Supporting Information

Stone et al. 10.1073/pnas.1712514114

Fig. S1. Ascites volume is a reflection of tumor burden, weight gain in mice mirrors ascites development, and increasing doses of AZA lead to degradation of DNMT1. (*A* and *B*) Cells (250,000) were injected into mice, and ascites was drained 5 to 5.5 wk later. (*A*) GFP⁺ tumor cells were counted by flow cytometry after removing immune cells separated by a Percoll gradient; n = 20 mice. The slope is significantly nonzero (P = 0.0126). (*B*) Cells from the ascites fluid were stained by flow cytometry to identify live CD45⁺ cells; n = 15 mice. The slope is significantly nonzero (P < 0.0001). (*C* and *D*) Percent weight gained by the mice in Fig. 1 *B* and *C*. A10, MS3, MS10: n = 7 to 30 mice, three biological replicates; A3-10: n = 9 mice, two biological replicates; MS17, ITF17, A17, A+MS17, and A+ITF17: n = 9 or 10 mice, one biological replicate. Statistical outliers were removed using Peirce's criterion, and significance was determined by Mann–Whitney *t* test. (*E*) Treatment schematic for collection of cells treated with 500 nM AZA (A) at day 3 (A3) or day 10 (A10). (*F*) Representative Western blot of DNMT1 levels at day 3 or 10. (*G*) Quantification of DNMT1 Western blots; n = 3. *P < 0.05, ***P < 0.001.

Fig. S2. Treatment of tumor epithelial cells with AZA leads to increased expression of viral defense genes, endogenous retroviral transcripts, and chemokine/ cytokine proteins. (A–D) ID8-VEGF-Defensin cells were treated with A3-10, A10, A17, HDACi17, and A+HDACi17 as shown in Fig. 1A. (A–D) Expression of viral defense genes (A and C) and cancer testis antigen genes (B and D) is shown. The horizontal line at log-twofold change =1 indicates a twofold increase in expression. (E and F) Mean fold increase of mERV and B1 gene expression levels compared with mock-treated; q-PCR at days 3, 4, 7, and 10 of an A10 treatment schedule; n = 3. Mean ± SEM. (G and H) Protein levels of chemokines and cytokines assessed using the Proteome Profiles Mouse Cytokine Array Kit from R&D Systems; n = 3. (G) Cells were treated with schedule A10, and media were collected. (H) Ascites from mock- or AZA-treated mice was collected at week 4.5 after injection of tumor cells (Fig. S6). *P < 0.05, **P < 0.01.

Fig. S3. Addition of immune checkpoint inhibition to epigenetic therapy in an intact mouse model increases survival. Mice were treated as described in Fig. 3. (*A*) Percentage of weight gained by the mice in Fig. 3 at week 5 mimics ascites volume; n = 8 to 10 mice per group. (*B*) Survival data for all 12 arms of the experiment; n = 10 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. S4. In vivo treatment of mice with AZA does not significantly alter the immune cell populations in the spleen. (A) Treatment schematic for mice treated only with mock or AZA. Cells (2.5×10^6) were injected i.p. into 8- to 10-wk-old female C57BL/6 mice and treated on the days indicated with an arrow in the schematic (same schedule as Fig. 3). (B) Spleens were collected from mock- or AZA-treated tumor-bearing mice at week 5.5. Spleens were filtered and washed to a single-cell suspension, and the cells were analyzed via FACS; n = 7 to 9 mice per group.

Fig. S5. Epigenetic therapy and immune checkpoint inhibition do not have significant effects on some subsets of immune cells. Ascites fluid was drained from the mice in Fig. 3 at week 6.5, and cells were analyzed via FACS. (A) % NK cells (NK1.1⁺) of CD45⁺ cells. (B) CD4⁺/CD8⁺ cell ratio. (C) % CD4⁺ of all T cells. (D) % CD8⁺ of all T cells. (E) % CD4⁺PD1⁺ T cells of CD4⁺ T cells. (F) % CD8⁺PD1⁺ T cells of CD8⁺ T cells. (G) % T regulatory cells (CD4⁺, FoxP3⁺) of all CD3⁺ T cells. n = 4 to 9 mice per group. *P < 0.05, ***P < 0.001, *P < 0.05, #**P < 0.01.

RNA sequencing of sorted immune cell populations from ascites fluid showed up-regulation of viral defense genes upon AZA treatment in tumor bearing mice.

Fig. S6. RNA sequencing of murine immune cells sorted from ascites of mice treated with AZA showed up-regulation of viral defense genes. (A) Treatment schematic. (B) Viral defense gene expression.

Fig. 57. Relative expression of IFN-stimulated genes in cells treated with AZA and anti-IFNAR1 in vitro. (A–C) AZA was given at an A3 treatment schedule, and one dose of anti-IFNAR1 (10 μ g/mL) was given at day 0. Cells were collected at day 3 for expression analysis via q-RT-PCR. (*D* and *E*) Percentage of annexin V⁺ and 7-AAD⁺ apoptotic cells, after an A3 or A10 schedule of 500 nM AZA; *n* = 3. (*F* and *G*) Cell-cycle analysis, determined by BrdU incorporation and 7-AAD staining of DNA content; *n* = 3. **P* < 0.05, ***P* < 0.01.

Gene	Primer sequence, 5'-3'	Accession/ref. no.
mERVL gag-pol	ACATACCCAGTAATGGTCAGCAC ATTGGTTAGCCAGTACCAAAGGT	2065208
mErv3*	CATAGCCTCTACCTTCTGTCTGGT AGAGGTCATAGCATTGTAGGGTTC	261245003
syncytin-A	GATGACATCCACTGCCACAC ATTGTCCGGCTCGAATAGG	AY849973.1
Peg11 (Mart1) (Rtl1)	GAAACAATCAACTCATCCGAGAC AGAGTTCTTGGGCTGACCTTC	NM_184109.1
mMart8 (Cxx1c)	AAGGGCCGGGCCCTGCAGTG CTAGAAGTCCTCATCCTCCTCCCACCCG	115270961
IAP-MIA14 LTR*	Gacacgtcctaggcgaaatataac Tattgcttacatcttcaggagcaag	M17551.1
IAP-MIA14 gag*	GATCAATTAGCGGAGGTCTCTAG CCAGTCTGTTTCTTCAGAGGAGAA	M17551.1
IAPEZ gag*	Getetecetagtatgggcaaatat Aatetetetgetetggagteaaag	AC003993
mMTV 7/8/9*	CTACACTTAGGAGAGAAGCAGC ATGTCTTTGTCTGATGGGCTCAT	M90535.1, X05400.1, M29600.1
B1* (consensus)	GAGGCAGAGGCAGGCGGATT GTTTCTCTGTGTAGCCCTGGC	(65)
mGapdh	AGAAACCTGCCAAGTATGATGAC AGACAACCTGGTCCTCAGTGT	126012538
Mouse β -actin	TTCTTGGGTATGGAATCCTGTGG TGGCATAGAGGTCTTTACGGATG	145966868
Mouse 185 rRNA	ATGGCCGTTCTTAGTTGGTG GAACGCCACTTGTCCCTCTA	120444899

Table S1.	Mouse embry	vonic dav ʻ	16.5	placenta	was used	l as a	positive	internal	control
		,					P		

*Semi-q-PCR; all other genes were done with full q-PCR according to refs. 55 and 56.

Table S2.	Top upstream	transcriptiona	l regulators	in murine
immune ce	ells sorted fron	n ascites of mic	e treated w	ith AZA

CD8 ⁺	CD4 ⁺	CD11b ⁺
lfnb1	Trim24	Trim24
Trp53	Trp53	Irf7
Alkbh5	Alkbh5	lfn alpha/beta
Dysf	Fzd9	Irf3
Ptger2	Irf7	Ptger4
Ptger4	Ifnar	lfnar
lrgm1	Irf3	IL12
lfng	Dnase2a	Stat1
Irf3	Stat2	Nr3c1
Irf7	Tcf7l2	Ddx58

Ingenuity pathway analysis identified type I IFN pathway-associated genes as top upstream regulators of the transcriptional program in AZA-treated CD4⁺, CD8⁺, and CD11b⁺ cells (Fig. S6A).

PNAS PNAS