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File S1. Detailed derivation of results

In this Supporting Information we will give a detailed derivation of the results which in the main text have been abbreviated to keep
formulas concise. First, Equation 23 showing that D(n)

N

is bounded for all n 2 N is derived as
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given g > 1. Note that in the second to last line we have used that D(n)
N

is always the largest for n = 0 (i.e., the population grows the
largest from the previous to the current generation). Second, the step function F

N

(s) (eq. 31) for the ancestral process is derived as

F

N

(s) =
s

Â
n=1

c

(n)
N

=
s

Â
n=1

y

2

N

g

n

=
y

2

N

g

s

Â
n=1

0

B@
1⇣

1 � r

y

2

N

g

⌘
g

1

CA

n

=
y

2

N

g

✓
1 � r

y

2

N

g

◆�g

✓⇣
1 � r

y

2

N

g

⌘�gs

� 1
◆

⇣
1 � r

y

2

N

g

⌘�g

� 1
. (S2)

Then, by solving for s the time-change function G�1
N

(t) (eq. 32) for the ancestral process can be derived as
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where we have used that log
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for sufficiently large N. Finally, the derivation showing that the ancestral process of
the Moran model converges to a (time-inhomogeneous) psi-coalescent (eq. 38) is given by
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