

Supplementary Fig. 1: Expression of TrxG genes in the immature female rhesus monkey hypothalamus. (a) *SET1A* mRNA; (b) *MLL1* (*KMT2A*) mRNA; (c) *DPY30* mRNA. RNA expression data were normalized by dividing each individual value by the average of the EJ group Bars represent mean \pm s.e.m. (n=3-7) (* = *P*<0.05; ** = *P*<0.01, and *** = *P*<0.001 vs EJ group; one-way ANOVA-SNK test. EJ, early juvenile; MJ, midjuvenile; LJ, late juvenile; PUB, peripubertal.

Supplementary Fig. 2: *Set1b* mRNA-expressing cells in the prepubertal female rat hypothalamus. (a) Low magnification view depicting the distribution of *Set1b* mRNA-containing cells in the MBH-of LJ female rat as assessed by fluorescent *in situ* hybridization (FISH). The dotted line outlines the boundaries of the ARC. (b) Abundance of *Set1b* mRNA-containing cells (green) in the ARC as assessed by FISH using the DNA marker DAPI (blue) to identify cell nuclei. (c-e) Co-localization of *Set1b* mRNA (green) and *Kiss1* mRNA (red) in KNDy neurons of the ARC. Arrows point to examples of double positive cells. (f-h) Absence of *Set1b* mRNA hybridization in sections incubated with a sense (s) *Set1b* RNA probe (green) and a *Kiss1* cRNA (red). ME = median eminence of the hypothalamus. Bars in a, b = 500 µm; in c-h = 200 µm.

Supplementary Fig. 3: *Mll2* mRNA- expressing cells in the prepubertal female rat hypothalamus. (a) Low magnification view depicting the distribution of *Mll2* mRNA-containing cells in the MBH of a LJ female rat as assessed by FISH. The dotted line outlines the boundaries of the ARC. (b) Abundance of *Mll2* mRNA-containing cells (green) in the ARC as assessed by FISH using the DNA marker DAPI (blue) to identify cell nuclei. (**c-e**) Co-localization of *Mll2* mRNA (green) and *Kiss1* mRNA (red) in KNDy neurons of the ARC. Arrows point to examples of double positive cells. (**f**, **g**) Absence of *Mll2* mRNA hybridization in sections incubated with a sense (s) *Mll2* RNA probe (green) (g), as compared to an adjacent section incubated with an *Mll2* cRNA (f). Bars in A, B = 500 µm; in C-G = 200 µm.

Supplementary Fig. 4: *MII4* mRNA-expressing cells in the prepubertal female rat hypothalamus. (a) Low magnification view depicting the distribution of *MII4* mRNA-containing cells in the MBH of a LJ female rat as assessed by FISH. (b, c) Absence of *MII4* mRNA hybridization in sections incubated with a sense (s) RNA probe (c), as compared to an adjacent section (b) incubated with an *MII4* cRNA probe (green). (d-f) Co-localization of *MII4* mRNA (d, f; green and *Kiss1* mRNA (e, f; red) in KNDy neurons of the ARC. Arrows point to examples of double positive cells. Bars in a = 500 µm; in b-f = 200 µm.

Supplementary Fig. 5: Recruitment of MLL2 and MLL4 to the promoter of KNDy genes. (**a**, **b**) Recruitment of MLL2 (a) and MLL4 (b) to the *Kiss1*, *Tac3* and *Pdyn* promoters in the MBH of LJ female rats. (n=7-8/group). Each bar represents the mean \pm SEM. (** = *P*<0.01 vs. INF group, one-way ANOVA-SNK test.

Supplementary Fig. 6: Effect of MLL1 on promoter activity and MLL1 binding to promoters during prepubertal development. (a) Effect of MLL1 on *Ttf1, Eap1* and *Nell2* promoter activity (n=6). (b) Effect of MLL1 on Eed, MKRN3 and PENK promoter activity (n=6). Each bar represents the mean \pm s.e.m. *** = p<0.001 vs. cells transfected with luciferase constructs containing the indicated promoters; one-way ANOVA-Dunnett's test). (c) MLL1 recruitment to the *Ttf1* and *Nell2* promoters during prepubertal development (n=8). Each bar represents the mean \pm s.e.m. *** = *P*<0.001 vs. INF; one-way ANOVA-SNK.

Supplementary Fig. 7: RNAi-mediated silencing of the *Mll1* gene. (a) Diagram of the pPRIME lentivirus delivery vector ¹ used to target shRNAs to *Mll1* mRNA. The vector contains an artificial miR30 and replaceable hairpin structure able to accommodate up to three custom designed hairpins ²; Xho I and Eco RI restriction enzyme sites are used as cloning sites to insert the

hairpin(s). The 5'LTR contains the heterologous U3 promoter (htU3), the repeat region/transcription initiation site (R), and the polyadenylation region (U5). The 3'LTR also contains R and U5 regions, but the 3'LTR U3 segment (DU3) bears a 400 bp deletion (SIN) that causes vector self-inactivation. The heterologous promoter htU3 is the cytomegalovirus promoter (CMVp); the CMVp also serves as the artificial miRNAi cassette promoter. The other components of this vector include the packaging signal (Ψ), the Rev response element binding site (RRE), the central polypurine tract (cPPT), and the woodchuck-hepatitis-virus posttranslational regulatory element (wPRE). A sequence encoding eGFP is located immediately upstream of the miR30 sequence and is transcribed under the control of the CMV promoter. The vector carrying different shRNAs targeting *MII1* is termed LV-shMII1-GFP. (b) Effect of different LV-shMl1-GFP constructs on *Ml1* mRNA levels in R22 hypothalamic cells, three days after infection. (c) Gating conditions for detection of GFP positive cells by flow cytometry. Cell isolation was performed by fluorescent activated cell sorting (FACS) capturing the population of cells (P1) displaying $>10^4$ fluorescent units on the FITC channel. Purified sh2612- and sh12751-infected cells were expanded and used for subsequent experiments. (d) MII1, Kiss1 and Tac3 mRNA levels in cells sorted after transduction with sh2612, sh12751 or a control LV-pPRIME plasmid (C) carrying a mutated shRNA against firefly luciferase ¹. (e) Eed and Pdyn mRNA content in the same cells. RNA expression data were normalized by dividing each individual value by the average of the C group Bars are mean \pm s.e.m. (n= 3) (** = P<0.01, and *** = P<0.001 vs. C group; one-way ANOVA-Dunnett's test.

Supplementary Table 1. Primers used

Primers for RT-qPCR

Species	Gene	Accession #	Primers	Sequence	Amplicon (bp)	
	Crystal	NM 001070608 1	rCxxc1-F-qPCR	GGTGCTCTGTGAGCGGAGAT	106	
		NIM_001079098.1	rCxxc1-R-qPCR	GCAGTAGATGGGGGGCGTTCT	100	
	Dov30	NM 173117	rDpy30-f	AGTACGGGCTCACAGACAGC	165	
	Брузо		rDpy30-r	CCTTTGCGAGCACAGCAAGT	105	
	Fan1	NM_001012470.1	rEAP1-F	ACTGTATCCTCTGCTCCGTCATC	82	
	Lupi	1111_001012470.1	rEAP1-R	ACCGATCCAGGCCTCTTACC		
	Eed	NM 1106278	rEed-RT-F	GAACAGCAACCCGGACCTCTCG	134	
			rEed-RT-R	TTCCCTTTCCCCAGCTTTTCCTTC		
	Gpr54	AF115516.1	rGpr54-F	GTCGGGAACTCACTGGTCAT	115	
	, 		rGpr54-R	ACGCAGCACAGAAGGAAAGT		
	Grik5	NM 031508.2	rGrik5 mRNA F	CCAGCCCTCCGTCCCACCAG	86	
			rGrik5 mRNA R	CCGGCATCTTCCTCCCCTCCTC		
	Grin2a	NM 012573 3	rGrin2a mRNA F	GGAACCCGCTAAACCTGGTG	113	
	Uninza	NIN_012073.5	rGrin2a mRNA R	CCATGGTCGCCACTTAGGGT	113	
	Crin2d	NM 022707 1	rGrin2d mRNA F	AGCTCTGCGACCTGCTGT	100	
	Grinzu	NIVI_022797.1	rGrin2d mRNA R	CCAAGCTGCAGGAAGGTGGA	190	
	Kies1	NM 191602	rKiss1-RT-F	TGGTGAACCCTGAACCCACAGGC	126	
	NISS I	INIVI_101092	rKiss1-RT-R	CGGCGGGCATGGCGATGTT	130	
	Mkm3	VM 219725 10	rMkrn3-F	AGAGGGAAGCGTGCTGTTA	205	
		XIVI_218735.10	rMkrn3-R	AGCCTTAGCAGACCAGACCA	205	
	NAU 1	XM_009766170.1	rMII1-F-qPCR	TAACGATGCTGGCCGTTTGC	108	
RAT MI2 MI3 MI4 Nell2	101111	XM_008766179.1	rMII1-R-qPCR	GCAGGATGTGAGGCAGCAAC	190	
	MID	XM 006257202 2	rMII2-F2	TCTTCCATTGAGACACTGGTGG	107	
	IVIIIZ	XIVI_000257393.2	rMII2-R2	ACACTGCGAACAGGCCAAGA	197	
	MII3 MII4	XM_009762670.1	rMII3 F	GGAACTTTTGGCAGTGCCGC	107	
		/3 XIVI_008762670.1	rMII3 R	GCTCACCAACACGCCAGCTT	197	
		XM_008759254.1	rMII4-F qPCR	CTCCCAGAAGCTCCTTCCCG	171	
	101114	710-0007 39234.1	rMII4-R qPCR	TCTCAAAGCGCAGGTGTGGA	17.1	
	Nell2	NM 0310702	rNell2 mRNA F	GCGTACGTGGATGGCAAGTG	181	
	INCHZ	NW_031070.2	rNell2 mRNA R	GGCAATCTAAAGCCGGGCAG	101	
	nEnk	XM_006237835.1	rpEnk -F	CTCGTAGCGCTTGGGTCCTG	193	
	Nell2 NM_031070.2 pEnk XM_006237835.1	rpEnk -R	GAACTCGGGCTTGGACACCT	100		
	pEnk XM_006237835.1 Pdyn XM_017591511.1	XM_017591511_1	rPdyn-F	TCCCTGTGTGCAGTGAGGAC	118	
		, <u>_</u> eee.ee	rPdyn-R	CAAAAGCCCCGGCATGTCTC		
	Pdyn XM_017591511.1	rCycA F	GGCAAATGCTGGACCAAACACAA	222		
			rCycA R	GGTAAAATGCCCGCAAGTCAAAGA		
	Set1a	XR 590498.1	rSeta-F-qPCR	CGGGTTGTAGAGCGGACCAT	118	
			rSETa-R-qPCR	GTAGAGCGGACACGACCTCC	-	
	Set1b	Set1b XM_008760883.1	rSet1b-F-qPCR	GGAGGACGGTATCCGTGAGC	104	
		_	rSet1b-R-qPCR	CTGGCACGGCTGCTATTGAG		
	Tac3	NM_019162.2	rTac3-F	GCAGGGTGGGAGGCTCAGTAAGG	193	
		_	rTac3-R	TGCCCATAAGTCCCACAAAGAAGTCG		
	Tac3R	NM_017053.1	rTacR3-F	GGCTGCCCTATCACGTGTATTTCA	164	
		_	rTacR3-R	AGCCTGCGCGGAATCTTTG		
	Ttf1	NM_013093.1	rTtf1-F	GCTGCCGCGGCCATCTCTG	233	
			rTtf1-R	GGCGCGTCCCACATCTCACCA		
	Utx	XM_008773047.1	rUtx-F-qPCR		144	
			rUtx-R-qPCR			
	Wdr5	Wdr5 XM_015149291	rWdr5 F		143	
			rWdr5 R	GGACACCGGAGGATTGTCGT	_	
	Wdr82	XM_001073342	rWdr82-F-qPCR		118	
	<u> </u>		rWdr82-R-qPCR		_	
	DPY30	NM_001261093	mkyDpy30 F		200	
			mkyDpy30 R	GCACGAGTTGGCAAAGACTGGAGAT		

	CAPDH	GAPDH NM_001195426.1 m	mkyGAPDH F	AAGGGCATCCTGGGCTACA	69	
Phosus Monkey	Rhesus Monkey		mkyGAPDH R	GAAGAGTGGGTGTCGCTGTTG	00	
Kilesus Molikey		XM_015115824	mkyMLL1-F	TGTTGCCCTTGGCCGAAAAC	190	
			mkyMLL1-R	TGGGTGGAGCAAGAGGTTCA	103	
	SETD14	XM 015125092	mkySETD1A-R	CACGAGTGGGGTCTGTTTGC	161	
SEIDIF		TUTA AIVI_015125982	mkySETD1A-F	GTGTCATGGTCCACCCGGAA	101	

Primers for ChIP-qPCR

Species	Gene	Accession #	Primers	Sequence	Amplicon (bp)	
-	Fed	NIM 4400070	rEed-CHIP F	AATAAAAGGCACGCGACCCCATAC	100	
	Leu	NW_1100276	rEed-CHIP R	TGCAAAAGAAAGTCGAGCCAATG	109	
			rKiss1-CHIP F	TCGGGCAGCCAGATAGAGGAAGC	91	
			rKiss1-CHIP R	TTGAGGGCCGAGGGAGAAGAG	91	
	Kies1	NM 1816021	rKiss1 Site1-F	AGCCCCACACCCATCTCTGAAGT	142	
RAT	11001	INIVI_101092.1	rKiss1 Site1-R	CTGGACCCGGATACGATGCGATGG	142	
			rKiss1 Site2-F	GGGGCAGTGGGGCCACCGCTGTA	94	
			rKiss1 Site2-R	AACTCAGTCCTCCGGTACCTCCGCAAATCTGTG	34	
	Nell2	NM_031070.2	rNell2CHIP F	AGGCGGCTCCAAGTTCG	190	
			rNell2CHIP R	TGGCGTGCATCGTCTCAG		
	Ddun	NM_019374.3	rPdynCHIP F	CTGCCTTTCTCCTACTTTTGTCTCTGTTTT	100	
	i uyii		rPdynCHIP R	CGGGGGTGGATTCTCGGTGTAG	109	
	T202	NM_019162.2	rTAC2 CHIP-F	ACGTGCGTGTCTGGGTATGTGA	100	
	Tacs		rTAC2 CHIP-R	GGAGGGTTTGGGGGAGTCG	123	
	T#1		rTtf1CHIP F	GTCTTGTTGCTTTAGCGCTTA	125	
	101	AWI_000233002.3	rTtf1CHIP R	GTACACGTAACGGAGTGGAC	125	

Primers for FISH

Species	Gene	Accession #	Primers	Sequence	Amplicon (bp)
Kiss1	Kico1	NIM 191602 1	rKiss1-F	ATGATCTCGCTGGCTTCTTGGCAG	202
	11331	NIVI_181092.1	rKiss1-R	TCAGCCCCGTGCCGCCCGCGC	393
	N 411-1	XM 009766170 1	rMII1 ISH -F2	TTAAACGGACCCCTTCTGCTATGT	500
	MII1	XIVI_000700179.1	rMII1 ISH -R2	TCTATGAACCGTCGGGGAGTCTT	522
MID	MID	MII2 XM_008765859.2	rMII2-F-ISH	AAGCCACCGGTGCTCTCTTT	420
DAT			rMII2-R-ISH	TGGGAAGGTGTGGCTCAGTG	439
MII3 MII4	MII2	M#2 XM 006225840.2	rMII3 ISH F	CGGCCCGTGTTTGTCATCAGG	425
	XIVI_000235640.5	rMII3 ISH R	CGGTGCGTTCAGCTCTCCAGTG	425	
	MILA	MII4 XM_008759254.2	rMII4 ISH F	ACCCCCACCTCCACCCCACTA	620
	171114		rMII4 ISH R	CCGCGCTCCACTCATTCCACTAAA	030
	Sotth	VP 001926009 1	rSet1b-F-ISH	CGGTGCCCTCACCCCTATTT	525
	Setib XR_001836008.1	rSet1b-R-ISH	CCCACCATCCTGGCCTACTG	535	

22-mer oligodeoxynucleotides encoding shRNAs

Species	Gene	Accession #	Primers	Sequence
			shrMLL1-15	CCGGGAACGTGTGTAATCGGCC
Rat	A AULA	XM_008766179	shrMLL1-1483	TAGCAGTCCCAGTATCGATACC
	17111 1		shrMLL1-2612	GAGCTGTCCAAAGATCGCGATA
			shrMLL1-12751	GAGGACACTCCTACTCGGTATA

Primers to detect shMLL1-mediated MLL1 mRNA knock-down

Species	Gene	Accession #	Primers	Sequence	Amplicon (bp)
			shMLL1 15-F	GCAGCCGCGCCGCACTGGAAGTG	100
			shMLL1 15-R	CCGCTCCGGGCTCCAGGGCTTCC	190
			shMLL1 1483-F	CCCAGCACTCCTCTCAGATGTCTTCAG	100
Pat	N/II 1	XM 008766179	shMLL1 1483-R	GTAATGACAGGAGAGGCAGACGGTATTCG	199
nat		XW_000700179	shMLL1 2612-F	TACTTTTCCTTCTCACTCCCTAACTCAGTCTG	182

	shMLL1 2612-R	GCTCCTCCGGGGCTGTGTCTT	l	102
	shMLL1 12751-F	AGCGGCTTCCTCTCCATTCCTTCTCTTATTC		102
	shMLL1 12751-R	GCTCCTGCCCACTTCCCCACCTG		193

Oligodeoxynucleotides encoding sgRNAs targeting Kiss1 enhancer Site1

Species	Gene	Accession #	Primers	Sequence	Position upstream TSS	
		rKiss1enh g1-F	CACCGCCCTAGGAATAGAAGAGAGGAC	-3182		
			rKiss1enh g1-R	AAACGTCCTCTCTTCTATTCCTAGGGC	-3182	
RAT Kiss1			rKiss1enh g2-F	CACCGCCCATGTGAGGTACTTCAGAG	2716	
			rKiss1enh g2-R	AAACCTCTGAAGTACCTCACATGGGC	-2710	
	Kiss1	1 JX139031	rKiss1enh g3-F	CACCGTTCCAGCCCCCTCGCCAACAAT	-2433	
	14001		rKiss1enh g3-R	AAACATTGTTGGCGAGGGGGGCTGGAAC		
			rKiss1enh g4-F	CACCGTCCCCACCCTGACTTTATGCAG	-2205	
			rKiss1enh g4-R	AAACCTGCATAAAGTCAGGGTGGGGAC	-2205	
			rKiss1enh g5-F	CACCGTCCTACCATCCAGGACACGAGG	1604	
			rKiss1enh g5-R	AAACCCTCGTGTCCTGGATGGTAGGAC	-1094	

Primers for PCR-cloning of KRAB domain

KRAB F-infusion	AAAGAAAAAGGGATCCGGAGGGATGGATGCTAAG
KRAB R-infusion	CGTATGGGTAGGATCCGGGCTCTTCTCCCTTCTC

Primers to detect dCas9 mRNA

dCas9 P2 Fw	TTACCGCCCGGAAAGAGATTATTG
dCas9 P2 Rv	GCTCGGAGTTCAGATTGGTCAGTT

Supplementary Table 2. Promoters used in gene reporter ass
--

Gene Promoter	Species	Accession #	Size (bp)	From*	To*
Eap1	rat	NM_001012470.1	2556	-2345	+210
Eed	rat	NM_001106278.2	2107	-1850	+256
KISS1	human	NM_002256.3	1339	-1317	+22
MKRN3	human	NM_005664.3	439	-446	-7
Nell2	mouse	NM_001289653.1	881	-851	+30
PDYN	human	NM_001190892.1	790	-450	+340
PENK	human	NM_001135690.2	686	-479	+207
TAC3	human	NM_001178054.1	835	-766	+69
Ttf1	rat	XM_006233882.3	5181	-5180	+1

* With respect to the transcription start site (TSS)

Supplementary Table 3. Primary antibodies used

Target	Host	Source	Catalog #	Use
Beta-Galactosidase	Mouse	ICN Biomedicals	55976	ChIP
Beta-Galactosidase	Rabbit	Cortex Biochem	CR7001RP2	ChIP
EED	Mouse	Millipore	05-1320	ChIP
GFP	Goat	abcam	ab6673	IHC
H3K4me1	Rabbit	Active Motif	61633	ChIP
H3K4me2	Rabbit	abcam	ab7766	ChIP
H3K4me3	Rabbit	Active Motif	39159	ChIP
H3K9me3	Mouse	Active Motif	61013	ChIP
H3K27ac	Rabbit	Active Motif	39133	ChIP
H3K27me3	Rabbit	Active Motif	39155	ChIP
p300	Mouse	abcam	ab14984	ChIP
MLL1	Rabbit	Ali Shilatifard	569/Rb065	ChIP
MLL2	Rabbit	Ali Shilatifard	401/Rb9173	ChIP
MLL3	Rabbit	Ali Shilatifard	564	ChIP
MLL4	Rabbit	Ali Shilatifard	403/Rb823	ChIP

References

1. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J., & Elledge, S.J. A lentiviral microRNAbased system for single-copy polymerase II-regulated RNA interference in mammalian cells. *Proc. Natl. Acad. Sci. U. S. A* **102**, 13212-13217 (2005).

2. Sun,D., Melegari,M., Sridhar,S., Rogler,C.E., & Zhu,L. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. *BioTechniques* **41**, 59-63 (2006).