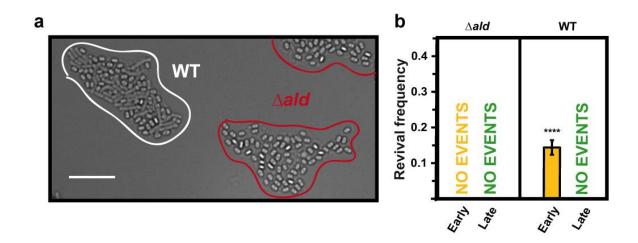
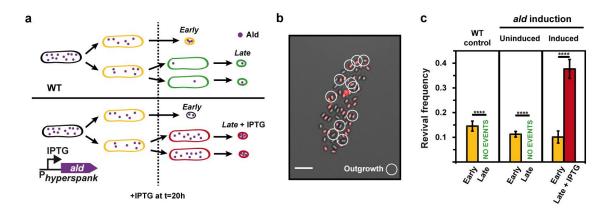
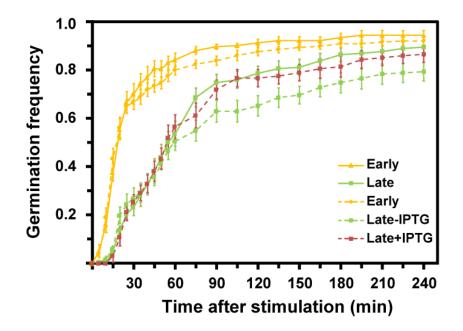
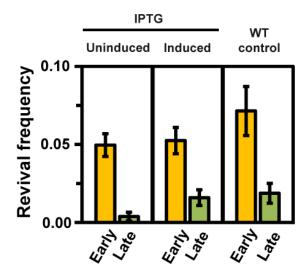
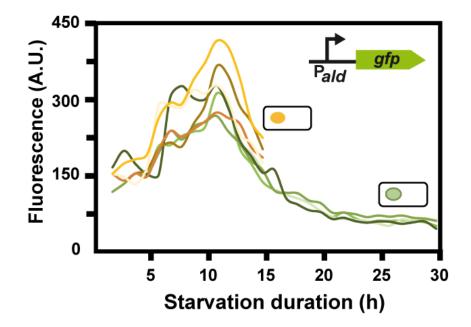

Supplementary Figures


Supplementary Figure 1. *Early* and *late* spores achieve comparable germination frequencies. Germination frequency of *early* (yellow) and *late* spores (green) as a function of the L-alanine concentration that was used for stimulating spores after sporulation on agarose pads. See Methods for details. Results denote the final germination frequency after 2 hours upon which no further germination events were observed in the microcolonies. Strain: BIB1019. Data: mean \pm SEM, $n_c = \ge 4$ ($n_s = \ge 200$). Unpaired t-test: the differences between *early* and *late* spores are not significant (P > 0.05).


Supplementary Figure 2. Micrograph of P_{rapA} -mCherry (BIB1126) cells from a culture that was cultivated for 24 h in liquid SM. Spores that have been released from the sporangia do not show any fluorescence (*early* spores). Spores contained within mother cells show some fluorescence, cells that delay sporulation for even longer are strongly fluorescent. Scale bar: 5 μ m.


Supplementary Figure 3. Effect of heat-treatment on differential spore revival. Revival frequencies of *early* and *late* spores (BIB1126) which were heat-treated prior to induction with L-alanine on a SM pad. Data: mean \pm SEM, n = 4 movies ($n_s = \ge 700$), unpaired t-test: * $P \le 0.05$, ** $P \le 0.01$.


Supplementary Figure 4. Effect of an *ald* gene knock-out. (a) Bright-field image of a colony of an *ald* knock-out (BIB1416) that was co-cultured with a WT strain (BIB224). The *ald* strain carries the P_{trpE^*} -mCherry promoter fusion to distinguish it from the WT. A representative image of spore colonies at t=10 h *after* stimulation with L-alanine is shown. Several *early* WT spores have grown out successfully, while most *ald* mutant spores have germinated but none have grown out. See also Supplementary Movie 4. Scale bar: 10 µm. (b) Corresponding revival frequencies. Strains: BIB1416, BIB224. Data: mean ± SEM, $n_c = \ge 8$ ($n_s = \ge 500$), unpaired t-test: **** $P \le 0.0001$.


Supplementary Figure 5. Effect of Ald-induction in the progenitor cells of *late* spores. (a) Schematics illustrating the formation of *late* spores carrying low levels of Ald in the WT (top) and higher levels of Ald (bottom) formed by inducing *ald* expression from a σ^A -dependent promoter specifically in the progenitors of *late* spores. (b) Micrograph of a spore microcolony showing Ald-induced *late* spores in red. The bright-field image (gray) was overlaid with a fluorescence image of the P_{*rapA*}-*mCherry* reporter. Spores that grew out in response to L-alanine are circled. See also Supplementary Movie 5. Scale bar: 5 µm. (c) Corresponding revival frequencies of *early* and *late* spores in response to L-alanine. Results from left to right show the WT, the uninduced control, and the induced strain as shown in (a) and (b). Strains: BIB1300 and BIB224 (WT), Data: mean \pm SEM, $n_c = \geq 11$ ($n_s = \geq 800$), unpaired t-test: **** $P \leq 0.0001$.

Supplementary Figure 6. Ald does not affect the germination response to L-alanine. Germination frequency as a function of time after stimulating spore microcolonies with L-alanine at time t = 0. During the nutrient down-shift Ald expression was induced at t = 30 h in the progenitor cells of (very) *late* spores (red). Their germination dynamics were comparable to WT *late* spores (green line) or *late* spores that had formed before the induction of Ald expression, i.e. between t = 20 h and t = 30 h (green dashed line). The germination dynamics of *early* spores (yellow) are included as a reference in each case. Strain: BIB1300 and BIB224 (WT), Data: mean \pm SEM, $n_c = \ge 8$ ($n_s = \ge 350$).

Supplementary Figure 7. Ald does not affect the spore revival frequency in response to stimulation with AGFK. Revival frequency (after 8 h) in response to stimulation with AGFK at t = 0 h. During sporulation BIB1300 was induced with IPTG at t = 20 h and compared to the uninduced control. The data for the WT strain is included for reference. Strains: BIB1300, BIB224 (WT). Data: mean \pm SEM, $n_c = \ge 12$ ($n_s = \ge 900$). Unpaired t-test: The difference between induced and uninduced spores is not significant (P > 0.05).

Supplementary Figure 8. Cells down-regulate the *ald* promoter during starvation. Fluorescence trajectories for single cells carrying a P_{ald} -gfp reporter (BIB1213). Yellowish (greenish) denote the trajectories for cells that give rise to *early* (*late*) spores. The trajectories were terminated when a pre-spore became visible.

Supplementary Tables

Accession Number	Vector	Genotype	Source
EIB380	pGFP_Star	<i>'amyE cat TgyrA</i> LICS promoterless <i>gfpmut3 amyE' bla</i> ColE1 origin	Ref. 1
EIB422	pRFP_Star	<i>'amyE cat</i> TgyrA LICS promoterless <i>mcherry amyE' bla</i> ColE1 origin	This work
EIB303	pDR111	'amyE spec ^R TrrnB T ₀ λ Phyperspank- MCS lacI amyE ' bla ColE1 origin	David Rudner, Harvard Medical School
	pDR110	'amyE spec ^R TrrnB T ₀ λ Pspank-MCS lacI amyE ' bla ColE1 origin	David Rudner, Harvard Medical School
EIB7	pSac-KAN	<i>'sacA kan^R MCS sacA' bla</i> puc18 origin	Ref. 2
EIB25	pDG1514	<i>'MCS par tet^R lacZ' bla</i> pMB1 origin	Ref. 3

Supplementary Table 1. Vectors used in this work

Supplementary Table 2. Plasmids used in this work

Accession Number	Plasmid	Genotype	Source
EIB432	pRFP_Star_P _{rapAII}	<i>'amyE cat^R</i> TgyrA P _{rapAII} -mcherry amyE' bla ColE1 origin	This work
EIB404	pGFP_Star_P _{spollE}	<i>'amyE cat^R</i> TgyrA P _{spollE} -gfpmut3 amyE' bla ColE1 origin	This work
EIB450	pGFP_Star_P _{ald}	<i>'amyE cat^R</i> TgyrA LICS P _{ald} -gfpmut3 amyE' bla ColE1 origin	This work
EIB499	pGFP_Star_P _{ald} - ald-mCherry	<i>'amyE cat^R</i> P _{ald} -ald-mCherry TgyrA P _{ald} -gfpmut3 amyE' bla ColE1 origin	This work
EIB452	pDR111_ald	<i>'amyE spec</i> ^R P _{hyperspank} -ald lacI amyE' bla ColE1 origin	This work
EIB297	pDR111_rapA	<i>'amyE spec^R</i> P _{hyperspank} -rapA lacI amyE' bla ColE1 origin	This work
EIB419	pDR110_ <i>kinA</i> / 04F14	<i>'amyE spec^R</i> P _{spank} -kinA lacI amyE' blaColE1 origin	Ref. 4
EIB480	pSac-KAN_ P _{hyperspank} -ald	<i>'sacA</i> P _{hyperspank} -ald lacI kan ^R sacA' bla ColE1 origin f1(+) origin	This work
EIB503	pSac-KAN_P _{ald} - ald-mCherry	<i>'sacA</i> P _{ald} -ald-mCherry lacI kan ^R sacA' bla ColE1 origin f1(+) origin	This work

Supplementary	Table 3. Strains	s used in	this work
Suppromotion J			

Strains	Name	Genotype	Source
E. coli			
	DH5a	F^{-} φ80lacZΔM15 Δ(lacZYA- argF)U169 recA1 endA1 hsdR17(r_{k}^{-} , m_{k}^{+}) phoA supE44 thi-1 gyrA96 relA1 λ^{-}	Invitrogen
B. subtilis			
BIB224	168 1A700	trpC2	BGSC
BIB182	168 P _{trpE} *-mcherry P _{spo0F} -yfp / JL028	<i>amyE</i> ::[P _{spo0F} -yfp cat ^R] <i>ppsB</i> ::[P _{trpE*} -mcherry ery ^R]	Ref. 5
BIB444	168 P _{trpE*} -mcherry	$trpC2 ppsB::[P_{trpE*}-mcherry ery^R]$	See methods
BIB1019	168 P _{spollE} -gfp PtrpE-mcherry	trpC2 amyE::[TgyrA P _{spollE} -gfpmut3 cat ^R] ppsB::[P _{trpE*} -mcherry ery ^R]	BIB444 transformed with EIB404
BIB1126	168 P _{rapAII} -mcherry	<i>trpC2</i> <i>amyE</i> ::[TgyrA P _{rapAII} -mcherry cat ^R]	BIB224 transformed with EIB432
BIB1416	168 ald::tet ^R P _{trpE*} -mcherry	<i>trpC2 ald::tet^R</i> <i>ppsB::</i> [P _{<i>trpE</i>*} - <i>mcherry ery</i> ^R]	See methods
BIB1213	168 P _{ald} -gfp	<i>trpC2 amyE</i> ::[TgyrA P _{ald} -gfpmut3 <i>lacI cat^R</i>]	BIB224 transformed with EIB450
BIB1300	168 P _{rapAII} -mcherry P _{hyperspank} -ald	trpC2 amyE::[TgyrA P _{rapAII} -mcherry cat ^R] sacA::[P _{hyperspank} -ald lacI kan ^R]	BIB1126 transformed with EIB480
BIB1423	168 P _{ald} -ald- mcherry P _{ald} -gfp	trpC2 amyE::[P _{ald} -ald-mcherry cat ^R TgyrA P _{ald} -gfpmut3]	BIB224 transformed with EIB499
BIB1332	168 P _{spank} -kinA	trpC2 amyE::[P _{spank} -kinA lacI spec ^R]	BIB224 transformed with EIB419
BIB1330	168 P _{hyperspank} -rapA	trpC2 amyE::[P _{hyperspank} -rapA lacI spec ^R]	BIB224 transformed with EIB297
BIB1440	168 P _{spank} -kinA P _{ald} -ald-mcherry	trpC2 amyE::[P _{spank} -kinA lacI spec ^R] sacA::[P _{ald} -ald-mcherry lacI kan ^R]	BIB1332 transformed with EIB503
BIB1442	168 P _{hyperspank} -rapA P _{ald} -ald-mcherry	trpC2 amyE::[P _{hyperspank} -rapA lacI spec ^R] sacA::[P _{ald} -ald-mcherry lacI kan ^R]	BIB1330 transformed with EIB503

Supplementary Table 4. Primers used in this work

Primer	Sequence 5' – 3' (LIC-site underlined; overlap in	Purpose	
	gray italics; Restriction cut-site in bold)		
ST162	CATAGTAGTTCCTCCTTCCCGGGAAAGC	pRFP_Star	
ST219	CGGGAAGGAGGAACTACTATGGTTTCCAAGGGCG AGG	pRFP_Star	
ST220	<i>CCAAGCTCAGCTAATTAAGC</i> TTATTTGTACAGCTC ATCCATGCCAC	pRFP_Star	
ST221	GCTTAATTAGCTGAGCTTGGACTCC	pRFP_Star	
ST1	CCGCGGGCTTTCCCAGCTAAAAGAAAGCACGGG TGTTTG	PrapAII up fragment	
ST222	AATCGTCTGCTTCATCCTTTTGAATTACCCGAGAT ATGTC	PrapAII up fragment	
ST223	AGGATGAAGCAGACGATTCCGTC	PrapAII down fragment	
ST224	GTTCCTCCTTCCACCCCTTCGATGTCTTCTAAC AATTCTG	PrapAII down fragment	
ST209	CCGCGGGCTTTCCCAGCTCCTAACAAATCGGTTT CTC	PspoIIE	
ST210	GTTCCTCCTTCCCACCACCTGTTATATTCGTTGCC TG	PspoIIE	
ST16	GGTAAGTTTTCCGTATGTTGC	Seq pGFP_Star	
ST17	GTGAATTTAGGAGGCTTACTTG	Seq pXFP_Star	
ST243	GTCTGGGTGCCTTCATAC	Seq pRFP_Star	
ST133	TCAGCTCGCATACCGAATTAAG	PtrpE-mcherry	
ST134	ATGCCTAAACACCAGCCATCC	PtrpE-mcherry	
SS34	TATATAGCTAGC ATATGACATATCTCGGGTAAT TCAAAAGG	rapA_fw	
SS37	TATATAGCATGC GACCGCAACGAGCAACAAAC CTGACATC	rapA_rev	
MA34	CCGCGGGCTTTCCCAGCGCGGGCCATTATAATTA CTC	Pald_fw	
MA35	GTTCCTCCTTCCCACCCCTGTATATGTGATATTTT TAGTGTAGC	Pald_rev	
MA37	ATAGCTAGCTATCACATATACAGGAGGAGACA G	ald_fw	
MA38	ATAGCATGCGTCATAATTCGTGAAATGGTCTC	ald_rev	
MA47	ATAACTAGTTGGCCTTTTTGCGTTTCTAC	Phyperspank_ald_f w	
MA48	ATAGAGCTCTTTCCTTACGCGAAATACGG	Phyperspank_ald_r ev	
SONSEQ1 8	ATGGCAAGAACGTTGCTCGA	Seq pDR111	
SONSEQ1 9	TACGTACGATCTTTCAGCCG	Seq pDR111	
MA49	GTGACGATCATTGACTTAAACG	Seq Phyp_ald	

MA50	ATATTCAAACGGAGGGAGACG	Seq Phyp_ald
ST39	CTGGTCGGAGATTGGGATGATAG	Check for chromosomal integration into <i>amyE</i> locus
ST40	AATTTCCATGTTGCGTAAGTCAG	Check for chromosomal integration into <i>amyE</i> locus
ST283	GCTCAATATGTCGTCATTACAGGC	Check for chromosomal integration into <i>sacA</i> locus
ST284	GCAGGGCTAATTGCAGATATAGG	Check for chromosomal integration into <i>sacA</i> locus
ST129	ATGAGTATTCAACATTTCCGTGTC	Check for single crossover
ST130	TTACCAATGCTTAATCAGTGAGG	Check for single crossover
MA51	GATGAAGATCTGCTGACATTG	ald up_f
MA52	CGAGCGCCTACGAGGAATTTGTATCGGGAACCC CTATGATCATATC	ald up_r
MA53	CCTATCACCTCAAATGGTTCGCTGGATCTAGGCT ATGAGTATGTTCC	ald down_f
MA54	CCAAACAGCCTAAAGACTG	ald down_r
LA54	CAGCGAACCATTTGAGGTGATAGGTCTTGCAAT GGTGCAGGTTGTTCTC	Tet fwd
LA56	CGATACAAATTCCTCGTAGGCGCTCGGGAACTC TCTCCCAAAGTTGATCCC	Tet rev
LA58	CATCGGTCATAAAATCCGTAATGC	Tet check rev
KN1	TCATATCAGCGACGTTCTGC	Ald-up-check
KN4	CTGGTGCTGGAATGAGTTTGCT	Tet check fwd
KN3	AAATGCGGATGGCACATATT	Ald-do-check
MA55	ATAGGTACCGCGGGCCATTATAATTACTC	Pald_ald fw
MA56	<i>GGAACCTCCACCTCCAGCACCCGCCACAGATGAT</i>	Pald_ald rev
MA57	GTGCTGGAGGTGGAGGTTCCGTTTCCAAGGGCGA GGAG	mcherry fw
MA58	ATAGGATCCTTATTTGTACAGCTCATCCATGCC	mcherry rev

Supplementary References

- Trauth, S. & Bischofs, I. B. Ectopic integration vectors for generating fluorescent promoter fusions in *Bacillus subtilis* with minimal dark noise. *PLoS One* 9, e98360 (2014).
- Middleton, R. & Hofmeister, A. New shuttle vectors for ectopic insertion of genes into Bacillus subtilis. Plasmid 51, 238–245 (2004).
- 3. Guérout-Fleury, A. M., Shazand, K., Frandsen, N. & Stragier, P. Antibiotic-resistance cassettes for *Bacillus subtilis*. *Gene* **167**, 335–336 (1995).
- de Jong, I. G., Veening, J.-W. & Kuipers, O. P. Heterochronic phosphorelay gene expression as a source of heterogeneity in *Bacillus subtilis* spore formation. *J. Bacteriol.* 192, 2053–67 (2010).
- 5. Levine, J. H., Fontes, M. E., Dworkin, J. & Elowitz, M. B. Pulsed feedback defers cellular differentiation. *PLoS Biol.* **10**, e1001252 (2012).