	1909.00	
	467.53	990.49	1909.00	3172.51	

Cluster prominence multiplies the elements of the glcm with a w matrix where the elements are equal to the values of the two compared voxels, minus the average value we expect next to a i value voxel and the average value we expect to a j value voxel. This difference is then taken to the fourth power.

CLUSTER PROMINENCE NON-DIAGONAL

 $w_{ij} = (i + j - \mu_x(i) - \mu_y(j))^4$ $\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$ $w = \begin{bmatrix} 0.00 & 57.61 & 198.81 & 467.53\\ 57.61 & 0.00 & 494.23 & 990.49\\ 198.81 & 494.23 & 0.00 & 1909.00\\ 467.53 & 990.49 & 1909.00 & 0.00 \end{bmatrix}$

Cluster prominence non-diagonal is very similar to *Cluster prominence* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE CLUSTER PROMINENCE

 $w_{ij} = \frac{1}{(i+j+\mu_x(i)+\mu_y(i))^4}$ $\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$ $w = \begin{bmatrix} 0.10 & 0.02 & 0.01 & 0.00\\ 0.02 & 0.01 & 0.00 & 0.00\\ 0.01 & 0.00 & 0.00 & 0.00\\ 0.00 & 0.00 & 0.00 \end{bmatrix}$ Inverse cluster prominence takes the reciprocal value of the weights of Cluster

prominence.

INVERSE CLUSTER PROMINENCE NON-DIAGONAL

$$w_{ij} = \frac{1}{(i+j+\mu_x(i)+\mu_y(i))^4}$$
$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$
$$w = \begin{bmatrix} 0.00 & 0.02 & 0.01 & 0.00\\ 0.02 & 0.00 & 0.00 & 0.00\\ 0.01 & 0.00 & 0.00 & 0.00\\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

Inverse cluster prominence non-diagonal is very similar to *Inverse cluster prominence* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

CLUSTER SHADE

$$w_{ij} = (i + j - \mu_x(i) - \mu_y(j))^3$$

$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$

$$w = \begin{bmatrix} 5.78 & 20.91 & 52.95 & 100.54\\ 20.91 & 51.27 & 104.82 & 176.56\\ 52.95 & 104.82 & 186.66 & 288.80\\ 100.54 & 176.56 & 288.80 & 422.72 \end{bmatrix}$$

Cluster shade multiplies the elements of the *glcm* with a *w* matrix where the elements are equal to the values of the two compared voxels, minus the average value we expect next to a *i* value voxel and the average value we expect to a *j* value voxel. This difference is then taken to the third power.

CLUSTER SHADE NON-DIAGONAL

 $w_{ij} = (i + j - \mu_x(i) - \mu_y(j))^3$ $\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$ $w = \begin{bmatrix} 0.00 & 20.91 & 52.95 & 100.54\\ 20.91 & 0.00 & 104.82 & 176.56\\ 52.95 & 104.82 & 0.00 & 288.80\\ 100.54 & 176.56 & 288.80 & 0.00 \end{bmatrix}$

Cluster shade non-diagonal is very similar to Cluster shade except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE CLUSTER SHADE

$$w_{ij} = \frac{1}{(i+j+\mu_x(i)+\mu_y(i))^3}$$

$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$

$$w = \begin{bmatrix} 0.17 & 0.05 & 0.02 & 0.01\\ 0.05 & 0.02 & 0.01 & 0.01\\ 0.02 & 0.01 & 0.01 & 0.00 \end{bmatrix}$$

 $0.01 \quad 0.01 \quad 0.00 \quad 0.00$

Inverse cluster shade takes the reciprocal value of the weights of *Cluster shade*.

INVERSE CLUSTER SHADE NON-DIAGONAL

$$w_{ij} = \frac{1}{(i+j+\mu_x(i)+\mu_y(i))^3}$$
$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$
$$w = \begin{bmatrix} 0.00 & 0.05 & 0.02 & 0.01\\ 0.05 & 0.00 & 0.01 & 0.01\\ 0.02 & 0.01 & 0.00 & 0.00\\ 0.01 & 0.01 & 0.00 & 0.00 \end{bmatrix}$$

Inverse cluster shade non-diagonal is very similar to *Inverse cluster shade* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

CLUSTER TENDENCY

$$w_{ij} = (i + j - \mu_x(i) - \mu_y(j))^2$$

$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$

$$w = \begin{bmatrix} 3.22 & 7.59 & 14.10 & 21.62 \\ 7.59 & 13.80 & 22.23 & 31.47 \\ 14.10 & 22.23 & 32.66 & 43.69 \\ 21.62 & 31.47 & 43.69 & 56.33 \end{bmatrix}$$

Cluster tendency multiplies the elements of the *glcm* with a *w* matrix where the elements are equal to the values of the two compared voxels, minus the average value we expect next to a *i* value voxel and the average value we expect to a *j* value voxel. This difference is then taken to the second power.

CLUSTER TENDENCY NON-DIAGONAL

$$w_{ij} = (i + j - \mu_x(i) - \mu_y(j))^2$$

$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$

$$w = \begin{bmatrix} 0.00 & 7.59 & 14.10 & 21.62 \\ 7.59 & 0.00 & 22.23 & 31.47 \\ 14.10 & 22.23 & 0.00 & 43.69 \\ 21.62 & 31.47 & 43.69 & 0.00 \end{bmatrix}$$

Cluster tendency non-diagonal is very similar to *Cluster tendency* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE CLUSTER TENDENCY

 $w_{ij} = \frac{1}{(i+j+\mu_x(i)+\mu_y(i))^2}$ $\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$ $w = \begin{bmatrix} 0.31 & 0.13 & 0.07 & 0.05\\ 0.13 & 0.07 & 0.04 & 0.03\\ 0.07 & 0.04 & 0.03 & 0.02\\ 0.05 & 0.03 & 0.02 & 0.02 \end{bmatrix}$

Inverse cluster tendency takes the reciprocal

value of the weights of Cluster tendency.

INVERSE CLUSTER TENDENCY NON-DIAGONAL

$$w_{ij} = \frac{1}{(i+j+\mu_x(i)+\mu_y(i))^2}$$

$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$

$$w = \begin{bmatrix} 0.00 & 0.13 & 0.07 & 0.05\\ 0.13 & 0.00 & 0.04 & 0.03\\ 0.07 & 0.04 & 0.00 & 0.02\\ 0.05 & 0.03 & 0.02 & 0.00 \end{bmatrix}$$

Inverse cluster tendency non-diagonal is very similar to Inverse cluster tendency except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

CLUSTER DIFFERENCE

$$w_{ij} = |i + j - \mu_x(i) - \mu_y(j)|$$

$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$

$$w = \begin{bmatrix} 1.80 & 2.75 & 3.75 & 4.65\\ 2.75 & 3.71 & 4.71 & 5.61\\ 3.75 & 4.71 & 5.71 & 6.61\\ 4.65 & 5.61 & 6.61 & 7.51 \end{bmatrix}$$

Cluster difference multiplies the elements of the *glcm* with a *w* matrix where the elements are equal to the values of the two compared voxels, minus the average value we expect next to a *i* value voxel and the average value we expect to a *j* value voxel.

CLUSTER DIFFERENCE NON-DIAGONAL

 $w_{ij} = |i + j - \mu_x(i) - \mu_y(j)|$ $\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$ $w = \begin{bmatrix} 0.00 & 2.75 & 3.75 & 4.65\\ 2.75 & 0.00 & 4.71 & 5.61\\ 3.75 & 4.71 & 0.00 & 6.61\\ 4.65 & 5.61 & 6.61 & 0.00 \end{bmatrix}$

Cluster difference non-diagonal is very similar to *Cluster difference* except that the diagonal elements of *w* are 0, therefore same value voxel pairs are not considered in the statistic.

INVERSE CLUSTER DIFFERENCE

 $w_{ij} = \frac{1}{|i+j+\mu_x(i)+\mu_y(i)|}$ $\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$ $w = \begin{bmatrix} 0.56 & 0.36 & 0.27 & 0.22 \\ 0.36 & 0.27 & 0.21 & 0.18 \\ 0.27 & 0.21 & 0.17 & 0.15 \\ 0.22 & 0.18 & 0.15 & 0.13 \end{bmatrix}$

Inverse cluster difference takes the reciprocal value of the weights of *Cluster difference*.

INVERSE CLUSTER DIFFERENCE NON-DIAGONAL

$$w_{ij} = \frac{1}{|i+j+\mu_x(i)+\mu_y(i)|}$$
$$\mu_x(i) = mean(glcm_i * g_l) \quad \mu_y(j) = mean(glcm_j * g_l)$$
$$w = \begin{bmatrix} 0.00 & 0.36 & 0.27 & 0.22\\ 0.36 & 0.00 & 0.21 & 0.18\\ 0.27 & 0.21 & 0.00 & 0.15\\ 0.22 & 0.18 & 0.15 & 0.00 \end{bmatrix}$$

Inverse cluster difference non-diagonal is very similar to Inverse cluster difference except that the diagonal elements of w are 0, therefore same value voxel pairs are not considered in the statistic.

MEAN

$$w_{ij} = g_l$$

$$w = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{bmatrix}$$

Mean is a measure of the average f(glcm) values. Since the elements of the glcm are symmetrical, therefore calculations based on rows (*i*) are equivalent if calculations were done on columns (*j*).

VARIANCE

$$w_{ij} = (i - \mu)^2 \qquad \mu = mean(glcm * g_l)$$
$$w = \begin{bmatrix} 2.37 & 2.37 & 2.37 & 2.37 \\ 0.29 & 0.29 & 0.29 & 0.29 \\ 0.21 & 0.21 & 0.21 & 0.21 \\ 2.13 & 2.13 & 2.13 & 2.13 \end{bmatrix}$$

Variance is a measure of the variation of the elements in the *glcm*. Since the elements of the *glcm* are symmetrical, therefore calculations based on rows (i) are equivalent if calculations were done on columns (j).

CORRELATION $w_{ij} = \frac{(i-\mu)*(j-\mu)}{\sigma^2}$ $\mu = mean(glcm*g_l) \quad \sigma = sum(glcm*(g_l-\mu)^2)$

	1.79	0.63	-0.53	-1.69
	0.63	0.22	-0.19	-0.59
w =	-0.53	-0.19	0.16	0.51
	-1.69	-0.59	0.51	1.60

Correlation is a measure of the linear dependency of neighboring voxels. As opposed to previous cases, here the weight matrix is a function of f(glcm), therefore for each statistical measure we have a separate weight matrix.

Previous statistics used different weights for emphasizing specific elements of the *glcm*. The following statistics aggregate the *glcm* values based on some equation to prioritize given *glcm* elements over others.

Sum

Sum statistics groups the *glcm* elements based on which row and column they are in. Values where i+j is the same are combined together. This results in aggregating together elements of the *glcm* which are on one-line perpendicular to the main diagonal. This is indicated in the mask matrix (*m*), where same value elements will be grouped together in the *glcm* to calculate the statistic. Each of the statistics takes a function (*f*) of these combined values and multiplies these values with given weights (*we*).

$$p_{x+y}(k) = \sum_{i=1}^{g} \sum_{j=1}^{g} glcm_{ij} \quad | i+j=k; k \in [2, 2g] \qquad \qquad m = \begin{bmatrix} 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

SUM AVERAGE

$$we = k \qquad f(x) = x$$
$$\sum_{k=2}^{2g} k p_{x+y}(k)$$

SUM ENERGY

$$we = k \qquad f(x) = x^2$$
$$\sum_{k=2}^{2g} k p_{x+y}(k)^2$$

SUM ENTROPY

$$we = -p_{x+y}(k) \qquad f(x) = \log_2 x$$
$$\sum_{k=2}^{2g} -p_{x+y}(k) \log_2(p_{x+y}(k))$$

SUM VARIANCE

$$we = (k - SE)^2$$
; $SE = Sum \, entropy$
 $f(x) = x$
 $\sum_{k=2}^{2g} (k - SE)^2 p_{x+y}(k)$

Difference

Difference statistics groups the *glcm* elements based on which row and column they are in. Values where |i-j| is the same are combined together. This results in aggregating together elements of the *glcm* which are parallel to the main diagonal. This is indicated in the mask matrix (*m*), where same value elements will be grouped together in the *glcm* to calculate the statistic. Each of the statistics takes a function (*f*) of these combined values and multiplies these values with given weights (*we*).

$$p_{x-y}(k) = \sum_{i=1}^{g} \sum_{j=1}^{g} glcm_{ij} \quad | i-j=k; k \in [0, g-1] \qquad \qquad m = \begin{bmatrix} 0 & 1 & 2 & 3\\ 1 & 0 & 1 & 2\\ 2 & 1 & 0 & 1\\ 3 & 2 & 1 & 0 \end{bmatrix}$$

DIFFERENCE AVERAGE

$$we = k \qquad f(x) = x$$
$$\sum_{k=0}^{g-1} k p_{x-y}(k)$$

DIFFERENCE ENERGY

$$we = k$$

$$\sum_{k=0}^{g-1} kp_{x-y}(k)^2$$

$$f(x) = x^2$$

DIFFERENCE ENTROPY

$$we = -p_{x-y}(k) \qquad f(x) = \log_2 x$$
$$\sum_{k=0}^{g-1} -p_{x-y}(k) \log_2(p_{x-y}(k))$$

DIFFERENCE VARIANCE

$$we = (k - DE)^2$$
; $DE = Difference entropy$ $f(x) = x$

$$\sum_{k=0}^{g-1} (k - DE)^2 p_{x-y}(k)$$

Inverse sum

Inverse statistics groups the *glcm* elements based on which row and column they are in. Values where i+j is the same are combined together. This results in aggregating together elements of the *glcm* which are on one-line perpendicular to the main diagonal. This is indicated in the mask matrix (*m*), where same value elements will be grouped together in the *glcm* to calculate the statistic. Each of the statistics takes a function (*f*) of these combined values and multiplies these values with given weights (*we*). Inverse sum is similar to sum statistics, except that it uses the reciprocal values of the weights, therefore the opposite elements are emphasized as compared to sum statistics. Entropy does not use weights proportional to the row or column value, it would be equal to sum entropy, therefore it is undefined.

$$p_{x+y}(k) = \sum_{i=1}^{g} \sum_{j=1}^{g} glcm_{ij} \quad |i+j=k; k \in [2, 2g] \qquad \qquad m = \begin{bmatrix} 3 & 4 & 5 & 6\\ 4 & 5 & 6 & 7\\ 5 & 6 & 7 & 8 \end{bmatrix}$$

INVERSE SUM AVERAGE

$$we = \frac{1}{k} \qquad \qquad f(x) = x$$
$$\sum_{k=2}^{2g} \frac{p_{x+y}(k)}{k}$$

INVERSE SUM ENERGY

$$we = \frac{1}{k}$$
 $\sum_{k=2}^{2g} \frac{p_{x+y}(k)^2}{k}$
 $f(x) = x^2$

INVERSE SUM VARIANCE

$$we = \frac{1}{(k - SE)^2}; SE = Sum \, entropy \qquad \qquad f(x) = x$$
$$\sum_{k=2}^{2g} \frac{p_{x+y}(k)}{(k - SE)^2}$$

Inverse difference

Inverse difference statistics groups the *glcm* elements based on which row and column they are in. Values where |i-j| is the same are combined together. This results in aggregating together elements of the *glcm* which are parallel to the main diagonal. This is indicated in the mask matrix (*m*), where same value elements will be grouped together in the *glcm* to calculate the statistic. Each of the statistics takes a function (*f*) of these combined values and multiplies these values with given weights (*we*). Inverse difference is similar to difference statistics, except that it uses the reciprocal values of the weights, therefore the opposite elements are emphasized as compared to sum statistics. Since division by 0 is undefined, main diagonal elements are considered to be 0. Entropy does not use weights proportional to the row or column value, it would be equal to difference entropy, therefore it is undefined.

$$p_{x-y}(k) = \sum_{i=1}^{g} \sum_{j=1}^{g} glcm_{ij} \quad | i-j=k; k \in [0, g-1] \qquad \qquad m = \begin{bmatrix} 0 & 1 & 2 & 3\\ 1 & 0 & 1 & 2\\ 2 & 1 & 0 & 1\\ 3 & 2 & 1 & 0 \end{bmatrix}$$

INVERSE DIFFERENCE AVERAGE

$$we = \frac{1}{k} \qquad \qquad f(x) = x$$
$$\sum_{k=0}^{g-1} \frac{p_{x-y}(k)}{k}$$

INVERSE DIFFERENCE ENERGY

$$we = \frac{1}{k}$$
 $f(x) = x^2$
 $\sum_{k=0}^{g-1} \frac{p_{x-y}(k)^2}{k}$

INVERSE DIFFERENCE VARIANCE

$$we = \frac{1}{(k - DE)^2}$$
; $DE = Difference entropy$
 $f(x) = x$
 $\sum_{k=0}^{g-1} \frac{p_{x-y}(k)}{(k - DE)^2}$

Further glcm functions

The following metrics cannot be grouped into either of the previous cases. These metrics are standalone functions of the elements of the *glcm*.

INFORMATION MEASURE OF CORRELATION 1 (IMC1)

H = entropy(glcm) $HX = entropy(p_x)$ $HY = entropy(p_y)$

$$HXY1 = \sum_{i=1}^{g} \sum_{j=1}^{g} -glcm_{ij}\log_2(p_x(i)p_y(j))$$
$$p_x = (row \ marginal \ distribution)$$
$$p_y = (column \ marginal \ distribution)$$

$$IMC1 = \frac{H - HXY1}{max(HX, HY)}$$

INFORMATION MEASURE OF CORRELATION 2 (IMC2)

H = entropy(glcm) $HX = entropy(p_x)$ $HY = entropy(p_y)$

$$\begin{split} HXY2 &= \sum_{i=1}^{g} \sum_{j=1}^{g} -p_x(i) p_y(j) \log_2(p_x(i) p_y(j)) \\ p_x &= (row \ marginal \ distribution) \\ p_y &= (column \ marginal \ distribution) \end{split}$$

$$IMC2 = \sqrt{1 - e^{-2(HXY2 - H)}}$$

ENERGY

$$\sum_{i=1}^{g} \sum_{j=1}^{g} glcm_{ij}^2$$

ENTROPY

$$\sum_{i=1}^{g} \sum_{j=1}^{g} -glcm_{ij}\log_2 glcm_{ij}$$

First-order statistics of GLCM

All GLCMs can be seen as an array of probability values, and therefore first-order statistics can be used to describe different aspects of the distribution.

Gray level run length matrix (GLRLM)

Many statistics calculated from GLRLMs are a sum of: the elements in the GLRLM (*glrlm*) matrix multiplied by a weighing matrix (*w*). Using mathematical notation, we can write:

w*glrlm

By choosing different weights, we can emphasize specific elements of the *glrlm* over others, depending on what attribute of the run lengths we wish to highlight. Basic concepts which help to understand the information stored in the *glrlm* are:

- *glrlm[i,j]*: the number of times *i* value voxels are next to each other *j* times
- The first column stores the number of times voxels do not have same value neighbors
- The upper left quadrant of the matrix holds frequencies of how many times low attenuation voxels have few same value neighbors
- The lower left quadrant of the matrix stores frequencies of how many times high attenuation voxels have few same value neighbors
- The upper right quadrant of the matrix holds frequencies of how many times low attenuation voxels have many same value neighbors
- The lower right quadrant of the matrix stores frequencies of how many times high attenuation voxels have many same value neighbors

For all proceeding glcm statistics let:

- dim: the maximum number of voxels present in the given direction
- g: the number of gray levels the image has been discretized into

glrlm: the gray level run length matrix, with g number of rows and dim number columns

w: the weighing matrix, with g number of rows and *dim* number columns

i: the i^{th} row

j: the j^{th} row

- n_r : number of run lengths
- n_v : number of voxels

For all statistics, the examples will be given for the following 4x5 glrlm matrix

$$glrlm = \begin{bmatrix} 25 & 16 & 11 & 7 & 7\\ 105 & 20 & 13 & 5 & 2\\ 122 & 27 & 8 & 2 & 1\\ 124 & 25 & 10 & 3 & 0 \end{bmatrix}$$

To achieve comparable results between different images, the results can be divided by n_r , which is a normalizing factor.

For all statistics, the *w* matrix is given.

SHORT RUN EMPHASIS (SRE)

$$w = \frac{1}{j^2}$$
$$w = \begin{bmatrix} 1 & 0.25 & 0.11 & 0.06 & 0.04 \\ 1 & 0.25 & 0.11 & 0.06 & 0.04 \\ 1 & 0.25 & 0.11 & 0.06 & 0.04 \\ 1 & 0.25 & 0.11 & 0.06 & 0.04 \end{bmatrix}$$

SRE gives higher weights to short run lengths, therefore images where intensity values change quickly in the given direction have higher values, while images with many same value voxels next to each other receive lower values.

LONG RUN EMPHASIS (LRE)

$$w = j^2$$

$$w = \begin{bmatrix} 1 & 4 & 9 & 16 & 25 \\ 1 & 4 & 9 & 16 & 25 \\ 1 & 4 & 9 & 16 & 25 \\ 1 & 4 & 9 & 16 & 25 \\ 1 & 4 & 9 & 16 & 25 \end{bmatrix}$$

LRE gives higher weights to long run lengths, therefore images where intensity values change slowly in the given direction have higher values, while images with many different value voxels next to each other receive lower values.

LOW GRAY LEVEL RUN EMPHASIS (LGLRE)

$$w = \frac{1}{i^2}$$
$$w = \begin{bmatrix} 1 & 1 & 1 & 1 & 1\\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25\\ 0.11 & 0.11 & 0.11 & 0.11 & 0.11\\ 0.06 & 0.06 & 0.06 & 0.06 & 0.06 \end{bmatrix}$$

LGLRE gives higher weights low value voxels, therefore images with predominantly low attenuation values will receive higher values as compared to images with higher attenuation voxels.

HIGH GRAY LEVEL RUN EMPHASIS (HGLRE)

$$w = i^2$$

$$w = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 4 & 4 & 4 & 4 & 4 \\ 9 & 9 & 9 & 9 & 9 \\ 16 & 16 & 16 & 16 & 16 \end{bmatrix}$$

HGLRE gives higher weights to voxels with high attenuation values, therefore images with predominantly high voxel values will receive higher values as compared to images with lower attenuation voxels.

SHORT RUN LOW GRAY LEVEL EMPHASIS (SRLGLE)

$$w = \frac{1}{i^2 * j^2}$$
$$w = \begin{bmatrix} 1 & 0.25 & 0.11 & 0.06 & 0.04 \\ 0.25 & 0.06 & 0.03 & 0.02 & 0.01 \\ 0.11 & 0.03 & 0.01 & 0.01 & 0.00 \\ 0.06 & 0.02 & 0.01 & 0.00 & 0.00 \end{bmatrix}$$

SRLGLE gives higher weights low value and low run lengths, therefore images with predominantly low attenuation values which do not occur repeatedly will receive higher values as compared to images with higher attenuation voxels frequently occurring next to each other.

LONG RUN HIGH GRAY LEVEL EMPHASIS (LRHGLE)

$$w = i^2 * j^2$$

$$w = \begin{bmatrix} 1 & 4 & 9 & 16 & 25 \\ 4 & 16 & 36 & 64 & 100 \\ 9 & 36 & 81 & 144 & 225 \\ 16 & 64 & 144 & 256 & 400 \end{bmatrix}$$

LRHGLE gives higher weights high value and long run lengths, therefore images with predominantly high attenuation values which occur repeatedly next to each other will receive higher values as compared to images where low attenuation voxels occur randomly next to each other.

SHORT RUN HIGH GRAY LEVEL EMPHASIS (SRHGLE)

$$w = \frac{i^2}{j^2}$$
$$w = \begin{bmatrix} 1 & 0.25 & 0.11 & 0.06 & 0.04 \\ 4 & 1 & 0.44 & 0.25 & 0.16 \\ 9 & 2.25 & 1 & 0.56 & 0.36 \\ 16 & 4 & 1.78 & 1 & 0.64 \end{bmatrix}$$

SRHGLE gives higher weights high value and low run lengths, therefore images with predominantly high attenuation values which do not occur repeatedly will receive higher values as compared to images with lower attenuation voxels frequently occurring next to each other.

LONG RUN LOW GRAY LEVEL EMPHASIS (LRLGLE)

$$w = \frac{j^2}{i^2}$$
$$w = \begin{bmatrix} 1 & 4 & 9 & 16 & 25\\ 0.25 & 1 & 2.25 & 4 & 6.25\\ 0.11 & 0.44 & 1 & 1.78 & 2.78\\ 0.06 & 0.25 & 0.56 & 1 & 1.56 \end{bmatrix}$$

LRLGLE gives higher weights low value and long run lengths, therefore images with predominantly low attenuation values which occur repeatedly will receive higher values as compared to images with higher attenuation voxels which do not occur frequently next to each other.

RUN PERCENTAGE (RP)

$$w = \frac{1}{n_v} \qquad w = \frac{1}{796}$$

RP weighs all elements equally. The more short run lengths there are in the image, the higher the value. Summed matrix statistics

The following statistics are calculated by summing the values of the *glrlm* either by rows or columns.

GRAY LEVEL NONUNIFORMITY (GLN)

$$\sum_{i=1}^g (\sum_{j=1}^{\dim} glrlm[i,j])^2$$

GLN first add up the elements of the *glrlm* by row and then squares them and sums them. When runs are equally distributed for all gray levels, then it takes up its minimum.

RUN LENGTH NONUNIFORMITY (RLN)

$$\sum_{j=1}^{\dim} (\sum_{i=1}^{g} glrlm[i,j])^2$$

RLN first add up the elements of the *glrlm* by columns and then squares them and sums them. When run lengths for all lengths, then it takes up its minimum

Shape-based metrics

Shape-based measures derive parameters from the geometrical properties of the lesion.

1-, 2-, 3-dimensional statistics

These metrics are calculated from the space occupied by the abnormality

VOLUME (V)

 $dim_{xy} = Pixel Spacing$ $dim_z = Spacing Between Slices$ $n * dim_{xy}^2 * dim_z$

 $\frac{V}{\sqrt{\pi}A^{\frac{2}{3}}}$

COMPACTNESS1

VOLUME RATIO

$\frac{V_{ROI}}{V_{total}}$

COMPACTNESS2

SURFACE (A)

 $dim_{xy} = Pixel Spacing$

 $dim_z = Spacing \ Between \ Slices$ n_{yz} : number of voxels without any neighboor in direction x

 n_{xz} : number of voxels without any neighboor in direction y n_{xy} : number of voxels without any neighboor in direction z $n_{yz} * \dim_{xy} * \dim_{z} + n_{xz} * \dim_{xy} * \dim_{z} + \dim_{xy} * \dim_{z}^{2}$

SPHERICAL DISPROPORTION

$$\frac{A}{4\pi[(\frac{3V}{4\pi})^{\frac{1}{3}}]^2}$$

SPHERICITY

$$6V^{\frac{2}{3}}\pi^{\frac{1}{3}}$$

MAXIMUM DIAMETER

 $x_i y_i z_i$: spatial coordinate of voxel i

$$max(\sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2 + (z_i - z_{i+1})^2})$$

 $\frac{A_{ROI}}{A_{total}}$

SURFACE TO VOLUME RATIO

 $\frac{A_{ROI}}{V_{ROI}}$

 $36\pi \frac{V^2}{A^3}$

SURFACE RATIO

Fractal dimensions

Fractal dimensions enumerate the self-symmetry of an object. The lesions are padded to a isovolumetric cube with sides equal to the next greatest power of two of the longest dimension of the lesion. Smaller and smaller bounding boxes are used to cover the lesion. Limits are approximated by the slope of the regression line through the points at each given scale on a log-log plot.

 p_i : normalized probability of a voxel with any value present in bounding box i with dimension ε ε : the number of boxes needed to cover the padded box in one dimension

BOX-COUNTING DIMENSION

$$\lim_{\epsilon \to \infty} \frac{\log_2 \sum_{i=1}^{\epsilon^3} p_i^0}{\log_2 \epsilon}$$

INFORMATION DIMENSION

$$\lim_{\epsilon \to \infty} \frac{\sum_{i=1}^{\epsilon^3} -p_i \log_2 p_i}{\log_2 \epsilon}$$

CORRELATION DIMENSION

$$\lim_{\epsilon \to \infty} \frac{\log_2 \sum_{i=1}^{\epsilon^3} p_i^2}{\log_2 \epsilon}$$

Correlation dimension is strictly calculated from distances of the data points. A generalization of the Rényi entropy is used to approximate the correlation dimension.

Supplemental Table

Supplemental table 1. Diagnostic performance of radiomic parameters with AUC values above 0.8

Variable	Case	IQR	Control	IQR	р	AUC	95% CI (AUC)	Sensitivity	Specificity	PPV	NPV
First order statistics											
Deciles30orig	53.50	[36.50; 74.08]	93.70	[75.50; 135.75]	0.00054425	0.827	[0.716; 0.921]	0.833	0.733	0.758	0.815
Quartiles25orig	40.00	[29.25; 62.06]	82.50	[65.50; 122.00]	0.00062135	0.826	[0.712; 0.922]	0.767	0.800	0.793	0.774
Deciles20orig	31.00	[15.50; 53.30]	71.00	[56.00; 106.25]	0.00087011	0.826	[0.713; 0.924]	0.800	0.767	0.774	0.793
Har_meanorig	65.79	[53.74; 80.10]	106.27	[85.37; 141.20]	0.00283237	0.823	[0.708; 0.922]	0.767	0.800	0.793	0.774
Tri_meanorig	67.88	[47.25; 95.88]	111.00	[88.62; 155.25]	0.00071495	0.812	[0.696; 0.910]	0.867	0.667	0.722	0.833
Deciles40orig	70.50	[50.50; 99.35]	119.00	[93.75; 165.75]	0.00054393	0.812	[0.695; 0.909]	0.867	0.667	0.722	0.833
Geo_meanorig	524.51	[342.84; 884.73]	1000.31	[736.51; 1516.67]	0.00160946	0.803	[0.684; 0.902]	0.633	0.900	0.864	0.711
IQ_meanorig	100.96	[71.20; 131.57]	146.32	[121.76; 190.18]	0.00075437	0.802	[0.684; 0.902]	0.600	0.933	0.900	0.700
GLCM											
IQRep_b4_d1_avg	0.05	[0.05; 0.06]	0.04	[0.04; 0.05]	0.00012117	0.867	[0.769; 0.948]	0.700	0.900	0.875	0.750
Low_notchep_b4_d1_avg	-0.06	[-0.07; -0.05]	-0.03	[-0.05; -0.01]	0.00012017	0.866	[0.763; 0.948]	0.967	0.633	0.725	0.950
Gauss_rf_s_ndep_b16_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00045383	0.859	[0.759; 0.940]	0.767	0.867	0.852	0.788
Md_AD_mn_ep_b4_d1_avg	0.04	[0.03; 0.04]	0.03	[0.02; 0.03]	0.00019997	0.856	[0.744; 0.946]	0.867	0.767	0.788	0.852
Gauss_rf_sep_b32_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00134475	0.851	[0.743; 0.936]	0.667	0.933	0.909	0.737
Gauss_rf_s_ndep_b32_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00128411	0.849	[0.743; 0.936]	0.600	1.000	1.000	0.714
Sum_energyep_b32_d1_avg	0.53	[0.51; 0.54]	0.58	[0.54; 0.62]	0.00006803	0.848	[0.740; 0.937]	0.967	0.633	0.725	0.950
IMC1ep_b2_d1_avg	-2.23	[-2.27; -2.20]	-2.15	[-2.18; -2.12]	0.00028174	0.847	[0.736; 0.939]	0.933	0.700	0.757	0.913

Autocorrelation_s_ndep_b16_d3_avg	0.28	[0.26; 0.34]	0.38	[0.32; 0.51]	0.00045426	0.847	[0.738; 0.931]	0.667	0.933	0.909	0.737
Cluster_t_sep_b16_d3_avg	1.42	[1.33; 1.76]	1.96	[1.60; 2.71]	0.00033289	0.847	[0.741; 0.930]	0.667	0.900	0.870	0.730
Gauss_rp_s_ndep_b32_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00056330	0.847	[0.740; 0.929]	0.633	0.933	0.905	0.718
Inv_Cluster_d_e_ndep_b2_d1_avg	0.31	[0.30; 0.33]	0.35	[0.34; 0.37]	0.00021110	0.846	[0.734; 0.939]	1.000	0.600	0.714	1.000
Dif_varianceep_b2_d1_avg	0.47	[0.44; 0.50]	0.52	[0.51; 0.53]	0.00044666	0.846	[0.737; 0.937]	0.933	0.733	0.778	0.917
Inv_Cluster_d_eep_b32_d2_avg	0.45	[0.43; 0.48]	0.41	[0.38; 0.43]	0.00003623	0.846	[0.734; 0.934]	0.900	0.733	0.771	0.880
Gauss_rp_s_ep_b32_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00055069	0.846	[0.740; 0.929]	0.567	0.967	0.944	0.690
Cluster_p_s_ep_b32_d3_avg	3816.59	[3315.39; 5643.63]	7016.05	[5387.94; 11777.20]	0.00053153	0.846	[0.743; 0.930]	0.667	0.867	0.833	0.722
Inv_Cluster_t_e_ndep_b2_d1_avg	0.14	[0.13; 0.14]	0.15	[0.15; 0.16]	0.00016112	0.844	[0.736; 0.933]	0.800	0.767	0.774	0.793
Gauss_rf_sep_b16_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00039954	0.844	[0.740; 0.930]	0.700	0.867	0.840	0.743
Cluster_t_sep_b32_d3_avg	2.00	[1.83; 2.84]	3.37	[2.72; 5.37]	0.00102218	0.844	[0.739; 0.936]	0.667	0.933	0.909	0.737
Contrast_eep_b2_d1_avg	0.71	[0.68; 0.75]	0.79	[0.77; 0.83]	0.00030475	0.843	[0.733; 0.936]	0.933	0.733	0.778	0.917
Homogeneity2_e_ndep_b2_d1_avg	0.36	[0.34; 0.38]	0.40	[0.39; 0.42]	0.00030475	0.843	[0.727; 0.939]	0.933	0.733	0.778	0.917
Dissimilarity_eep_b2_d1_avg	0.71	[0.68; 0.75]	0.79	[0.77; 0.83]	0.00030475	0.843	[0.730; 0.939]	0.933	0.733	0.778	0.917
Homogeneity1_e_ndep_b2_d1_avg	0.36	[0.34; 0.38]	0.40	[0.39; 0.42]	0.00030475	0.843	[0.729; 0.939]	0.933	0.733	0.778	0.917
DMN_eep_b2_d1_avg	0.18	[0.17; 0.19]	0.20	[0.19; 0.21]	0.00030475	0.843	[0.731; 0.938]	0.933	0.733	0.778	0.917
IDMN_e_ndep_b2_d1_avg	0.57	[0.55; 0.60]	0.63	[0.62; 0.67]	0.00030475	0.843	[0.729; 0.938]	0.933	0.733	0.778	0.917
DN_eep_b2_d1_avg	0.36	[0.34; 0.38]	0.40	[0.39; 0.42]	0.00030475	0.843	[0.730; 0.936]	0.933	0.733	0.778	0.917
IDN_e_ndep_b2_d1_avg	0.48	[0.46; 0.50]	0.53	[0.51; 0.56]	0.00030475	0.843	[0.729; 0.937]	0.933	0.733	0.778	0.917
Autocorrelation_e_ndep_b2_d1_avg	1.43	[1.37; 1.50]	1.59	[1.54; 1.67]	0.00030475	0.843	[0.730; 0.937]	0.933	0.733	0.778	0.917
Inv_autocorrelation_e_nd_ep_b2_d1_avg	0.36	[0.34; 0.38]	0.40	[0.39; 0.42]	0.00030475	0.843	[0.731; 0.936]	0.933	0.733	0.778	0.917
Gauss_e_ndep_b2_d1_avg	0.43	[0.41; 0.46]	0.48	[0.47; 0.51]	0.00030475	0.843	[0.732; 0.937]	0.933	0.733	0.778	0.917
Gauss_lp_e_ndep_b2_d1_avg	0.26	[0.25; 0.28]	0.29	[0.28; 0.31]	0.00030475	0.843	[0.729; 0.938]	0.933	0.733	0.778	0.917
Gauss_lf_e_ndep_b2_d1_avg	0.26	[0.25; 0.28]	0.29	[0.28; 0.31]	0.00030475	0.843	[0.730; 0.936]	0.933	0.733	0.778	0.917
Gauss_rf_e_ndep_b2_d1_avg	0.26	[0.25; 0.28]	0.29	[0.28; 0.31]	0.00030475	0.843	[0.732; 0.938]	0.933	0.733	0.778	0.917

Gauss_rp_e_ndep_b2_d1_avg	0.26	[0.25; 0.28]	0.29	[0.28; 0.31]	0.00030475	0.843	[0.731; 0.937]	0.933	0.733	0.778	0.917
Inv_Gauss_e_ndep_b2_d1_avg	1.18	[1.13; 1.24]	1.31	[1.27; 1.37]	0.00030475	0.843	[0.729; 0.937]	0.933	0.733	0.778	0.917
Inv_Gauss_lp_e_ndep_b2_d1_avg	1.94	[1.86; 2.04]	2.16	[2.10; 2.26]	0.00030475	0.843	[0.730; 0.936]	0.933	0.733	0.778	0.917
Inv_Gauss_lf_e_ndep_b2_d1_avg	1.94	[1.86; 2.04]	2.16	[2.10; 2.26]	0.00030475	0.843	[0.731; 0.937]	0.933	0.733	0.778	0.917
Inv_Gauss_rf_e_ndep_b2_d1_avg	1.94	[1.86; 2.04]	2.16	[2.10; 2.26]	0.00030475	0.843	[0.730; 0.937]	0.933	0.733	0.778	0.917
Inv_Gauss_rp_e_ndep_b2_d1_avg	1.94	[1.86; 2.04]	2.16	[2.10; 2.26]	0.00030475	0.843	[0.729; 0.936]	0.933	0.733	0.778	0.917
Gauss_2f_e_ndep_b2_d1_avg	0.53	[0.50; 0.55]	0.58	[0.57; 0.61]	0.00030475	0.843	[0.730; 0.937]	0.933	0.733	0.778	0.917
Inv_Gauss_2f_e_ndep_b2_d1_avg	3.88	[3.71; 4.09]	4.31	[4.19; 4.53]	0.00030475	0.843	[0.732; 0.938]	0.933	0.733	0.778	0.917
Gauss_2p_e_ndep_b2_d1_avg	0.53	[0.50; 0.55]	0.58	[0.57; 0.61]	0.00030475	0.843	[0.731; 0.936]	0.933	0.733	0.778	0.917
Inv_Gauss_2p_e_ndep_b2_d1_avg	3.88	[3.71; 4.09]	4.31	[4.19; 4.53]	0.00030475	0.843	[0.731; 0.937]	0.933	0.733	0.778	0.917
Inv_Cluster_t_ndep_b2_d1_avg	0.05	[0.04; 0.05]	0.05	[0.05; 0.06]	0.00018844	0.843	[0.734; 0.936]	0.967	0.633	0.725	0.950
Dif_entropyep_b2_d1_avg	0.77	[0.74; 0.81]	0.85	[0.83; 0.89]	0.00032424	0.843	[0.731; 0.938]	0.933	0.733	0.778	0.917
Inv_Cluster_s_ndep_b2_d1_avg	0.02	[0.02; 0.02]	0.02	[0.02; 0.03]	0.00016416	0.842	[0.728; 0.933]	1.000	0.600	0.714	1.000
Md_AD_mdep_b4_d1_avg	0.03	[0.03; 0.04]	0.02	[0.02; 0.03]	0.00020597	0.842	[0.734; 0.930]	0.967	0.567	0.690	0.944
MADep_b4_d1_avg	0.05	[0.05; 0.05]	0.03	[0.03; 0.05]	0.00020597	0.842	[0.733; 0.932]	0.967	0.567	0.690	0.944
Gauss_2fep_b8_d1_avg	0.87	[0.87; 0.88]	0.85	[0.83; 0.86]	0.00033525	0.842	[0.728; 0.936]	0.933	0.667	0.737	0.909
Cluster_t_s_ndep_b16_d3_avg	1.27	[1.17; 1.57]	1.72	[1.43; 2.26]	0.00044625	0.842	[0.738; 0.929]	0.667	0.967	0.952	0.744
Inv_Cluster_d_e_nd_ep_b32_d2_avg	0.41	[0.40; 0.43]	0.38	[0.36; 0.40]	0.00004454	0.842	[0.734; 0.928]	0.800	0.767	0.774	0.793
Autocorrelation_sep_b32_d3_avg	0.45	[0.41; 0.64]	0.75	[0.61; 1.22]	0.00088436	0.842	[0.738; 0.929]	0.667	0.900	0.870	0.730
Cluster_s_s_ndep_b32_d3_avg	74.87	[68.25; 111.77]	131.20	[101.02; 226.78]	0.00072906	0.842	[0.731; 0.930]	0.633	0.967	0.950	0.725
Inv_Cluster_p_ndep_b2_d1_avg	0.01	[0.01; 0.01]	0.01	[0.01; 0.01]	0.00014653	0.841	[0.728; 0.931]	0.767	0.800	0.793	0.774
Inv_Cluster_s_e_ndep_b2_d1_avg	0.06	[0.06; 0.06]	0.07	[0.06; 0.07]	0.00013362	0.841	[0.734; 0.929]	0.767	0.800	0.793	0.774
Inv_Cluster_d_ndep_b2_d1_avg	0.10	[0.09; 0.11]	0.12	[0.12; 0.14]	0.00022209	0.841	[0.728; 0.933]	0.967	0.633	0.725	0.950
Variance_sep_b16_d3_avg	0.40	[0.37; 0.50]	0.55	[0.46; 0.73]	0.00030695	0.841	[0.736; 0.928]	0.667	0.933	0.909	0.737
Inv_Cluster_p_s_ndep_b2_d1_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00018653	0.840	[0.727; 0.931]	0.967	0.633	0.725	0.950

Har_meanep_b2_d1_avg	0.17	[0.16; 0.18]	0.20	[0.19; 0.21]	0.00028717	0.840	[0.730; 0.933]	0.933	0.667	0.737	0.909
Md_AD_mnep_b8_d1_avg	0.01	[0.01; 0.01]	0.01	[0.01; 0.01]	0.00065296	0.840	[0.728; 0.936]	0.967	0.633	0.725	0.950
Cluster_d_s_ndep_b16_d2_avg	0.07	[0.07; 0.07]	0.08	[0.07; 0.09]	0.00059495	0.840	[0.732; 0.928]	0.667	0.967	0.952	0.744
Autocorrelation_sep_b16_d3_avg	0.32	[0.29; 0.38]	0.45	[0.35; 0.61]	0.00038264	0.840	[0.734; 0.926]	0.933	0.567	0.683	0.895
Gauss_lf_eep_b32_d2_avg	4.09	[3.81; 4.23]	3.54	[3.13; 3.93]	0.00006457	0.840	[0.733; 0.923]	1.000	0.533	0.682	1.000
Gauss_rf_s_ndep_b32_d2_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00040025	0.840	[0.731; 0.928]	0.767	0.767	0.767	0.767
Autocorrelation_s_ndep_b32_d3_avg	0.40	[0.37; 0.56]	0.69	[0.56; 1.10]	0.00093074	0.840	[0.730; 0.930]	0.600	1.000	1.000	0.714
Cluster_p_s_nd_ep_b32_d3_avg	3279.61	[2994.39; 5170.88]	5975.60	[4631.04; 10723.84]	0.00058442	0.840	[0.730; 0.927]	0.667	0.900	0.870	0.730
Inv_Cluster_p_e_ndep_b2_d1_avg	0.03	[0.03; 0.03]	0.03	[0.03; 0.03]	0.00011863	0.839	[0.730; 0.928]	0.733	0.833	0.815	0.758
Inv_Cluster_d_eep_b32_d1_avg	0.48	[0.47; 0.50]	0.45	[0.43; 0.47]	0.00004147	0.839	[0.727; 0.934]	1.000	0.600	0.714	1.000
Sum_energyep_b32_d2_avg	0.58	[0.54; 0.62]	0.66	[0.61; 0.73]	0.00012438	0.839	[0.730; 0.928]	0.900	0.633	0.711	0.864
Cluster_s_sep_b32_d3_avg	83.34	[74.55; 125.21]	146.22	[119.65; 246.32]	0.00067158	0.839	[0.728; 0.927]	0.667	0.900	0.870	0.730
Variance_sep_b32_d3_avg	0.56	[0.51; 0.81]	0.96	[0.76; 1.47]	0.00111326	0.839	[0.729; 0.927]	0.600	1.000	1.000	0.714
Contrastep_b2_d1_avg	0.23	[0.21; 0.26]	0.28	[0.27; 0.32]	0.00026917	0.838	[0.723; 0.934]	0.867	0.767	0.788	0.852
Homogeneity2_ep_b2_d1_avg	0.88	[0.87; 0.89]	0.86	[0.84; 0.86]	0.00026917	0.838	[0.723; 0.933]	0.867	0.767	0.788	0.852
Homogeneity2_ndep_b2_d1_avg	0.12	[0.11; 0.13]	0.14	[0.14; 0.16]	0.00026917	0.838	[0.724; 0.931]	0.867	0.767	0.788	0.852
Dissimilarityep_b2_d1_avg	0.23	[0.21; 0.26]	0.28	[0.27; 0.32]	0.00026917	0.838	[0.724; 0.931]	0.867	0.767	0.788	0.852
Homogeneity1_ep_b2_d1_avg	0.88	[0.87; 0.89]	0.86	[0.84; 0.86]	0.00026917	0.838	[0.722; 0.932]	0.867	0.767	0.788	0.852
Homogeneity1_ndep_b2_d1_avg	0.12	[0.11; 0.13]	0.14	[0.14; 0.16]	0.00026917	0.838	[0.726; 0.933]	0.867	0.767	0.788	0.852
DMNep_b2_d1_avg	0.06	[0.05; 0.06]	0.07	[0.07; 0.08]	0.00026917	0.838	[0.723; 0.933]	0.867	0.767	0.788	0.852
IDMNep_b2_d1_avg	0.95	[0.95; 0.96]	0.94	[0.94; 0.95]	0.00026917	0.838	[0.722; 0.934]	0.867	0.767	0.788	0.852
IDMN_ndep_b2_d1_avg	0.19	[0.17; 0.20]	0.23	[0.22; 0.25]	0.00026917	0.838	[0.723; 0.931]	0.867	0.767	0.788	0.852
DNep_b2_d1_avg	0.12	[0.11; 0.13]	0.14	[0.14; 0.16]	0.00026917	0.838	[0.724; 0.932]	0.867	0.767	0.788	0.852
IDNep_b2_d1_avg	0.92	[0.91; 0.93]	0.91	[0.89; 0.91]	0.00026917	0.838	[0.722; 0.932]	0.867	0.767	0.788	0.852
IDN_ndep_b2_d1_avg	0.16	[0.14; 0.17]	0.19	[0.18; 0.21]	0.00026917	0.838	[0.722; 0.931]	0.867	0.767	0.788	0.852

Autocorrelation_ndep_b2_d1_avg	0.47	[0.43; 0.51]	0.57	[0.54; 0.63]	0.00026917	0.838	[0.724; 0.931]	0.867	0.767	0.788	0.852
Inv_autocorrelation_ndep_b2_d1_avg	0.12	[0.11; 0.13]	0.14	[0.14; 0.16]	0.00026917	0.838	[0.727; 0.933]	0.867	0.767	0.788	0.852
Gauss_ndep_b2_d1_avg	0.14	[0.13; 0.15]	0.17	[0.16; 0.19]	0.00026917	0.838	[0.721; 0.933]	0.867	0.767	0.788	0.852
Gauss_lp_ndep_b2_d1_avg	0.09	[0.08; 0.09]	0.10	[0.10; 0.12]	0.00026917	0.838	[0.724; 0.937]	0.867	0.767	0.788	0.852
Gauss_lf_ndep_b2_d1_avg	0.09	[0.08; 0.09]	0.10	[0.10; 0.12]	0.00026917	0.838	[0.724; 0.933]	0.867	0.767	0.788	0.852
Gauss_rf_ndep_b2_d1_avg	0.09	[0.08; 0.09]	0.10	[0.10; 0.12]	0.00026917	0.838	[0.726; 0.934]	0.867	0.767	0.788	0.852
Gauss_rp_ndep_b2_d1_avg	0.09	[0.08; 0.09]	0.10	[0.10; 0.12]	0.00026917	0.838	[0.727; 0.931]	0.867	0.767	0.788	0.852
Inv_Gauss_ndep_b2_d1_avg	0.39	[0.35; 0.42]	0.47	[0.45; 0.52]	0.00026917	0.838	[0.723; 0.933]	0.867	0.767	0.788	0.852
Inv_Gauss_lp_ndep_b2_d1_avg	0.64	[0.58; 0.69]	0.77	[0.73; 0.86]	0.00026917	0.838	[0.724; 0.932]	0.867	0.767	0.788	0.852
Inv_Gauss_lf_ndep_b2_d1_avg	0.64	[0.58; 0.69]	0.77	[0.73; 0.86]	0.00026917	0.838	[0.723; 0.934]	0.867	0.767	0.788	0.852
Inv_Gauss_rf_ndep_b2_d1_avg	0.64	[0.58; 0.69]	0.77	[0.73; 0.86]	0.00026917	0.838	[0.721; 0.934]	0.867	0.767	0.788	0.852
Inv_Gauss_rp_ndep_b2_d1_avg	0.64	[0.58; 0.69]	0.77	[0.73; 0.86]	0.00026917	0.838	[0.721; 0.932]	0.867	0.767	0.788	0.852
Gauss_2fep_b2_d1_avg	1.04	[1.03; 1.05]	1.02	[1.01; 1.03]	0.00026917	0.838	[0.727; 0.934]	0.867	0.767	0.788	0.852
Gauss_2f_nd_ep_b2_d1_avg	0.17	[0.16; 0.19]	0.21	[0.20; 0.23]	0.00026917	0.838	[0.726; 0.933]	0.867	0.767	0.788	0.852
Inv_Gauss_2fep_b2_d1_avg	7.70	[7.64; 7.76]	7.55	[7.46; 7.59]	0.00026917	0.838	[0.723; 0.933]	0.867	0.767	0.788	0.852
Inv_Gauss_2f_ndep_b2_d1_avg	1.27	[1.16; 1.39]	1.55	[1.47; 1.71]	0.00026917	0.838	[0.721; 0.933]	0.867	0.767	0.788	0.852
Gauss_2pep_b2_d1_avg	1.04	[1.03; 1.05]	1.02	[1.01; 1.03]	0.00026917	0.838	[0.726; 0.933]	0.867	0.767	0.788	0.852
Gauss_2p_nd_ep_b2_d1_avg	0.17	[0.16; 0.19]	0.21	[0.20; 0.23]	0.00026917	0.838	[0.724; 0.933]	0.867	0.767	0.788	0.852
Inv_Gauss_2pep_b2_d1_avg	7.70	[7.64; 7.76]	7.55	[7.46; 7.59]	0.00026917	0.838	[0.721; 0.933]	0.867	0.767	0.788	0.852
Inv_Gauss_2p_ndep_b2_d1_avg	1.27	[1.16; 1.39]	1.55	[1.47; 1.71]	0.00026917	0.838	[0.726; 0.933]	0.867	0.767	0.788	0.852
Inv_Cluster_d_eep_b2_d1_avg	0.87	[0.85; 0.88]	0.91	[0.90; 0.92]	0.00036272	0.838	[0.727; 0.931]	0.933	0.667	0.737	0.909
Dif_averageep_b2_d1_avg	0.23	[0.21; 0.26]	0.28	[0.27; 0.32]	0.00026917	0.838	[0.723; 0.931]	0.867	0.767	0.788	0.852
Inv_dif_averageep_b2_d1_avg	0.23	[0.21; 0.26]	0.28	[0.27; 0.32]	0.00026917	0.838	[0.723; 0.934]	0.867	0.767	0.788	0.852
Modeep_b2_d1_avg	0.12	[0.11; 0.13]	0.14	[0.14; 0.16]	0.00026917	0.838	[0.723; 0.932]	0.867	0.767	0.788	0.852
High_notchep_b4_d1_avg	0.11	[0.10; 0.11]	0.10	[0.09; 0.10]	0.00030923	0.838	[0.721; 0.932]	0.833	0.833	0.833	0.833

IQRep_b8_d1_avg	0.02	[0.02; 0.02]	0.01	[0.01; 0.02]	0.00074011	0.838	[0.723; 0.933]	0.900	0.700	0.750	0.875
Sum_energyep_b16_d1_avg	0.54	[0.52; 0.55]	0.57	[0.55; 0.62]	0.00007671	0.838	[0.726; 0.929]	0.967	0.667	0.744	0.952
Cluster_t_s_ndep_b32_d3_avg	1.82	[1.69; 2.62]	3.18	[2.56; 4.90]	0.00109577	0.838	[0.729; 0.927]	0.600	1.000	1.000	0.714
Inv_Cluster_d_e_nd_ep_b32_d3_avg	0.39	[0.37; 0.41]	0.35	[0.32; 0.37]	0.00005582	0.838	[0.732; 0.923]	0.667	0.833	0.800	0.714
Inv_Cluster_s_s_ndep_b2_d1_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00019995	0.837	[0.724; 0.931]	0.967	0.633	0.725	0.950
Geo_mean3ep_b2_d1_avg	0.21	[0.20; 0.21]	0.22	[0.22; 0.23]	0.00027511	0.837	[0.719; 0.930]	0.800	0.767	0.774	0.793
Mn_AD_mdep_b2_d1_avg	0.13	[0.12; 0.14]	0.11	[0.09; 0.11]	0.00028230	0.837	[0.719; 0.931]	0.867	0.767	0.788	0.852
Md_AD_mnep_b2_d1_avg	0.13	[0.12; 0.14]	0.11	[0.09; 0.11]	0.00028230	0.837	[0.722; 0.934]	0.867	0.767	0.788	0.852
Inv_autocorrelation_eep_b2_d1_avg	1.01	[0.99; 1.02]	1.05	[1.03; 1.07]	0.00025896	0.836	[0.723; 0.926]	0.800	0.767	0.774	0.793
Geo_meanep_b2_d1_avg	0.10	[0.10; 0.11]	0.11	[0.11; 0.12]	0.00026838	0.836	[0.727; 0.930]	0.767	0.800	0.793	0.774
Geo_mean2ep_b2_d1_avg	0.10	[0.10; 0.11]	0.11	[0.11; 0.12]	0.00026838	0.836	[0.723; 0.930]	0.767	0.800	0.793	0.774
Gauss_2fep_b4_d1_avg	0.92	[0.92; 0.93]	0.90	[0.89; 0.91]	0.00034678	0.836	[0.721; 0.933]	0.767	0.833	0.821	0.781
Gauss_2fep_b16_d1_avg	0.85	[0.84; 0.86]	0.82	[0.80; 0.84]	0.00034530	0.836	[0.720; 0.933]	0.767	0.800	0.793	0.774
Inv_Cluster_t_s_ndep_b2_d1_avg	0.01	[0.00; 0.01]	0.01	[0.01; 0.01]	0.00021605	0.834	[0.719; 0.930]	0.833	0.767	0.781	0.821
Mn_AD_mn_ep_b2_d1_avg	0.13	[0.12; 0.14]	0.11	[0.09; 0.12]	0.00026282	0.834	[0.720; 0.929]	0.900	0.700	0.750	0.875
Inv_Cluster_d_eep_b16_d2_avg	0.68	[0.65; 0.70]	0.63	[0.60; 0.65]	0.00004456	0.834	[0.723; 0.929]	0.867	0.700	0.743	0.840
Cluster_s_s_ndep_b16_d3_avg	26.11	[23.20; 33.05]	36.59	[29.45; 50.76]	0.00041754	0.834	[0.727; 0.922]	0.633	0.900	0.864	0.711
Correlationep_b2_d1_avg	0.52	[0.47; 0.56]	0.42	[0.36; 0.45]	0.00034132	0.833	[0.719; 0.931]	0.900	0.767	0.794	0.885
Minep_b2_d1_avg	0.12	[0.11; 0.13]	0.14	[0.14; 0.16]	0.00030375	0.833	[0.719; 0.930]	0.867	0.767	0.788	0.852
Low_notchep_b8_d1_avg	-0.02	[-0.02; -0.02]	-0.01	[-0.02; -0.01]	0.00080425	0.833	[0.718; 0.931]	0.933	0.700	0.757	0.913
Sum_energyep_b16_d2_avg	0.58	[0.55; 0.61]	0.65	[0.61; 0.69]	0.00010014	0.833	[0.723; 0.924]	0.967	0.600	0.707	0.947
Gauss_2fep_b32_d1_avg	0.84	[0.83; 0.85]	0.81	[0.79; 0.83]	0.00032886	0.833	[0.720; 0.931]	0.967	0.600	0.707	0.947
Gauss_eep_b2_d1_avg	1.07	[1.04; 1.08]	1.11	[1.09; 1.14]	0.00024153	0.832	[0.717; 0.922]	0.767	0.800	0.793	0.774
Inv_Gauss_eep_b2_d1_avg	2.90	[2.84; 2.95]	3.03	[2.96; 3.09]	0.00024153	0.832	[0.721; 0.926]	0.767	0.800	0.793	0.774
Cluster_d_ndep_b2_d1_avg	0.53	[0.49; 0.59]	0.65	[0.61; 0.70]	0.00033591	0.831	[0.712; 0.930]	0.900	0.700	0.750	0.875

Cluster_d_e_nd_ep_b2_d1_avg	1.63	[1.57; 1.73]	1.80	[1.74; 1.86]	0.00048968	0.831	[0.714; 0.930]	0.933	0.700	0.757	0.913
Inv_Cluster_d_s_ndep_b2_d1_avg	0.01	[0.01; 0.01]	0.02	[0.02; 0.02]	0.00023539	0.831	[0.718; 0.929]	0.833	0.767	0.781	0.821
Low_notchep_b2_d1_avg	-0.24	[-0.27; -0.20]	-0.14	[-0.18; -0.09]	0.00055495	0.831	[0.710; 0.931]	0.833	0.800	0.806	0.828
Gauss_lp_eep_b32_d2_avg	2.04	[1.89; 2.25]	1.73	[1.55; 1.94]	0.00006297	0.831	[0.719; 0.922]	0.900	0.633	0.711	0.864
Gauss_lp_eep_b2_d1_avg	0.86	[0.84; 0.87]	0.89	[0.87; 0.90]	0.00028006	0.830	[0.720; 0.921]	0.800	0.767	0.774	0.793
Gauss_lf_eep_b2_d1_avg	0.86	[0.84; 0.87]	0.89	[0.87; 0.90]	0.00028006	0.830	[0.718; 0.922]	0.800	0.767	0.774	0.793
Inv_Gauss_rf_eep_b2_d1_avg	6.33	[6.20; 6.40]	6.56	[6.45; 6.62]	0.00028006	0.830	[0.718; 0.922]	0.800	0.767	0.774	0.793
Inv_Gauss_rp_eep_b2_d1_avg	6.33	[6.20; 6.40]	6.56	[6.45; 6.62]	0.00028006	0.830	[0.717; 0.924]	0.800	0.767	0.774	0.793
Gauss_lf_e_ndep_b32_d2_avg	3.87	[3.62; 3.99]	3.38	[2.99; 3.70]	0.00007989	0.830	[0.720; 0.918]	1.000	0.533	0.682	1.000
Inv_Cluster_d_eep_b32_d3_avg	0.42	[0.39; 0.44]	0.37	[0.34; 0.39]	0.00007517	0.830	[0.722; 0.921]	0.767	0.733	0.742	0.759
Homogeneity2_sep_b2_d1_avg	0.31	[0.31; 0.33]	0.29	[0.27; 0.30]	0.00020625	0.829	[0.719; 0.921]	0.767	0.800	0.793	0.774
Homogeneity1_sep_b2_d1_avg	0.31	[0.31; 0.33]	0.29	[0.27; 0.30]	0.00020625	0.829	[0.717; 0.922]	0.767	0.800	0.793	0.774
IDMN_sep_b2_d1_avg	0.32	[0.32; 0.34]	0.30	[0.28; 0.31]	0.00021402	0.829	[0.713; 0.922]	0.900	0.633	0.711	0.864
IDMN_eep_b2_d1_avg	1.62	[1.59; 1.64]	1.68	[1.64; 1.71]	0.00024368	0.829	[0.718; 0.921]	0.767	0.767	0.767	0.767
Cluster_d_s_ndep_b2_d1_avg	0.07	[0.05; 0.08]	0.10	[0.08; 0.11]	0.00028662	0.829	[0.708; 0.928]	0.867	0.733	0.765	0.846
Average_eep_b2_d1_avg	2.64	[2.58; 2.68]	2.75	[2.69; 2.81]	0.00024126	0.829	[0.714; 0.923]	1.000	0.567	0.698	1.000
Gauss_lp_eep_b32_d3_avg	1.82	[1.61; 2.00]	1.48	[1.33; 1.65]	0.00010072	0.829	[0.717; 0.919]	0.967	0.533	0.674	0.941
IDN_sep_b2_d1_avg	0.32	[0.31; 0.34]	0.29	[0.27; 0.31]	0.00020980	0.828	[0.716; 0.921]	0.767	0.767	0.767	0.767
Gauss_2f_sep_b2_d1_avg	0.36	[0.35; 0.38]	0.33	[0.31; 0.35]	0.00020932	0.828	[0.716; 0.921]	0.767	0.767	0.767	0.767
Inv_Gauss_2f_s_ep_b2_d1_avg	2.68	[2.61; 2.81]	2.45	[2.29; 2.59]	0.00020932	0.828	[0.713; 0.921]	0.767	0.767	0.767	0.767
Gauss_2p_sep_b2_d1_avg	0.36	[0.35; 0.38]	0.33	[0.31; 0.35]	0.00020932	0.828	[0.718; 0.921]	0.767	0.767	0.767	0.767
Inv_Gauss_2p_sep_b2_d1_avg	2.68	[2.61; 2.81]	2.45	[2.29; 2.59]	0.00020932	0.828	[0.717; 0.920]	0.767	0.767	0.767	0.767
Cluster_s_s_ndep_b2_d1_avg	0.35	[0.29; 0.41]	0.50	[0.42; 0.57]	0.00036133	0.828	[0.709; 0.926]	0.900	0.700	0.750	0.875
Variance_eep_b2_d1_avg	2.82	[2.48; 2.97]	3.38	[3.04; 3.76]	0.00022488	0.828	[0.714; 0.923]	0.767	0.800	0.793	0.774
Contrastep_b4_d1_avg	0.87	[0.82; 0.98]	1.10	[1.04; 1.26]	0.00039608	0.828	[0.704; 0.934]	0.933	0.767	0.800	0.920

DMN_ep_b4_d1_avg	0.05	[0.05; 0.06]	0.07	[0.06; 0.08]	0.00039608	0.828	[0.702; 0.934]	0.933	0.767	0.800	0.920
Gauss_lf_eep_b32_d3_avg	3.77	[3.46; 4.04]	3.23	[2.84; 3.56]	0.00007833	0.828	[0.712; 0.917]	1.000	0.500	0.667	1.000
Contrast_sep_b2_d1_avg	0.03	[0.02; 0.03]	0.04	[0.04; 0.05]	0.00025863	0.827	[0.708; 0.927]	0.867	0.733	0.765	0.846
Homogeneity2_s_ndep_b2_d1_avg	0.01	[0.01; 0.02]	0.02	[0.02; 0.03]	0.00025863	0.827	[0.710; 0.926]	0.867	0.733	0.765	0.846
Dissimilarity_sep_b2_d1_avg	0.03	[0.02; 0.03]	0.04	[0.04; 0.05]	0.00025863	0.827	[0.709; 0.926]	0.867	0.733	0.765	0.846
Homogeneity1_s_ndep_b2_d1_avg	0.01	[0.01; 0.02]	0.02	[0.02; 0.03]	0.00025863	0.827	[0.708; 0.926]	0.867	0.733	0.765	0.846
DMN_sep_b2_d1_avg	0.01	[0.01; 0.01]	0.01	[0.01; 0.01]	0.00025863	0.827	[0.709; 0.926]	0.867	0.733	0.765	0.846
IDMN_s_ndep_b2_d1_avg	0.02	[0.02; 0.03]	0.03	[0.03; 0.04]	0.00025863	0.827	[0.710; 0.927]	0.867	0.733	0.765	0.846
DN_sep_b2_d1_avg	0.01	[0.01; 0.02]	0.02	[0.02; 0.03]	0.00025863	0.827	[0.711; 0.927]	0.867	0.733	0.765	0.846
IDN_s_ndep_b2_d1_avg	0.02	[0.02; 0.02]	0.03	[0.02; 0.03]	0.00025863	0.827	[0.707; 0.923]	0.867	0.733	0.765	0.846
Autocorrelation_s_ndep_b2_d1_avg	0.06	[0.05; 0.07]	0.08	[0.07; 0.10]	0.00025863	0.827	[0.711; 0.927]	0.867	0.733	0.765	0.846
Inv_autocorrelation_s_nd_ep_b2_d1_avg	0.01	[0.01; 0.02]	0.02	[0.02; 0.03]	0.00025863	0.827	[0.710; 0.927]	0.867	0.733	0.765	0.846
Gauss_s_ndep_b2_d1_avg	0.02	[0.01; 0.02]	0.03	[0.02; 0.03]	0.00025863	0.827	[0.709; 0.924]	0.867	0.733	0.765	0.846
Gauss_lp_s_ndep_b2_d1_avg	0.01	[0.01; 0.01]	0.02	[0.01; 0.02]	0.00025863	0.827	[0.711; 0.924]	0.867	0.733	0.765	0.846
Gauss_lf_s_ndep_b2_d1_avg	0.01	[0.01; 0.01]	0.02	[0.01; 0.02]	0.00025863	0.827	[0.710; 0.926]	0.867	0.733	0.765	0.846
Gauss_rf_s_ndep_b2_d1_avg	0.01	[0.01; 0.01]	0.02	[0.01; 0.02]	0.00025863	0.827	[0.710; 0.924]	0.867	0.733	0.765	0.846
Gauss_rp_s_ndep_b2_d1_avg	0.01	[0.01; 0.01]	0.02	[0.01; 0.02]	0.00025863	0.827	[0.709; 0.926]	0.867	0.733	0.765	0.846
Inv_Gauss_s_ndep_b2_d1_avg	0.05	[0.04; 0.06]	0.07	[0.06; 0.08]	0.00025863	0.827	[0.711; 0.923]	0.867	0.733	0.765	0.846
Inv_Gauss_lp_s_ndep_b2_d1_avg	0.08	[0.06; 0.09]	0.11	[0.10; 0.14]	0.00025863	0.827	[0.708; 0.927]	0.867	0.733	0.765	0.846
Inv_Gauss_lf_s_ndep_b2_d1_avg	0.08	[0.06; 0.09]	0.11	[0.10; 0.14]	0.00025863	0.827	[0.708; 0.923]	0.867	0.733	0.765	0.846
Inv_Gauss_rf_s_ndep_b2_d1_avg	0.08	[0.06; 0.09]	0.11	[0.10; 0.14]	0.00025863	0.827	[0.707; 0.927]	0.867	0.733	0.765	0.846
Inv_Gauss_rp_s_ndep_b2_d1_avg	0.08	[0.06; 0.09]	0.11	[0.10; 0.14]	0.00025863	0.827	[0.710; 0.923]	0.867	0.733	0.765	0.846
Gauss_2f_s_ndep_b2_d1_avg	0.02	[0.02; 0.02]	0.03	[0.03; 0.04]	0.00025863	0.827	[0.708; 0.924]	0.867	0.733	0.765	0.846
Inv_Gauss_2f_s_ndep_b2_d1_avg	0.16	[0.13; 0.18]	0.23	[0.20; 0.28]	0.00025863	0.827	[0.708; 0.924]	0.867	0.733	0.765	0.846
Gauss_2p_s_ndep_b2_d1_avg	0.02	[0.02; 0.02]	0.03	[0.03; 0.04]	0.00025863	0.827	[0.707; 0.926]	0.867	0.733	0.765	0.846

Inv_Gauss_2p_s_ndep_b2_d1_avg	0.16	[0.13; 0.18]	0.23	[0.20; 0.28]	0.00025863	0.827	[0.710; 0.924]	0.867	0.733	0.765	0.846
Cluster_t_s_ndep_b2_d1_avg	0.15	[0.12; 0.18]	0.22	[0.19; 0.26]	0.00032041	0.827	[0.711; 0.928]	0.867	0.733	0.765	0.846
Cluster_d_s_nd_ep_b16_d3_avg	0.07	[0.07; 0.08]	0.09	[0.08; 0.11]	0.00106986	0.827	[0.714; 0.921]	0.700	0.867	0.840	0.743
Gauss_lp_e_ndep_b32_d3_avg	1.72	[1.51; 1.86]	1.40	[1.25; 1.56]	0.00009474	0.827	[0.717; 0.917]	0.967	0.533	0.674	0.941
Dif_energyep_b2_d1_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00032839	0.826	[0.710; 0.926]	0.900	0.667	0.730	0.870
Inv_dif_energyep_b2_d1_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00032839	0.826	[0.709; 0.926]	0.900	0.667	0.730	0.870
Har_meanep_b8_d1_avg	0.00	[0.00; 0.01]	0.01	[0.01; 0.01]	0.00048208	0.826	[0.711; 0.920]	0.733	0.833	0.815	0.758
High_notchep_b8_d1_avg	0.03	[0.03; 0.03]	0.03	[0.03; 0.03]	0.00093615	0.826	[0.709; 0.927]	0.767	0.833	0.821	0.781
IMC2ep_b8_d3_avg	0.30	[0.28; 0.33]	0.36	[0.33; 0.40]	0.00263154	0.826	[0.712; 0.924]	0.767	0.833	0.821	0.781
Cluster_p_s_ndep_b16_d3_avg	588.24	[510.88; 724.90]	822.46	[655.98; 1218.28]	0.00054586	0.826	[0.712; 0.917]	0.633	0.867	0.826	0.703
Gauss_lp_e_ndep_b32_d2_avg	1.90	[1.75; 2.08]	1.64	[1.45; 1.81]	0.00008702	0.826	[0.716; 0.918]	0.900	0.600	0.692	0.857
Gauss_sep_b2_d1_avg	0.20	[0.19; 0.21]	0.19	[0.18; 0.19]	0.00022384	0.824	[0.710; 0.918]	1.000	0.500	0.667	1.000
Inv_Gauss_sep_b2_d1_avg	0.54	[0.53; 0.56]	0.50	[0.48; 0.53]	0.00022384	0.824	[0.710; 0.919]	1.000	0.500	0.667	1.000
Varianceep_b2_d1_avg	0.03	[0.02; 0.03]	0.02	[0.01; 0.02]	0.00022384	0.824	[0.712; 0.917]	1.000	0.500	0.667	1.000
Energyep_b2_d1_avg	0.33	[0.32; 0.34]	0.31	[0.29; 0.32]	0.00022384	0.824	[0.712; 0.918]	1.000	0.500	0.667	1.000
Cluster_d_sep_b16_d3_avg	0.08	[0.08; 0.10]	0.10	[0.09; 0.13]	0.00070038	0.824	[0.710; 0.918]	0.667	0.900	0.870	0.730
Average_sep_b16_d3_avg	0.04	[0.04; 0.05]	0.05	[0.05; 0.06]	0.00070354	0.824	[0.709; 0.918]	0.667	0.900	0.870	0.730
Cluster_t_s_ndep_b32_d2_avg	1.70	[1.55; 2.21]	2.39	[2.06; 3.82]	0.00045036	0.824	[0.710; 0.916]	0.600	0.900	0.857	0.692
Cluster_t_ndep_b2_d1_avg	1.22	[1.12; 1.34]	1.47	[1.36; 1.58]	0.00043194	0.823	[0.704; 0.926]	0.900	0.700	0.750	0.875
RMSep_b2_d1_avg	0.29	[0.28; 0.29]	0.28	[0.27; 0.28]	0.00022007	0.823	[0.709; 0.918]	1.000	0.500	0.667	1.000
IDMNep_b4_d1_avg	0.95	[0.95; 0.96]	0.94	[0.94; 0.95]	0.00043567	0.823	[0.697; 0.931]	0.933	0.733	0.778	0.917
Sum_energyep_b8_d2_avg	0.62	[0.58; 0.64]	0.68	[0.63; 0.72]	0.00010531	0.823	[0.708; 0.920]	0.833	0.667	0.714	0.800
Cluster_s_sep_b16_d3_avg	29.64	[26.79; 35.93]	42.62	[33.40; 60.35]	0.00038278	0.823	[0.709; 0.914]	0.533	0.967	0.941	0.674
Gauss_lp_eep_b32_d1_avg	2.24	[2.16; 2.33]	2.03	[1.93; 2.16]	0.00008033	0.823	[0.712; 0.917]	0.933	0.600	0.700	0.900
Cluster_p_s_ndep_b2_d1_avg	0.79	[0.66; 0.94]	1.13	[0.95; 1.32]	0.00041105	0.822	[0.703; 0.923]	0.900	0.700	0.750	0.875

Dissimilarity_eep_b4_d1_avg	2.75	[2.64; 2.98]	3.21	[3.06; 3.45]	0.00055431	0.822	[0.690; 0.932]	0.933	0.767	0.800	0.920
DN_eep_b4_d1_avg	0.69	[0.66; 0.74]	0.80	[0.76; 0.86]	0.00055431	0.822	[0.690; 0.933]	0.933	0.767	0.800	0.920
Dif_entropyep_b4_d1_avg	1.39	[1.34; 1.46]	1.51	[1.49; 1.57]	0.00061625	0.822	[0.693; 0.934]	0.933	0.767	0.800	0.920
Gauss_lf_e_ndep_b32_d3_avg	3.60	[3.31; 3.83]	3.11	[2.73; 3.41]	0.00007677	0.822	[0.709; 0.912]	1.000	0.500	0.667	1.000
IDN_eep_b2_d1_avg	1.52	[1.50; 1.54]	1.57	[1.54; 1.60]	0.00025156	0.821	[0.708; 0.916]	1.000	0.500	0.667	1.000
Cluster_d_eep_b2_d1_avg	4.00	[3.94; 4.08]	4.17	[4.10; 4.21]	0.00060619	0.821	[0.706; 0.922]	0.933	0.633	0.718	0.905
Contrast_eep_b4_d1_avg	4.18	[3.80; 4.72]	5.25	[5.00; 5.74]	0.00041853	0.821	[0.692; 0.930]	0.933	0.767	0.800	0.920
DMN_eep_b4_d1_avg	0.26	[0.24; 0.30]	0.33	[0.31; 0.36]	0.00041853	0.821	[0.696; 0.932]	0.933	0.767	0.800	0.920
Sum_energyep_b4_d2_avg	0.72	[0.68; 0.73]	0.77	[0.73; 0.81]	0.00013942	0.821	[0.707; 0.917]	0.767	0.733	0.742	0.759
Contrastep_b8_d1_avg	3.32	[3.01; 3.76]	4.28	[3.89; 4.84]	0.00051908	0.821	[0.693; 0.930]	1.000	0.667	0.750	1.000
DMNep_b8_d1_avg	0.05	[0.05; 0.06]	0.07	[0.06; 0.08]	0.00051908	0.821	[0.693; 0.929]	1.000	0.667	0.750	1.000
Dif_entropyep_b8_d1_avg	2.13	[2.06; 2.20]	2.28	[2.24; 2.35]	0.00087352	0.821	[0.688; 0.933]	0.933	0.767	0.800	0.920
Homogeneity2_e_ndep_b16_d1_avg	1.25	[1.22; 1.29]	1.14	[1.09; 1.22]	0.00032285	0.821	[0.698; 0.921]	1.000	0.567	0.698	1.000
Dif_varianceep_b32_d1_avg	24.30	[20.92; 28.13]	32.58	[30.08; 36.90]	0.00049184	0.821	[0.690; 0.933]	0.933	0.767	0.800	0.920
IDMNep_b8_d1_avg	0.96	[0.95; 0.96]	0.94	[0.94; 0.95]	0.00052552	0.820	[0.694; 0.928]	1.000	0.633	0.732	1.000
Homogeneity1_ndep_b16_d1_avg	0.26	[0.25; 0.26]	0.24	[0.24; 0.25]	0.00029283	0.820	[0.702; 0.920]	1.000	0.567	0.698	1.000
IDMNep_b16_d1_avg	0.96	[0.95; 0.96]	0.95	[0.94; 0.95]	0.00056161	0.820	[0.694; 0.929]	0.933	0.733	0.778	0.917
Contrastep_b32_d1_avg	52.37	[46.05; 58.34]	67.21	[60.51; 76.13]	0.00053805	0.820	[0.693; 0.930]	1.000	0.633	0.732	1.000
DMN_ep_b32_d1_avg	0.05	[0.04; 0.06]	0.07	[0.06; 0.07]	0.00053805	0.820	[0.693; 0.928]	1.000	0.633	0.732	1.000
Gauss_rf_sep_b32_d2_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00038226	0.820	[0.707; 0.911]	0.833	0.633	0.694	0.792
Cluster_d_sep_b32_d3_avg	0.06	[0.05; 0.08]	0.09	[0.07; 0.13]	0.00202400	0.820	[0.703; 0.916]	0.700	0.867	0.840	0.743
Average_sep_b32_d3_avg	0.03	[0.02; 0.04]	0.05	[0.04; 0.07]	0.00202555	0.820	[0.704; 0.917]	0.700	0.867	0.840	0.743
SDep_b2_d1_avg	0.16	[0.15; 0.17]	0.13	[0.11; 0.15]	0.00022934	0.819	[0.703; 0.912]	1.000	0.500	0.667	1.000
Uniformityep_b4_d3_avg	0.12	[0.12; 0.12]	0.13	[0.13; 0.14]	0.00063803	0.819	[0.702; 0.921]	0.767	0.767	0.767	0.767
Inv_Cluster_d_e_ndep_b8_d3_avg	0.70	[0.69; 0.71]	0.68	[0.66; 0.69]	0.00017600	0.819	[0.704; 0.914]	0.933	0.600	0.700	0.900

Inv_dif_averageep_b16_d1_avg	0.43	[0.42; 0.43]	0.39	[0.38; 0.42]	0.00036295	0.819	[0.698; 0.923]	0.767	0.800	0.793	0.774
Gauss_rp_s_ndep_b16_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00075244	0.819	[0.707; 0.912]	0.900	0.567	0.675	0.850
Inv_Cluster_d_e_nd_ep_b16_d3_avg	0.57	[0.55; 0.59]	0.53	[0.51; 0.56]	0.00006433	0.819	[0.704; 0.913]	0.567	0.933	0.895	0.683
IDMNep_b32_d1_avg	0.96	[0.95; 0.96]	0.95	[0.94; 0.95]	0.00055927	0.819	[0.691; 0.929]	1.000	0.633	0.732	1.000
Gauss_2f_eep_b2_d1_avg	1.71	[1.68; 1.73]	1.77	[1.73; 1.80]	0.00025348	0.818	[0.706; 0.914]	1.000	0.500	0.667	1.000
Inv_Gauss_2f_eep_b2_d1_avg	12.65	[12.44; 12.82]	13.07	[12.82; 13.28]	0.00025348	0.818	[0.703; 0.916]	1.000	0.500	0.667	1.000
Gauss_2p_eep_b2_d1_avg	1.71	[1.68; 1.73]	1.77	[1.73; 1.80]	0.00025348	0.818	[0.699; 0.912]	1.000	0.500	0.667	1.000
Inv_Gauss_2p_eep_b2_d1_avg	12.65	[12.44; 12.82]	13.07	[12.82; 13.28]	0.00025348	0.818	[0.704; 0.913]	1.000	0.500	0.667	1.000
Cluster_s_ndep_b2_d1_avg	2.78	[2.59; 3.08]	3.32	[3.09; 3.61]	0.00057232	0.818	[0.697; 0.921]	0.900	0.700	0.750	0.875
Contrastep_b16_d1_avg	13.14	[11.62; 14.72]	16.84	[15.23; 19.14]	0.00054155	0.818	[0.689; 0.929]	1.000	0.633	0.732	1.000
DMNep_b16_d1_avg	0.05	[0.05; 0.06]	0.07	[0.06; 0.07]	0.00054155	0.818	[0.688; 0.926]	1.000	0.633	0.732	1.000
Inv_Gauss_lf_s_ndep_b32_d3_avg	0.02	[0.02; 0.04]	0.05	[0.03; 0.08]	0.00108584	0.818	[0.704; 0.910]	0.533	0.967	0.941	0.674
IQRep_b2_d1_avg	0.23	[0.22; 0.26]	0.19	[0.17; 0.21]	0.00078649	0.817	[0.693; 0.921]	0.833	0.800	0.806	0.828
Inv_Cluster_d_eep_b8_d2_avg	0.89	[0.88; 0.91]	0.85	[0.82; 0.88]	0.00008946	0.817	[0.702; 0.913]	0.900	0.633	0.711	0.864
Gauss_lp_eep_b16_d2_avg	1.83	[1.69; 1.95]	1.56	[1.43; 1.76]	0.00010507	0.817	[0.703; 0.913]	0.867	0.667	0.722	0.833
Autocorrelation_s_ndep_b32_d2_avg	0.39	[0.35; 0.49]	0.56	[0.46; 0.88]	0.00048820	0.817	[0.702; 0.910]	0.633	0.833	0.792	0.694
Gauss_2f_eep_b32_d2_avg	7.08	[6.74; 7.22]	6.56	[6.22; 6.85]	0.00047812	0.817	[0.696; 0.914]	0.667	0.900	0.870	0.730
Cluster_s_s_ndep_b32_d2_avg	71.09	[61.94; 93.19]	107.61	[82.91; 181.04]	0.00054312	0.817	[0.702; 0.910]	0.567	0.933	0.895	0.683
Cluster_d_s_nd_ep_b32_d3_avg	0.05	[0.05; 0.07]	0.09	[0.07; 0.12]	0.00212885	0.817	[0.700; 0.914]	0.733	0.833	0.815	0.758
Cluster_t_e_ndep_b2_d1_avg	3.72	[3.59; 3.93]	4.09	[3.95; 4.19]	0.00087824	0.816	[0.693; 0.921]	0.900	0.700	0.750	0.875
Correlation_eep_b2_d1_avg	0.87	[0.86; 0.87]	0.88	[0.87; 0.89]	0.00031647	0.816	[0.698; 0.911]	1.000	0.500	0.667	1.000
Mn_AD_mdep_b4_d1_avg	0.04	[0.03; 0.04]	0.03	[0.03; 0.03]	0.00057022	0.816	[0.691; 0.923]	1.000	0.600	0.714	1.000
Cluster_t_s_ndep_b8_d2_avg	1.01	[0.92; 1.08]	1.15	[1.06; 1.34]	0.00064150	0.816	[0.698; 0.913]	0.900	0.667	0.730	0.870
Dif_varianceep_b16_d1_avg	5.54	[5.20; 6.28]	6.83	[6.66; 7.78]	0.00057748	0.816	[0.690; 0.926]	0.900	0.767	0.794	0.885
Sum_energyep_b32_d3_avg	0.65	[0.61; 0.70]	0.75	[0.71; 0.84]	0.00066772	0.814	[0.698; 0.914]	0.767	0.767	0.767	0.767

Dif_entropyep_b16_d1_avg	2.97	[2.90; 3.06]	3.15	[3.09; 3.22]	0.00107351	0.813	[0.687; 0.927]	0.933	0.767	0.800	0.920
Gauss_lf_eep_b16_d2_avg	3.36	[3.19; 3.46]	3.04	[2.73; 3.28]	0.00011152	0.813	[0.697; 0.907]	1.000	0.500	0.667	1.000
Gauss_lp_e_ndep_b16_d3_avg	1.46	[1.29; 1.56]	1.24	[1.14; 1.36]	0.00014119	0.813	[0.696; 0.910]	0.533	0.967	0.941	0.674
Inv_Cluster_d_eep_b16_d3_avg	0.64	[0.61; 0.67]	0.60	[0.56; 0.62]	0.00011185	0.813	[0.701; 0.912]	1.000	0.467	0.652	1.000
Homogeneity2_eep_b2_d1_avg	1.40	[1.38; 1.42]	1.44	[1.42; 1.46]	0.00028432	0.812	[0.696; 0.910]	1.000	0.500	0.667	1.000
Homogeneity1_eep_b2_d1_avg	1.40	[1.38; 1.42]	1.44	[1.42; 1.46]	0.00028432	0.812	[0.694; 0.912]	1.000	0.500	0.667	1.000
Autocorrelation_eep_b2_d1_avg	4.04	[3.98; 4.10]	4.19	[4.11; 4.26]	0.00025560	0.812	[0.694; 0.910]	1.000	0.500	0.667	1.000
Cluster_p_nd_ep_b2_d1_avg	6.34	[5.92; 6.98]	7.58	[7.02; 8.09]	0.00078079	0.812	[0.689; 0.920]	0.900	0.700	0.750	0.875
Homogeneity2_eep_b8_d1_avg	2.56	[2.52; 2.64]	2.43	[2.32; 2.49]	0.00064257	0.812	[0.689; 0.919]	0.867	0.767	0.788	0.852
Dissimilarity_eep_b8_d1_avg	8.19	[7.79; 8.92]	9.66	[8.91; 10.28]	0.00085316	0.812	[0.683; 0.923]	0.933	0.733	0.778	0.917
DN_eep_b8_d1_avg	1.02	[0.97; 1.12]	1.21	[1.11; 1.28]	0.00085316	0.812	[0.682; 0.923]	0.933	0.733	0.778	0.917
Dissimilarityep_b4_d1_avg	0.62	[0.60; 0.66]	0.72	[0.67; 0.79]	0.00069965	0.811	[0.683; 0.920]	0.967	0.667	0.744	0.952
DNep_b4_d1_avg	0.16	[0.15; 0.16]	0.18	[0.17; 0.20]	0.00069965	0.811	[0.682; 0.919]	0.967	0.667	0.744	0.952
Correlationep_b4_d1_avg	0.63	[0.59; 0.66]	0.53	[0.50; 0.59]	0.00089093	0.811	[0.682; 0.920]	1.000	0.633	0.732	1.000
Dif_averageep_b4_d1_avg	0.62	[0.60; 0.66]	0.72	[0.67; 0.79]	0.00069965	0.811	[0.680; 0.921]	0.967	0.667	0.744	0.952
Contrast_eep_b8_d1_avg	21.94	[19.90; 25.56]	28.59	[25.80; 31.01]	0.00068670	0.811	[0.679; 0.924]	0.933	0.733	0.778	0.917
DMN_eep_b8_d1_avg	0.34	[0.31; 0.40]	0.45	[0.40; 0.48]	0.00068670	0.811	[0.679; 0.926]	0.933	0.733	0.778	0.917
Cluster_d_s_ndep_b8_d2_avg	0.11	[0.11; 0.12]	0.12	[0.12; 0.13]	0.00063538	0.811	[0.691; 0.913]	0.667	0.900	0.870	0.730
Gauss_lf_e_ndep_b16_d3_avg	2.92	[2.70; 3.00]	2.56	[2.38; 2.82]	0.00010129	0.811	[0.690; 0.904]	1.000	0.500	0.667	1.000
Contrast_sep_b32_d1_avg	0.06	[0.05; 0.07]	0.10	[0.07; 0.13]	0.00127562	0.811	[0.694; 0.911]	0.733	0.833	0.815	0.758
DMN_s_ep_b32_d1_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00127562	0.811	[0.693; 0.911]	0.733	0.833	0.815	0.758
Gauss_lp_eep_b8_d2_avg	1.57	[1.48; 1.65]	1.39	[1.29; 1.52]	0.00014081	0.810	[0.698; 0.907]	0.900	0.567	0.675	0.850
Contrast_eep_b16_d1_avg	108.91	[97.41; 126.40]	142.49	[125.01; 155.56]	0.00075693	0.810	[0.680; 0.923]	0.967	0.700	0.763	0.955
Homogeneity2_ndep_b16_d1_avg	0.18	[0.17; 0.18]	0.16	[0.15; 0.17]	0.00047650	0.810	[0.686; 0.921]	0.867	0.733	0.765	0.846
Homogeneity1_e_nd_ep_b16_d1_avg	1.86	[1.85; 1.89]	1.79	[1.75; 1.86]	0.00028835	0.810	[0.689; 0.908]	0.933	0.600	0.700	0.900

DMN_eep_b16_d1_avg	0.43	[0.38; 0.49]	0.56	[0.49; 0.61]	0.00075693	0.810	[0.679; 0.922]	0.967	0.700	0.763	0.955
Cluster_p_s_ep_b16_d3_avg	687.00	[608.33; 822.64]	1021.47	[752.03; 1522.02]	0.00059338	0.810	[0.694; 0.906]	0.867	0.600	0.684	0.818
Dif_entropyep_b32_d1_avg	3.88	[3.81; 3.97]	4.07	[3.98; 4.14]	0.00154169	0.810	[0.680; 0.922]	0.933	0.733	0.778	0.917
Dissimilarityep_b8_d1_avg	1.33	[1.25; 1.41]	1.54	[1.42; 1.67]	0.00074400	0.809	[0.680; 0.919]	0.967	0.667	0.744	0.952
DNep_b8_d1_avg	0.17	[0.16; 0.18]	0.19	[0.18; 0.21]	0.00074400	0.809	[0.680; 0.921]	0.967	0.667	0.744	0.952
Dif_averageep_b8_d1_avg	1.33	[1.25; 1.41]	1.54	[1.42; 1.67]	0.00074400	0.809	[0.681; 0.920]	0.967	0.667	0.744	0.952
Autocorrelation_s_ndep_b8_d2_avg	0.24	[0.22; 0.25]	0.26	[0.25; 0.31]	0.00138123	0.809	[0.693; 0.910]	0.900	0.667	0.730	0.870
Gauss_lf_e_ndep_b8_d3_avg	1.99	[1.91; 2.08]	1.87	[1.76; 1.95]	0.00018147	0.809	[0.696; 0.906]	0.933	0.567	0.683	0.895
Dissimilarityep_b16_d1_avg	2.71	[2.53; 2.87]	3.11	[2.87; 3.39]	0.00078434	0.809	[0.679; 0.920]	0.967	0.667	0.744	0.952
DNep_b16_d1_avg	0.17	[0.16; 0.18]	0.19	[0.18; 0.21]	0.00078434	0.809	[0.684; 0.920]	0.967	0.667	0.744	0.952
Dif_averageep_b16_d1_avg	2.71	[2.53; 2.87]	3.11	[2.87; 3.39]	0.00078434	0.809	[0.679; 0.921]	0.967	0.667	0.744	0.952
Dissimilarity_ep_b32_d1_avg	5.44	[5.08; 5.75]	6.24	[5.77; 6.81]	0.00074720	0.809	[0.681; 0.917]	0.967	0.667	0.744	0.952
DNep_b32_d1_avg	0.17	[0.16; 0.18]	0.20	[0.18; 0.21]	0.00074720	0.809	[0.677; 0.920]	0.967	0.667	0.744	0.952
Dif_averageep_b32_d1_avg	5.44	[5.08; 5.75]	6.24	[5.77; 6.81]	0.00074720	0.809	[0.681; 0.922]	0.967	0.667	0.744	0.952
Gauss_2f_e_ndep_b32_d2_avg	6.69	[6.44; 6.82]	6.24	[5.93; 6.52]	0.00059038	0.809	[0.691; 0.909]	0.733	0.800	0.786	0.750
Homogeneity1_eep_b8_d1_avg	2.88	[2.84; 2.93]	2.79	[2.72; 2.84]	0.00063031	0.808	[0.689; 0.910]	0.767	0.767	0.767	0.767
Inv_Cluster_t_e_ndep_b8_d3_avg	0.12	[0.12; 0.13]	0.11	[0.11; 0.12]	0.00023320	0.808	[0.691; 0.907]	0.967	0.500	0.659	0.938
Dissimilarity_eep_b16_d1_avg	21.65	[20.42; 23.29]	25.13	[22.82; 26.55]	0.00113649	0.808	[0.679; 0.922]	1.000	0.633	0.732	1.000
DN_eep_b16_d1_avg	1.35	[1.28; 1.46]	1.57	[1.43; 1.66]	0.00113649	0.808	[0.678; 0.919]	1.000	0.633	0.732	1.000
Contrast_sep_b32_d2_avg	0.15	[0.12; 0.22]	0.23	[0.19; 0.32]	0.00307124	0.808	[0.682; 0.911]	0.700	0.933	0.913	0.757
Homogeneity1_e_nd_ep_b32_d2_avg	1.52	[1.44; 1.57]	1.39	[1.31; 1.48]	0.00088722	0.808	[0.687; 0.908]	0.733	0.800	0.786	0.750
DMN_sep_b32_d2_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00307124	0.808	[0.683; 0.914]	0.700	0.933	0.913	0.757
Tri_meanep_b2_d1_avg	0.17	[0.16; 0.18]	0.18	[0.17; 0.19]	0.00025636	0.807	[0.688; 0.904]	0.867	0.667	0.722	0.833
Mn_AD_mnep_b4_d1_avg	0.04	[0.03; 0.04]	0.03	[0.03; 0.03]	0.00078729	0.807	[0.678; 0.918]	1.000	0.600	0.714	1.000
Gauss_rf_s_ndep_b8_d3_avg	0.00	[0.00; 0.00]	0.01	[0.00; 0.01]	0.00061390	0.807	[0.690; 0.903]	0.967	0.500	0.659	0.938

Cluster_d_sep_b8_d3_avg	0.15	[0.14; 0.16]	0.17	[0.15; 0.18]	0.00082661	0.807	[0.693; 0.906]	0.567	0.933	0.895	0.683
Contrast_sep_b16_d1_avg	0.05	[0.04; 0.05]	0.07	[0.05; 0.08]	0.00056312	0.807	[0.688; 0.907]	0.733	0.800	0.786	0.750
DMN_sep_b16_d1_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00056312	0.807	[0.689; 0.908]	0.733	0.800	0.786	0.750
Gauss_lf_eep_b16_d3_avg	3.25	[2.96; 3.31]	2.80	[2.58; 3.08]	0.00013944	0.807	[0.689; 0.902]	1.000	0.500	0.667	1.000
Cluster_d_s_ndep_b32_d2_avg	0.05	[0.04; 0.06]	0.06	[0.06; 0.09]	0.00087226	0.807	[0.691; 0.906]	0.700	0.833	0.808	0.735
Cluster_s_e_ndep_b2_d1_avg	8.50	[8.19; 8.91]	9.26	[8.93; 9.54]	0.00174377	0.806	[0.681; 0.914]	0.867	0.733	0.765	0.846
IDNep_b8_d1_avg	0.87	[0.87; 0.88]	0.86	[0.84; 0.87]	0.00093098	0.806	[0.677; 0.918]	0.933	0.700	0.757	0.913
Gauss_2f_eep_b16_d2_avg	5.90	[5.77; 5.96]	5.63	[5.44; 5.85]	0.00063737	0.806	[0.684; 0.907]	0.667	0.833	0.800	0.714
Gauss_lp_eep_b16_d3_avg	1.64	[1.46; 1.79]	1.40	[1.27; 1.53]	0.00018975	0.806	[0.692; 0.904]	0.933	0.533	0.667	0.889
Homogeneity1_e_nd_ep_b32_d1_avg	1.81	[1.76; 1.86]	1.67	[1.57; 1.76]	0.00068272	0.806	[0.680; 0.908]	0.767	0.800	0.793	0.774
Inv_Gauss_lf_sep_b32_d3_avg	0.04	[0.03; 0.04]	0.06	[0.05; 0.11]	0.00095605	0.806	[0.687; 0.906]	0.800	0.767	0.774	0.793
Inv_dif_varianceep_b2_d1_avg	11.71	[6.68; 18.45]	30.96	[17.65; 127.28]	0.31728832	0.804	[0.682; 0.911]	0.900	0.633	0.711	0.864
Inv_Gauss_e_nd_ep_b4_d1_avg	4.12	[3.97; 4.36]	4.67	[4.36; 4.91]	0.00103725	0.804	[0.676; 0.919]	0.967	0.700	0.763	0.955
Gauss_lp_e_ndep_b8_d3_avg	1.11	[1.03; 1.19]	1.00	[0.92; 1.07]	0.00020773	0.804	[0.688; 0.900]	0.967	0.467	0.644	0.933
Gauss_lf_eep_b8_d3_avg	2.50	[2.31; 2.55]	2.22	[2.10; 2.41]	0.00026051	0.804	[0.684; 0.902]	1.000	0.500	0.667	1.000
Average_sep_b8_d3_avg	0.07	[0.07; 0.08]	0.08	[0.08; 0.09]	0.00086817	0.804	[0.688; 0.904]	0.567	0.933	0.895	0.683
IDNep_b4_d1_avg	0.88	[0.88; 0.89]	0.87	[0.86; 0.88]	0.00092975	0.803	[0.674; 0.916]	0.900	0.733	0.771	0.880
Autocorrelation_s_ndep_b8_d3_avg	0.24	[0.22; 0.27]	0.29	[0.26; 0.32]	0.00107192	0.803	[0.684; 0.901]	0.900	0.567	0.675	0.850
Cluster_t_s_ndep_b16_d2_avg	1.25	[1.14; 1.34]	1.51	[1.28; 1.81]	0.00082373	0.803	[0.684; 0.900]	0.933	0.600	0.700	0.900
Gauss_e_ndep_b4_d1_avg	1.19	[1.15; 1.22]	1.27	[1.23; 1.32]	0.00162978	0.802	[0.672; 0.914]	0.900	0.733	0.771	0.880
Gauss_lp_eep_b4_d2_avg	1.31	[1.26; 1.35]	1.21	[1.14; 1.30]	0.00014855	0.802	[0.684; 0.899]	1.000	0.467	0.652	1.000
Gauss_lf_eep_b4_d3_avg	1.73	[1.64; 1.75]	1.61	[1.56; 1.69]	0.00044460	0.802	[0.680; 0.902]	0.967	0.533	0.674	0.941
Cluster_t_s_ndep_b8_d3_avg	1.08	[0.99; 1.21]	1.26	[1.16; 1.48]	0.00070981	0.802	[0.684; 0.899]	0.600	0.867	0.818	0.684
Gauss_rp_s_ep_b16_d3_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00079455	0.802	[0.684; 0.902]	0.900	0.633	0.711	0.864
Sum_energyep_b16_d3_avg	0.65	[0.61; 0.69]	0.71	[0.68; 0.76]	0.00049550	0.802	[0.681; 0.904]	0.800	0.700	0.727	0.778

Variance_sep_b32_d2_avg	0.52	[0.46; 0.68]	0.80	[0.64; 1.28]	0.00047100	0.802	[0.684; 0.899]	0.933	0.500	0.651	0.882
Homogeneity2_eep_b4_d1_avg	2.34	[2.31; 2.35]	2.28	[2.24; 2.32]	0.00067366	0.801	[0.679; 0.907]	0.667	0.867	0.833	0.722
Contrast_sep_b8_d1_avg	0.04	[0.04; 0.05]	0.05	[0.05; 0.07]	0.00045913	0.801	[0.677; 0.906]	0.833	0.700	0.735	0.808
DMN_sep_b8_d1_avg	0.00	[0.00; 0.00]	0.00	[0.00; 0.00]	0.00045913	0.801	[0.676; 0.907]	0.833	0.700	0.735	0.808
Uniformityep_b16_d2_avg	0.08	[0.06; 0.11]	0.13	[0.11; 0.17]	0.00114574	0.801	[0.680; 0.909]	0.733	0.800	0.786	0.750
Gauss_lf_eep_b32_d1_avg	4.12	[4.01; 4.26]	3.93	[3.56; 4.07]	0.00017479	0.801	[0.681; 0.902]	0.967	0.533	0.674	0.941
Cluster_p_s_nd_ep_b32_d2_avg	3297.66	[2815.16; 4243.05]	5156.04	[3688.72; 8551.98]	0.00091852	0.801	[0.681; 0.898]	0.533	0.933	0.889	0.667
Homogeneity2ep_b4_d1_avg	0.71	[0.70; 0.73]	0.68	[0.65; 0.70]	0.00103465	0.800	[0.669; 0.913]	0.933	0.667	0.737	0.909
Cluster_d_e_ndep_b4_d1_avg	9.95	[9.37; 10.29]	10.85	[10.16; 11.50]	0.00143029	0.800	[0.671; 0.911]	0.933	0.633	0.718	0.905
Tri_meanep_b4_d1_avg	0.04	[0.04; 0.04]	0.05	[0.04; 0.05]	0.00114398	0.800	[0.677; 0.910]	1.000	0.533	0.682	1.000
Md_AD_md_ep_b8_d1_avg	0.01	[0.01; 0.01]	0.01	[0.01; 0.01]	0.00105766	0.800	[0.680; 0.901]	0.967	0.500	0.659	0.938
MADep_b8_d1_avg	0.01	[0.01; 0.01]	0.01	[0.01; 0.01]	0.00105766	0.800	[0.681; 0.904]	0.967	0.500	0.659	0.938
Uniformityep_b8_d3_avg	0.06	[0.05; 0.08]	0.09	[0.08; 0.12]	0.00147930	0.800	[0.676; 0.903]	0.667	0.900	0.870	0.730
IDNep_b32_d1_avg	0.87	[0.86; 0.87]	0.85	[0.84; 0.86]	0.00090753	0.800	[0.670; 0.912]	0.933	0.700	0.757	0.913
Gauss_2f_eep_b32_d1_avg	7.61	[7.46; 7.71]	7.29	[6.99; 7.50]	0.00096657	0.800	[0.680; 0.901]	0.700	0.800	0.778	0.727
GLRLM											
SRLGLEep_b4_avg	0.20	[0.19; 0.21]	0.23	[0.22; 0.27]	0.00001347	0.918	[0.822; 0.996]	1.000	0.867	0.882	1.000
LRLGLEep_b2_avg	6.34	[5.35; 7.30]	3.56	[2.95; 4.32]	0.00005396	0.894	[0.799; 0.970]	1.000	0.733	0.789	1.000
LREep_b2_avg	9.15	[7.86; 10.58]	5.32	[4.78; 6.27]	0.00008797	0.888	[0.791; 0.962]	0.933	0.767	0.800	0.920
LRLGLEep_b4_avg	1.65	[1.48; 1.74]	1.13	[0.99; 1.23]	0.00011617	0.888	[0.778; 0.974]	0.967	0.867	0.879	0.963
SRLGLEep_b2_avg	0.29	[0.27; 0.31]	0.38	[0.33; 0.44]	0.00004815	0.881	[0.783; 0.957]	0.900	0.767	0.794	0.885
SRLGLEep_b8_avg	0.12	[0.11; 0.13]	0.14	[0.13; 0.15]	0.00006380	0.879	[0.769; 0.968]	1.000	0.767	0.811	1.000
LREep_b4_avg	3.81	[3.51; 4.34]	2.75	[2.57; 3.21]	0.00034104	0.874	[0.772; 0.957]	1.000	0.733	0.789	1.000
RPep_b2_avg	0.46	[0.42; 0.49]	0.57	[0.51; 0.60]	0.00006535	0.871	[0.771; 0.951]	1.000	0.667	0.750	1.000
LRHGLEep_b2_avg	19.67	[16.78; 23.82]	12.46	[11.44; 14.13]	0.00019445	0.870	[0.768; 0.953]	0.933	0.767	0.800	0.920

RPep_b4_avg	0.64	[0.60; 0.67]	0.73	[0.69; 0.76]	0.00014208	0.859	[0.751; 0.947]	0.900	0.767	0.794	0.885
LREep_b8_avg	2.14	[1.98; 2.30]	1.77	[1.66; 1.91]	0.00085685	0.854	[0.742; 0.944]	0.967	0.700	0.763	0.955
LRLGLEep_b8_avg	0.53	[0.46; 0.56]	0.40	[0.37; 0.44]	0.00048520	0.854	[0.733; 0.957]	0.933	0.800	0.824	0.923
SREep_b32_avg	0.95	[0.95; 0.96]	0.97	[0.96; 0.97]	0.00029171	0.853	[0.747; 0.942]	1.000	0.633	0.732	1.000
RPep_b8_avg	0.79	[0.76; 0.81]	0.83	[0.82; 0.86]	0.00032175	0.852	[0.740; 0.943]	0.967	0.733	0.784	0.957
SREep_b8_avg	0.85	[0.83; 0.86]	0.89	[0.87; 0.90]	0.00022819	0.851	[0.740; 0.939]	0.967	0.667	0.744	0.952
SREep_b4_avg	0.74	[0.70; 0.76]	0.81	[0.76; 0.83]	0.00017530	0.844	[0.737; 0.936]	0.967	0.633	0.725	0.950
SREep_b16_avg	0.91	[0.91; 0.93]	0.94	[0.93; 0.94]	0.00037202	0.844	[0.731; 0.938]	0.933	0.733	0.778	0.917
LGLREep_b8_avg	0.16	[0.16; 0.16]	0.17	[0.17; 0.18]	0.00035794	0.833	[0.710; 0.936]	0.933	0.767	0.800	0.920
LGLREep_b32_avg	0.04	[0.04; 0.04]	0.05	[0.04; 0.05]	0.00053183	0.833	[0.718; 0.930]	0.900	0.700	0.750	0.875
SREep_b2_avg	0.59	[0.53; 0.60]	0.68	[0.60; 0.71]	0.00022688	0.832	[0.719; 0.927]	0.900	0.700	0.750	0.875
RPep_b32_avg	0.94	[0.93; 0.94]	0.95	[0.94; 0.96]	0.00053179	0.830	[0.714; 0.927]	1.000	0.567	0.698	1.000
SRLGLEep_b32_avg	0.04	[0.03; 0.04]	0.04	[0.04; 0.04]	0.00041122	0.830	[0.714; 0.927]	0.933	0.667	0.737	0.909
RPep_b16_avg	0.88	[0.87; 0.89]	0.91	[0.89; 0.92]	0.00063217	0.829	[0.712; 0.924]	0.967	0.600	0.707	0.947
LRHGLEep_b4_avg	26.30	[23.66; 31.66]	19.99	[19.00; 23.42]	0.00191054	0.826	[0.711; 0.920]	0.900	0.667	0.730	0.870
LREep_b32_avg	1.22	[1.19; 1.27]	1.17	[1.14; 1.20]	0.00109687	0.822	[0.706; 0.919]	0.867	0.733	0.765	0.846
SRLGLEep_b16_avg	0.07	[0.06; 0.07]	0.08	[0.07; 0.08]	0.00057258	0.820	[0.701; 0.924]	0.867	0.767	0.788	0.852
LREep_b16_avg	1.49	[1.42; 1.57]	1.35	[1.30; 1.41]	0.00147469	0.817	[0.701; 0.918]	0.800	0.767	0.774	0.793
LRLGLEep_b16_avg	0.19	[0.17; 0.21]	0.16	[0.15; 0.18]	0.00067542	0.814	[0.693; 0.914]	0.933	0.633	0.718	0.905
LRLGLEep_b32_avg	0.08	[0.07; 0.09]	0.07	[0.06; 0.08]	0.00061639	0.808	[0.689; 0.906]	0.700	0.833	0.808	0.735
LGLREep_b16_avg	0.08	[0.08; 0.09]	0.09	[0.09; 0.09]	0.00161389	0.802	[0.672; 0.912]	0.833	0.800	0.806	0.828
Geometry based parameters											
s_ratio_to_all_2ep_2	0.90	[0.85; 0.96]	0.80	[0.73; 0.84]	0.00006297	0.890	[0.801; 0.960]	0.833	0.833	0.833	0.833
s_ratio_to_all_7ep_8	0.40	[0.36; 0.46]	0.31	[0.27; 0.35]	0.00004832	0.888	[0.796; 0.958]	0.933	0.733	0.778	0.917
s_ratio_to_all_22ep_32	0.12	[0.11; 0.14]	0.09	[0.08; 0.10]	0.00005196	0.883	[0.787; 0.959]	0.767	0.900	0.885	0.794

s_ratio_to_all_14ep_16	0.22	[0.20; 0.25]	0.17	[0.14; 0.19]	0.00006811	0.882	[0.790; 0.954]	0.833	0.833	0.833	0.833
s_ratio_to_all_16ep_32	0.11	[0.10; 0.13]	0.09	[0.08; 0.10]	0.00005204	0.882	[0.789; 0.957]	0.967	0.700	0.763	0.955
s_ratio_to_all_11ep_16	0.22	[0.20; 0.26]	0.17	[0.16; 0.19]	0.00006581	0.881	[0.787; 0.958]	0.767	0.867	0.852	0.788
s_ratio_to_all_27ep_32	0.11	[0.11; 0.13]	0.09	[0.08; 0.10]	0.00019188	0.876	[0.777; 0.954]	0.900	0.700	0.750	0.875
s_ratio_to_all_25ep_32	0.11	[0.11; 0.14]	0.09	[0.08; 0.10]	0.00004843	0.874	[0.780; 0.949]	0.667	0.933	0.909	0.737
s_ratio_to_all_6ep_8	0.40	[0.37; 0.46]	0.32	[0.29; 0.35]	0.00007621	0.871	[0.772; 0.950]	0.867	0.800	0.812	0.857
s_ratio_to_all_8ep_16	0.21	[0.19; 0.26]	0.17	[0.15; 0.18]	0.00008007	0.871	[0.777; 0.948]	0.867	0.767	0.788	0.852
s_ratio_to_all_13ep_16	0.22	[0.20; 0.27]	0.17	[0.15; 0.20]	0.00005517	0.870	[0.772; 0.947]	0.933	0.633	0.718	0.905
s_ratio_to_all_28ep_32	0.12	[0.11; 0.14]	0.09	[0.08; 0.10]	0.00004802	0.869	[0.774; 0.946]	0.800	0.800	0.800	0.800
s_ratio_to_all_13ep_32	0.11	[0.10; 0.13]	0.09	[0.08; 0.10]	0.00008194	0.868	[0.764; 0.950]	0.800	0.833	0.828	0.806
s_ratio_to_all_7ep_16	0.21	[0.20; 0.26]	0.17	[0.15; 0.18]	0.00011391	0.867	[0.761; 0.952]	0.833	0.833	0.833	0.833
s_ratio_to_all_3ep_4	0.65	[0.61; 0.73]	0.54	[0.50; 0.59]	0.00008614	0.864	[0.767; 0.943]	0.867	0.767	0.788	0.852
s_ratio_to_all_10ep_16	0.21	[0.20; 0.26]	0.17	[0.15; 0.19]	0.00011581	0.861	[0.761; 0.944]	0.767	0.867	0.852	0.788
s_ratio_to_all_29ep_32	0.11	[0.10; 0.13]	0.08	[0.08; 0.10]	0.00009006	0.860	[0.760; 0.942]	0.833	0.767	0.781	0.821
s_ratio_to_all_12ep_16	0.23	[0.20; 0.26]	0.17	[0.15; 0.19]	0.00011572	0.858	[0.752; 0.940]	0.833	0.800	0.806	0.828
s_ratio_to_all_15ep_16	0.22	[0.19; 0.24]	0.16	[0.15; 0.18]	0.00010811	0.858	[0.751; 0.942]	0.833	0.800	0.806	0.828
s_ratio_to_all_14ep_32	0.12	[0.11; 0.13]	0.09	[0.08; 0.10]	0.00021378	0.858	[0.753; 0.948]	0.900	0.733	0.771	0.880
s_ratio_to_all_24ep_32	0.12	[0.11; 0.14]	0.09	[0.08; 0.10]	0.00016338	0.857	[0.754; 0.942]	0.867	0.767	0.788	0.852
s_ratio_to_all_4ep_8	0.37	[0.34; 0.45]	0.30	[0.28; 0.34]	0.00013644	0.856	[0.749; 0.940]	0.833	0.767	0.781	0.821
s_ratio_to_all_5ep_8	0.39	[0.36; 0.44]	0.31	[0.29; 0.35]	0.00015322	0.856	[0.754; 0.938]	0.800	0.767	0.774	0.793
s_ratio_to_all_4ep_4	0.59	[0.55; 0.65]	0.48	[0.41; 0.53]	0.00019620	0.854	[0.751; 0.938]	0.800	0.767	0.774	0.793
s_ratio_to_all_9ep_16	0.21	[0.19; 0.26]	0.17	[0.16; 0.19]	0.00028789	0.854	[0.747; 0.941]	0.833	0.767	0.781	0.821
s_ratio_to_all_20ep_32	0.11	[0.10; 0.14]	0.09	[0.07; 0.10]	0.00015859	0.854	[0.751; 0.939]	0.867	0.733	0.765	0.846
s_ratio_to_all_30_ep_32	0.11	[0.10; 0.13]	0.09	[0.08; 0.10]	0.00014978	0.853	[0.754; 0.936]	0.767	0.800	0.793	0.774
s_ratio_to_all_21ep_32	0.12	[0.10; 0.14]	0.09	[0.08; 0.10]	0.00021819	0.852	[0.749; 0.939]	0.833	0.767	0.781	0.821

s_ratio_to_all_15ep_32	0.12	[0.11; 0.14]	0.09	[0.08; 0.10]	0.00021498	0.850	[0.741; 0.937]	0.800	0.767	0.774	0.793
s_ratio_to_all_19ep_32	0.11	[0.10; 0.13]	0.09	[0.08; 0.10]	0.00014215	0.849	[0.742; 0.934]	0.700	0.900	0.875	0.750
s_ratio_to_all_26ep_32	0.11	[0.10; 0.15]	0.09	[0.08; 0.10]	0.00013039	0.848	[0.742; 0.933]	0.967	0.567	0.690	0.944
s_ratio_to_all_10_ep_32	0.11	[0.10; 0.14]	0.08	[0.08; 0.10]	0.00015899	0.844	[0.737; 0.927]	1.000	0.567	0.698	1.000
s_ratio_to_all_3ep_32	0.10	[0.10; 0.13]	0.08	[0.08; 0.09]	0.00014020	0.839	[0.730; 0.932]	0.767	0.867	0.852	0.788
s_ratio_to_all_5ep_32	0.11	[0.10; 0.13]	0.08	[0.08; 0.10]	0.00004671	0.839	[0.732; 0.930]	0.733	0.867	0.846	0.765
s_ratio_to_all_2ep_32	0.10	[0.09; 0.12]	0.08	[0.07; 0.09]	0.00023945	0.837	[0.729; 0.927]	0.933	0.600	0.700	0.900
s_ratio_to_all_8ep_32	0.12	[0.10; 0.14]	0.09	[0.08; 0.10]	0.00019267	0.837	[0.728; 0.927]	0.700	0.867	0.840	0.743
s_ratio_to_all_31ep_32	0.11	[0.10; 0.13]	0.08	[0.07; 0.10]	0.00025030	0.837	[0.726; 0.927]	0.800	0.767	0.774	0.793
s_ratio_to_all_4ep_16	0.20	[0.18; 0.25]	0.17	[0.15; 0.18]	0.00026688	0.832	[0.719; 0.927]	0.633	0.933	0.905	0.718
s_ratio_to_all_5ep_16	0.20	[0.19; 0.26]	0.16	[0.15; 0.19]	0.00017100	0.831	[0.717; 0.923]	0.967	0.567	0.690	0.944
s_ratio_to_all_6ep_16	0.22	[0.19; 0.26]	0.17	[0.15; 0.19]	0.00018603	0.831	[0.719; 0.926]	0.733	0.833	0.815	0.758
s_ratio_to_all_23ep_32	0.11	[0.10; 0.14]	0.09	[0.08; 0.10]	0.00035395	0.831	[0.718; 0.923]	0.800	0.767	0.774	0.793
s_ratio_to_all_12ep_32	0.11	[0.10; 0.13]	0.09	[0.08; 0.10]	0.00039034	0.830	[0.717; 0.923]	0.667	0.867	0.833	0.722
s_ratio_to_all_7ep_32	0.11	[0.10; 0.12]	0.08	[0.08; 0.10]	0.00068719	0.829	[0.710; 0.928]	0.900	0.733	0.771	0.880
s_ratio_to_all_6ep_32	0.12	[0.10; 0.14]	0.08	[0.08; 0.09]	0.00029502	0.827	[0.712; 0.924]	0.800	0.767	0.774	0.793
s_ratio_to_all_3ep_16	0.21	[0.18; 0.24]	0.16	[0.14; 0.18]	0.00014313	0.823	[0.707; 0.919]	0.633	0.933	0.905	0.718
s_ratio_to_all_17ep_32	0.12	[0.10; 0.13]	0.09	[0.08; 0.10]	0.00057304	0.820	[0.704; 0.919]	0.900	0.667	0.730	0.870
fractal_bc_d_3ep_32	1.11	[1.06; 1.18]	1.01	[0.96; 1.06]	0.00036927	0.817	[0.702; 0.913]	0.767	0.733	0.742	0.759
s_ratio_to_all_18ep_32	0.11	[0.10; 0.15]	0.09	[0.08; 0.10]	0.00037915	0.816	[0.700; 0.912]	0.833	0.700	0.735	0.808
fractal_bc_d_8ep_32	1.13	[1.07; 1.18]	1.03	[0.98; 1.07]	0.00051135	0.816	[0.696; 0.919]	0.667	0.933	0.909	0.737
s_ratio_to_all_3ep_8	0.36	[0.34; 0.45]	0.31	[0.28; 0.34]	0.00026422	0.814	[0.699; 0.914]	0.767	0.767	0.767	0.767
s_ratio_to_all_11ep_32	0.12	[0.10; 0.13]	0.09	[0.08; 0.10]	0.00017438	0.814	[0.694; 0.917]	0.767	0.800	0.793	0.774
s_ratio_to_all_8ep_8	0.35	[0.31; 0.38]	0.27	[0.22; 0.30]	0.00064242	0.811	[0.689; 0.917]	0.733	0.867	0.846	0.765
s_ratio_to_all_9ep_32	0.11	[0.10; 0.12]	0.09	[0.08; 0.10]	0.00039948	0.809	[0.688; 0.911]	0.767	0.767	0.767	0.767

Data is presented as median with interquartile ranges or frequency and percentage of the most frequent element, as appropriate. First-order statistical names are generated as: "statistic"_"orig" indicating calculation done on original images. GLCM statistical names are generated as: "statistic"_"X"_"ep"_"N"_"D"_"avg". X is either empty indicating no manipulation done on the GLCM matrix, or *s* for squared, where the GLCM element were squared or *e* where the entropy of the elements was used. ep: equal probability binning. N: the number of bins used. D: the distance of the reference and the observed voxels. "avg" indicates that statistics were averaged using all directions.

GLRLM statistical names are generated as: "statistic" _ "ep"_"N"_"avg". ep: equal probability binning. N: the number of bins used. "avg" indicates that statistics were averaged using all directions.

Geometry based statistical names were generated as: "statistic"_"S"_"ep"_"N". S: subcomponent used, 1 if original image was used. ep: equal probability binning. N: the number of bins used.

Supplemental References

1. Karady J, Panajotu A, Kolossvary M, Szilveszter B, Jermendy AL, Bartykowszki A, Karolyi M, Celeng C, Merkely B and Maurovich-Horvat P. The effect of four-phasic versus three-phasic contrast media injection protocols on extravasation rate in coronary CT angiography: a randomized controlled trial. *Eur Radiol*. 2017;27:4538-4543.

2. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ and Moros EG. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. *Med Phys.* 2017;44:1050-1062.

3. Haralick RM, Shanmugam K and Dinstein I. Textural Features for Image Classification. *IEEE Transactions on Systems, Man, and Cybernetics.* 1973;SMC-3:610-621.

4. Galloway MM. Texture analysis using gray level run lengths. *Computer Graphics and Image Processing*. 1975;4:172-179.