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TASEP Average Occupancy
The occupancy variable τi for each site where i = 1 . . .L takes
the value 1 if site i is occupied and 0 if it is not. For TASEP
with open boundaries, the average occupancy of each site is given
exactly by:
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for i = L (12). Here Sn is given by:
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Distribution of Residence Times Near the Membrane
Here we obtain the distribution Φ(t) of residence times t spent
by an mRNA near the membrane, under the assumption that an
mRNA is anchored to the membrane whenever there are ribo-
somes in the PSR. Φ(t) is therefore the distribution of times from
an entry of a ribosome to an empty PSR to a complete evacuation
of the PSR.

At very small α, when the density of ribosomes in the mRNA
is very low, a ribosome that enters the empty PSR leaves it at the
other end before any other ribosome enters, and Φ(t) is given
approximately by a Gamma distribution:
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At higher values of α, it becomes likely that when a ribosome
finishes translating the mRNA there are other ribosomes in the
PSR behind it. To address such cases, we let υ(k) be the proba-
bility that there is a gap of k sites between a ribosome at the last
site and the one behind it (namely, that the latter is positioned at
site L− k − 1). This distribution is given approximately by:
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which has been obtained exactly for α<γ/2 and α<β in the
large L limit (50). With this, the probability Υ(k) of a gap equal
to or smaller than k is given approximately by:

Υ(k) ' αk+1(1− β − α) + (1− α)k+1(β − α) + 2α− 1
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[S5]

When the ribosome at the last site detaches from the mRNA,
it leaves behind it a nonempty PSR if the gap to the follow-
ing ribosome is smaller than `, which occurs with probability
ΥPSR≡Υ(` − 1) (Fig. S1A). This probability, which can be writ-
ten as

〈
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/ 〈τL〉, can also be estimated

by the mean-field approximation 1 −
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i=m+1(1 − 〈τi〉) using
the exact expression for 〈τi〉 (12, 13), which has the advantage

that it extends to all α. The two approximations are validated
by their clear agreement with the results of Monte-Carlo simula-
tions (Fig. S1B).

To calculate the probability Φ(t) of a residence time t , we sum
over the conditional probabilities given the number of proteins
produced during this time or equivalently over the number of
ribosomes traveling through the PSR. This leads to:
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As above, the motion of the most advanced ribosome is uninter-
rupted, and its exit time distribution is given exactly by a Gamma
distribution. The denominator on the left-hand side accounts for
the normalization from the probability of having the PSR empty
once a ribosome exits the mRNA. The first term represents one
ribosome moving over the whole PSR and exiting in a time t ;
the second term represents one ribosome moving over the whole
PSR in a time t − t ′ and another ribosome k + 1 sites behind the
exiting one moving k steps in a time t ′ to exit and so on, summed
over all possible ks that lie in the PSR weighed by the probability
of having a gap of size k . The expression takes into account all
possible ways in which different numbers of ribosomes can exit
before having an empty PSR.

To reduce the computational complexity of this expression, we
ignore the fluctuations in the gap size and assume that all gaps
take the mean value g =

∑
k kυ(k), yielding:
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We calculate g approximately using Eq. S4. By Laplace trans-
forming every term through the linearity of the transform and
using the fact that convolutions of probability distributions trans-
form to products of the distributions in the Laplace domain, we
can sum the Laplace transform of the whole expression to infinity
to get Eq. 1:
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. [S6]

Finally, we take the inverse Laplace transform of Φ̃(s) numer-
ically (52) to obtain Φ(t). We confirmed the validity of this
analysis by comparing with results of Monte-Carlo simulations
(Fig. S2A).

Distribution of Residence Times Away from the Membrane
We now turn to calculate the probability distribution for the res-
idence time away from the membrane Θ(t). To do this, we con-
sider again the most forward ribosome on the lattice, at the time
when the PSR has just been evacuated. If this ribosome is k sites
away from the PSR, corresponding to a gap of `+ k − 1 with the
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present ribosome, the time t before it reaches the PSR follows a
Gamma distribution Γ(k , t). Thus:
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The second term in the sum accounts for the case where upon exit
of the translating ribosome, the mRNA remains unbound by any
ribosome. In this case, arrival of a ribosome to the PSR involves
translation initiation, namely entry to the first site of the lattice
with rate α and translation of the entire SRR. While an exact
expression is available for the full correlation functions of the
TASEP, we use below their mean-field approximation to stream-
line the computation. We verified the accuracy of this approxima-
tion by comparison with Monte-Carlo simulations (Fig. S2B).

Suggested Experimental Validation of Model Predictions
Our model predicts several possible effects of the translation ini-
tiation rate α and the structure of the mRNA on the spatial dis-
tribution of mRNAs and membrane-bound proteins as well as on
localization-dependent lifetime of the mRNA. Here we briefly
consider possible experimental tests of these predictions.

Fig. S1. The probability ΥPSR that when a ribosome ends translation and releases the mRNA, other ribosomes are found in the PSR, keeping the mRNA
near the membrane. (A) This probability as calculated from Eq. S5 with k = `− 1. (B) Comparison of mean field (MF), gap distribution (gap), and simulation
(sim) results for different `.

Fig. S2. Comparison with simulation results for residence time distributions. (A) Distribution of times spent near the membrane: gap distribution (gap)
results for α= 0.05γ and different `, compared with simulation (sim). (B) Distribution of times spent away from the membrane: mean field (MF) result for
α= 0.2γ and `= 20, compared with simulation (sim).

In Fig. 4 we predict a nonlinear dependence of mRNA enrich-
ment to the membrane on the translation initiation rate. This
effect can be quantified for any gene encoding a membrane-
bound protein from a single-gene operon. The translation initia-
tion rate of this gene can then be perturbed either genetically, by
generating a library of strains carrying different mutations to the
RBS (53) or by chemical induction of a regulatory small RNA.
The effect of initiation efficiency on the spatial distribution of the
mRNA can then be measured using smFISH and superresolution
microscopy. A similar approach can be taken to test the predic-
tion that different genes that compose a polycistronic mRNA act
collaboratively to drive it toward the membrane.

Our analysis suggests that mRNA residence near the mem-
brane may increase the likelihood of protein colocalization in
the membrane. Many membrane protein clusters are encoded
on polycistronic transcripts and can serve to test this prediction.
This can be done by measuring the effect of expressing a tagged
variant of one of the genes from a separate transcript. Of par-
ticular interest is the case where this gene is a related outer-
membrane protein. Particular examples in E. coli include FecA,
an outer-membrane protein that shares an operon with the inner-
membrane ABC transporter proteins FecBCDE, and the curli
transport system, which includes inner- and outer-membrane
components expressed from the csg operon. Genes in both of
these operons are regulated posttranscriptionally by the small
RNAs OmrA and OmrB, facilitating testing of the effect of trans-
lation initiation (54).
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Fig. S3. Effect of PSR size on distribution of residence times away from the membrane. With a constant SSR length m = 40, the probability distribution for
the time spent away from the membrane is insensitive to the length of the PSR.

Fig. S4. Possible effect of mRNA localization on its stability. Here it is assumed that the half-life of mRNA near the membrane is 3 min and mRNA away from
the membrane is 10. The distributions Φ(t) and Θ(t) are used to simulate the lifetime of mRNAs, from synthesis in the cytoplasm to degradation. (A) When
the mRNA is more likely to stay near the membrane because its PSR is longer (Fig. 2C), its decay is accelerated. (B) When mRNA decay follows a multistep
process, the mean lifetime of an mRNA may depend on the residence time distribution and not just on its mean. In E. coli, diffusion-limited search time can
take around 50 s per searching molecule. In some cases, the number of available components can be in the range of 10 to 100, such that the waiting time
for each step is on the order of 0.5 to 5 s. This time is on the same order as the residence time of an mRNA near the membrane for short ` or small α (Fig.
2), meaning that in these cases an mRNA will sometimes not stay near the membrane long enough for multiple processes to occur. In other cases, including
stoichiometrically acting small RNAs, the number of available components may be even lower, and the effect of the multistep process can be noticeable even
when the mRNA spends longer times near the membrane. To demonstrate this situation, we assume that mRNA decay near the membrane follows a Gamma
distribution with parameters a = 3 and b = 1, which has the same mean half-life as in A. We then assume that half-life of mRNAs near the membrane is 214 s,
as for `= 40 in A, but follows different distributions: (i) an exponential distribution; (ii) the distribution obtained in Fig. 2, which is approximately a Gamma
distribution with a = 4.22 and b = 22.3; and (iii) a Gamma distribution with a = 42.2 and b = 2.23, which peaks at higher times.
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