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Type Model (n parameters) Log likelihood SE ∆AICc

HPV62
Memoryless (13) -2026.1 1.4 389.6

Homologous immunity (15) -2027.4 1.5 396.3
Additional risk (17) -1827.2 0.4 0

HPV16
Memoryless (13) -1663.2 1.1 117.9

Homologous immunity (15) -1663.7 0.7 123.1
Additional risk (17) -1600.1 0.1 0

HPV89
Memoryless (13) -1902.3 1.3 137.4

Homologous immunity (15) -1902.2 1.5 141.2
Additional risk (17) -1829.5 0.1 0

HPV51
Memoryless (13) -1670.8 0.6 63.9

Homologous immunity (15) -1670.4 1.7 67.3
Additional risk (17) -1634.7 0.7 0

HPV84
Memoryless (13) -1979.6 1.7 270.3

Homologous immunity (15) -1980.5 1.1 276.3
Additional risk (17) -1840.3 0.4 0

HPV6
Memoryless (13) -1461.0 1.0 121.7

Homologous immunity (15) -1461.5 1.3 126.8
Additional risk (17) -1396.1 0.6 0

Table S1. Comparison of Candidate Models. The ∆AICc gives the AICc score of each candidate model relative to the best-fit model, such that
the best-fit model has ∆AICc = 0.
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Fig. S1. Bivariate likelihood profile for the additional risk dcelibate and the baseline infection risk λ0 for HPV16.
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Fig. S2. Distribution of the (log) baseline expected time to infection (texpected = 1/λij ) in uninfected individuals assuming no prior infection, such that λij = λ0j
f(−→αjCi0)

. For each individual, λij was calculated using the maximum likelihood estimate for each element in−→α and the individual-specific covariates Ci0, which were reported at the
baseline visit (t = 0). The y axis reports frequency, while the vertical dashed line in each panel marks an expected time to infection of 10 years. Thus, only the portion of the
distribution to the left of the dashed line in each panel represents individuals for whom the the expected infection time falls within the next ten years.
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Fig. S3. Contribution of the effect of previous infection to overall infection risk in individuals with respect to HPV16. Histograms show the distribution of the fraction of the overall
force of infection λijt made up by the additional risk d in the population at various times post-clearance of the precedent infection. The mean value for the population-level
distribution at each time point is given by the vertical dotted line.
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Fig. S4. Comparison of the time-averaged prevalence of HPV types in the HIM Dataset. The black dotted lines indicates 1:1 correlation, and ρ denotes Pearson’s correlation
coefficient (p < 10−15 with 35 degrees of freedom for each comparison).
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Fig. S5. Correlations between the full candidate set of self-reported covariates at the baseline visit. Pearson product-moment correlations were calculated between continuous
variables, polyserial correlations (inferred latent correlations between continuous and categorical variables) were calculated between numeric and binary variables, and
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Fig. S6. Contribution of the effect of previous infection to the overall infection risk among individuals for HPV16, using a model with 17 covariates. Histograms show the
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Fig. S9. Comparison of the dynamics under candidate models with the observed HPV16 infection data. Fraction of infected individuals at various time-points during followup.
The shaded areas are bounded by the 2.5% and 97.5% quantiles from 1,000 simulations of each model. The solid line gives the observed fraction infected among the
individuals used to simulate the data.

1. Details of the HPV in Men data and covariate variables

1.1. Participants included in the analysis. We excluded individuals that failed to meet the full eligibility criteria described by
the HIM study (1), which included no prior diagnosis of genital cancer, warts, HIV, or other STIs. We identified 3,656 eligible
participants from the 4,123 men enrolled in the HIM study as of October 2014. Of the eligible participants, we excluded
n = 575 participants that had missing data at the time of enrollment for the 11 covariates that we included in our three
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candidate models. We then divided the remaining 3,081 participants into three sexual subclasses based on the number of recent
sex partners. For all covariates, "recent" activity indicates activity in the past six months, or since the last clinic visit if the
last clinic visit was more than six months prior, as reported at each clinic visit. The three sexual subclasses were celibate
individuals, individuals with one recent sex partner, and individuals with two or more recent sex partners. To account for
the effects of sexual subclass on the infection risk, we restricted our analysis to include only the n = 1, 099 individuals who
remained in the same subclass for at least three years over the course of their participation in the study.

1.2. Covariate variables. Covariates, including those used to determine sexual subclass were derived from a risk factor question-
naire that was administered at each visit, which was described and validated previously (1, 2). The survey was conducted
via computer-assisted self-interviewing (CASI) to preserve patient anonymity during the response process. Questions covered
sociodemographic characteristics, sexual behaviors, sex partnerships, and condom use. Participants were asked to recall their
recent behavior, such as recent number of male or female sexual partners, where "recent" referred to behavior over the past
six months. Participants had the option of refusing to answer any question, and refusals were treated as missing values as
in Giuliano et al. (1), such that a missing covariate was assigned its value at the closest visit. Covariates were selected for
inclusion in the model based on known risk factors identified in the literature for HPV in men (1, 3–7). We also included
country of residence as a covariate. The full set of candidate covariates (Fig. S5) included race (black/African American or
other), ethnicity (Hispanic or other), age, age at sexual debut, lifetime numbers of male and female sexual partners, numbers of
recent male and female sexual partners, numbers of new male and female sexual partners, presence of a steady sexual partner,
marital status, level of education, circumcision status (confirmed by a clinician at the baseline visit), whether or not the
participant was a current smoker, whether or not the participant used condoms for the majority of recent sexual encounters,
Brazilian nationality, and Mexican nationality, with US nationality used as the baseline.

To decrease statistical non-identifiability and to increase computational feasibility, we reduced the full candidate set of
covariates to a subset based on observed correlations (Fig. S5). Among highly correlated pairs of similar covariates, we
heuristically selected one representative. For example, we chose to include recent numbers of sexual partners instead of lifetime
numbers of sexual partners and the presence of a steady sexual partner instead of marital status. The variables describing race
and ethnicity were strongly correlated with country of origin, so we excluded them. Table S2 gives the final subset of covariates
included in the model.

Through this selection process, we identified five continuous covariates that we included as linear predictors (Table S2). The
continuous and ordinal covariates that we modeled as linear predictors were age, educational level, age at sexual debut, number
of recent female sex partners, and number of recent male sex partners. Following previous analyses from the HIM study group
(3, 5), we specified these covariates according to a previous study (2) that evaluated the test-retest reliability of the risk factor
questionnaire across the three study sites and languages. Nyitray et al. identified the covariate specifications that maximized
the calculated reliability coefficient of the response between geographical sites. For recent sexual partnerships, for example,
they found that across-site and across-time reliability was maximized when recent sexual partnerships were grouped as 0, 1, 2,
and ≥ 3 sexual partners of either gender over the previous six months. We preserved this variable grouping and found that less
than 4% of the individuals in our data reported >3 recent sexual partnerships at any visit. Binning of ≥ 3 sexual partnerships
thus likely did not affect the estimated covariate effect. For educational level, the HIM study group identified a binned ordinal
set of educational levels (0-4) that were similar across cultures. Nyitray et al. found that covariate responses had substantial
reliability regardless of participant age, and the previous analyses of the HIM dataset found no association of age with HPV
incidence across different binnings of age. Furthermore, previous analyses identified a simple positive relationship between
HPV incidence and younger age at sexual debut (3). We therefore used age and age at sexual debut as continuous predictors
without binning.

To model the effect of the covariates on the instantaneous risk of infection λijt, we used a log-linear model (main text Eq.
2), such that each covariate effect α is directly interpretable as a multiplicative effect on λijt. Time-varying covariates (age,
recent numbers of male and female sex partners, the presence of a steady sex partner, smoking status, educational level, and
condom use) were updated at each visit.

Name Structure Notes

1 Age Continuous
2 Educational Level Ordinal Levels: <12 years (0), 12 years completed (1), 13-15 years (2), 16 years completed (3), ≥ 17 years (4)
3 Age at sexual debut Continuous
4 Recent female sexual partners Continuous 0,1,2, ≥ 3 different partners within the last six months
5 Recent male sexual partners Continuous 0,1,2, ≥ 3 different partners within the last six months
6 Circumcision status Binary
7 Smoking status Binary Current smoker
8 Steady sex partner Binary Presence of a steady sexual partner
9 Consistent condom use Binary Use of a condom more than 50% of the time during intercourse
10 Brazil Binary Country of residence
11 Mexico Binary Country of residence

Table S2. Covariates included in the analyses.
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1.3. Identification of celibate individuals. At each visit, celibate individuals were identified as those reporting no recent receptive
or insertional vaginal sex, no recent receptive or insertional anal sex, and no recent receptive or insertional oral sex. Participants
were asked separately at each visit about insertional and receptive sexual practices and were asked separately about all sexual
practices with male or female partners. Vaginal sex was defined explicitly as “your penis in your partner’s vagina,” anal sex
was defined explicitly as “your penis in your partner’s anus or your partner’s penis in your anus,” and oral sex was defined
explicitly as "your penis in your partner’s mouth or your partner’s penis in your mouth."

1.4. Potential effects of covariate specification on the inference results. While we based our selection and specification of the
covariates on previous analyses, we cannot ignore the possibility of residual bias. For example, for recent male sex partners, if
any sexual activity with male partners significantly affected risk, but the distinction between two and three recent partners was
negligible, then we could have underestimated the effect of male sexual partnership activity by inferring a linear coefficient.
Furthermore, we inferred a linear coefficient to estimate the general effect of increasing educational level on HPV risk, but
changes between discrete educational levels may correspond imperfectly to proportional changes in risk, which may have limited
our power to detect a true effect. Dichotomizing condom use into more or less than 50%, a necessary measure given the small
fraction of individuals that reported 100% condom use, could have introduced bias. Particularly, we may underestimate the
protective effect of condoms if they are only strongly effective at 100% usage. However, at least one previous study identified a
significant reduction in the risk of HPV infection with condom use when condom use was measured as use more than 50% of
the time (8).

2. Likelihood-based inference

Inference by maximum likelihood was carried out using multiple iterated filtering (MIF) (9). Briefly, iterated filtering is an
algorithm that uses sequential Monte Carlo (SMC) to approximate maximum likelihood estimates of parameters from POMP
models. SMC uses a population of particles drawn from the parameters of a given model to generate Monte Carlo samples
of the latent dynamic variables and evaluate the likelihood of observed time series (10). Iterated filtering successively filters
the particle population, perturbing the parameters between iterations. The perturbations decrease in amplitude over time,
allowing convergence at the maximum likelihood estimate.

The extension of SMC and iterated filtering to longitudinal panel data has been previously described (11), and we extended
longitudinal POMP methods to binary data. The data for each HPV type is a set of binary time series, or panel units,
describing the observed infection trajectory for each individual. The panel POMP contains a POMP model for each individual,
and individuals share parameters. To evaluate the likelihood of a shared parameter set, SMC is carried out over the time series
for each individual to generate a log-likelihood for the corresponding panel unit. The log likelihood of the panel POMP object
is the sum of the individuals’ log likelihoods. All optimization routines were carried out using 20,000 particles to overcome high
Monte Carlo error (SI 6).

For each model, we initialized the iterated filtering with 100 random parameter combinations. Optimization involved series
of successive MIF searches, with the output of each search serving as the initial conditions for the subsequent search. The
likelihood of the output for each search was calculated by averaging the likelihood from ten passes through the particle filter,
each using 50,000 particles. The optimization was repeated until additional operations did not arrive at a higher maximum
likelihood (SI 6).

For model selection, we used the corrected Akaike Information Criterion (AICc) (12). We obtained maximum likelihood
estimates for each parameter and associated 95% confidence intervals by constructing likelihood profiles. We used Monte Carlo
Adjusted Profile methods (13) to obtain a smoothed estimate of the profile that accounts for the increased Monte Carlo error
associated with longitudinal data. The lower and upper limits of the 95% confidence interval were the points that lay 1.92
log-likelihood units below the maximum likelihood estimate on the smoothed profile curve. These points correspond to one-half
the 95% critical value for a χ2 distribution with one degree of freedom.

3. Comparison of our results to previous analyses of the HIM dataset

Our estimates of the effects of type-specific risk factors are generally consistent with previous studies, but there are some
exceptions. First, a previous analysis of the HIM data showed no difference in HPV16 incidence between men who have sex
with men and men who have sex with women (5), but our results instead show that risk of HPV16 infection declines with an
increase in the number of male sex partners, suggesting that HPV16 infection depends largely on heterosexual transmission.
Meanwhile, our results show that the risk of infection with HPV51, HPV89, HPV6, and HPV84 increases with the number of
male or female partners, consistent with previous work, although the effect was statistically significant only for HPV89. Finally,
the previous analysis concluded that circumcision increases the risk of HPV51 (7), but our results suggest that circumcision
instead reduces the risk of HPV51. Our modeling approach, however, may provide greater statistical power than previous
analyses. First, our models account for variation in risk per unit time, and they describe the dynamics in a way that is
unconstrained and unbiased by the frequency of observations. Second, we infer the contribution of host-specific risk factors to
infection risk separately from the dynamics of previous infection. We therefore have reason to believe that our results are
robust and that differences with previous analyses arise from differences in model structure.

4. Additional analyses and alternative models
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4.1. Testing for homologous immunity by excluding individuals with prevalent type-specific infection. Including individuals
infected with HPV at baseline could have enriched the data for individuals with less immunity to HPV, causing the additional
risk model to be favored over the homologous immunity model. Therefore, to help validate the results of the model selection,
we fitted each of the three candidate models (the memoryless model, main text Eq. 1, the homologous immunity model, main
text Eq. 3, and the additional risk model, main text Eq. 4) to the subset of individuals that were uninfected for at least two
visits at baseline. We found strong support for the additional risk model in this subpopulation (Table S3, consistent with
our major findings. For each type, the homologous immunity model again reduced to the memoryless model (the maximum
likelihood was achieved at d = 1 for all types), affirming the lack of homologous immunity in any type.

Type Model (n parameters) Log likelihood SE ∆AICc

HPV62
Memoryless (13) -974.9 0.3 52.5

Homologous immunity (15) -974.2 0.6 55.3
Additional risk (17) -944.5 0.3 0

HPV16
Memoryless (13) -879.9 1.1 17.8

Homologous immunity (15) -879.7 0.5 21.5
Additional risk (17) -866.9 0.4 0

HPV89
Memoryless (13) -1081.8 0.2 22.0

Homologous immunity (15) -1081.4 0.9 25.3
Additional risk (17) -1066.7 0.4 0

HPV51
Memoryless (13) -991.5 0.8 33.1

Homologous immunity (15) -992.1 0.7 38.4
Additional risk (17) -970.8 1.0 0

HPV84
Memoryless (13) -1042.1 0.3 47.9

Homologous immunity (15) -1041.6 0.5 51.1
Additional risk (17) -1014.0 0.9 0

HPV6
Memoryless (13) -797.7 0.8 30.6

Homologous immunity (15) -797.4 0.6 34.1
Additional risk (17) -778.3 0.3 0

Table S3. Comparison of the candidate models fit to the subset of the study of population without prevalent infection at baseline. The ∆AICc
gives the AICc score of each candidate model relative to the best-fit model, such that the best-fit model has ∆AICc = 0.

4.2. Additional risk model fit to celibate individuals only. We fitted the additional risk model to data from the celibate individuals
(n = 237). Celibate individuals were those who reported no receptive or insertional vaginal, anal, or oral sex between visits. For
all analyses, we included only individuals that remained celibate for a minimum of three years, and we estimated the magnitude
of the additional risk dcelibate only during the period of celibacy. Consistent with our main findings, when fitting the model
to only celibate individuals, we recover the strong effect of previous infection with each HPV type on the risk of subsequent
infection with the same type (Table S4). The effect of previous infection on the total risk of subsequent infection in the celibate
population accounts on average for over 96% of the infection risk across types, even at three years after infection clearance.

Type dcelibate (MLE) 95% Confidence Interval
HPV62 1.6 [0.1, 3.4]
HPV84 1.5 [0.4,9.8]
HPV89 5.8 [1.1,10.1]
HPV16 3.4 [1.3,5.4]
HPV51 3.0 [0.9,6.8]
HPV6 2.5 [0.8, 5.2]

Table S4. Maximum likelihood estimate of the additional risk dcelibate inferred using data from only celibate individuals. All values are
reported on a log scale.

4.3. Additional risk only model. In this model, the force of infection λijt for individual i with type j at time t was determined
only by the baseline infection risk for type j and by the effect of previous infection, so that the behavioral and demographic
risk factors had no effect. The force of infection is then:

λijt = λ0j + Iprevdjcie
−wj (t−tclr) [S1]

For each HPV type, this model out-performed the memoryless model but it performed much worse than the model that also
took into account the covariates (Table S5).
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Type Log likelihood SE ∆AICc

HPV16 -1,636.5 0.6 50.6
HPV51 -1,651.5 1.8 11.7
HPV6 -1,403.6 0.3 8.3
HPV62 -1,877.0 0.4 66.8
HPV84 -1,870.0 0.1 37.3
HPV89 -1,843.4 0.8 22.5

Table S5. Performance of the additional risk only model for each HPV type relative to the full additional risk model. The ∆AICc gives the AICc
score of each candidate model relative to the best-fit model, such that the best-fit model has ∆AICc = 0.

4.4. HPV16/HPV31 interaction model. To test whether infection with HPV31 affects the risk of infection with HPV16, we fitted
a model in which the force of infection of HPV16 depends on whether an individual has ever been infected with HPV31. In
this model, we included a covariate variable IHPV31, updated at each visit, that indicated whether individual i was currently or
previously infected with HPV31. The force of infection λijt was thus:

λijt = λ0jf(−→αjCit)αHPV31IHPV31 + Iprevdjcie
−wj (t−tclr), [S2]

where αHPV31 gives the effect of previous or current infection with HPV31 on the risk of infection with HPV16. Our goal was
to estimate the direction and strength of interaction between HPV16 and HPV31. Our estimate of the interaction parameter
was centered around 1 (MLE 1.3, CI[0.5,2.0]), indicating no significant interaction.

4.5. A model with additional covariates. To estimate the contribution of the additional risk to the force of infection when
allowing for a large number of host risk factors, we added additional covariates to the additional risk model for HPV16, using
the full set of 17 original candidate covariates (Fig. S5). We used the maximum likelihood estimates of the model parameters
to estimate the fraction of the force of infection made up by the additional risk d among individuals. This model involved
inference for n=1019 individuals that had complete covariate information at baseline for the full set of covariates. To compare
this model to the best-fit additional risk model (with 11 covariates), we fitted the original additional risk model for the same
n=1019 individuals and again calculated the maximum likelihood. The additional risk d still accounts on average for over
90% of the risk for several years after infection clearance (Fig. S6). The maximum likelihood and AICc for the model with
additional covariates were -1468.4 (SE .63) and 2983.9, respectively, whereas the maximum log likelihood and AICc for the
model without additional covariates, fitted to the data from the same individuals, were -1472.8 (SE .86) and 2979.6, respectively.
Thus, the ∆AICc for the additional covariates model is 4.3, showing that the improvement in the likelihood from the additional
complexity of the additional covariates does not provide a better explanation of the data than the additional risk model.

5. Model validation

To assess the ability of the best-fit model to capture the observed dynamics, we simulated infection data for the n = 1,099
individuals that we included when making inferences, preserving the visit dates and covariate data for each individual. We
compared the results of 1,000 simulations from both the memoryless model and the additional risk model (the best-fit model)
to the data. In the additional risk model (main text Eq. 4), the initial infection risk is low across the population, and an
individual’s risk of infection is sharply increased by previous infections. The prevalence of any HPV type should thus arise
from repeated infections within a small number of individuals. In the memoryless model (main text Eq. 1), the initial infection
risk is higher across the population, and previous infection has no effect on subsequent risk, such that the prevalence of any
type arises from fewer infections across more individuals. Both the memoryless model and the additional risk model captured
the observed prevalence over patient followup (Fig. S9), but the additional risk model accurately predicted the total number of
unique individuals that were infected at any point during the study. The memoryless model, in contrast, overestimated the
number of unique infected individuals (main text Fig. 3B). The best-fit model thus captures important qualitative aspects of
the dynamics, supporting the results of model selection.

The success of the additional-risk model provides strong support for our use of a Bernoulli likelihood function. An implicit
assumption of the Bernoulli likelihood function is that the error in the model’s predictions is due only to measurement error
rather than to systematic bias in the model’s predictions. The ability of the best model to reproduce both the prevalence data,
and the number of unique individuals infected, strongly suggests that any such systematic bias is reasonably weak.

6. Monte Carlo error in inference from binary panel data

Advances in simulation-based Monte Carlo methods have made it possible to fit complex models to large datasets. We took
advantage of extensions of multiple iterated filtering (MIF) (9) to the case of panel data. Iterated filtering uses sequential
Monte Carlo, also known as particle filtering, to estimate the likelihood of partially observed Markov process (POMP) models.
Sequential Monte Carlo uses stochastic simulations of dynamical models to produce successive populations of weighted particles.
Each particle represents a Monte Carlo sample from the probability density of the latent process, conditional on the parameters
and the previous observations. As the particle population is propagated along the time series, the particles are weighted and
resampled at each data point, and the likelihood of each observation is estimated as the weighted average of the particles.
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Large data sets and complex models can result in non-negligible Monte Carlo error in estimated likelihoods. The structure
of panel data, a collection of time series that are dynamically independent apart from shared model parameters, yields high
Monte Carlo error that often makes it infeasible to calculate the likelihood with an error of less than one log likelihood unit
(13). This is important because a standard approach to calculating 95% confidence intervals relies on the observation that
parameter values with log likelihood scores that are within 1.92 units of the maximum log likelihood fall within the 95%
confidence interval (14). Because high levels of Monte Carlo error can make it difficult to accurately estimate likelihoods, high
Monte Carlo error rates also make it difficult to estimate 95% confidence intervals. Ionides et al. (13) show that one solution
to this problem is to approximate the likelihood in the region of the maximum likelihood by fitting a quadratic to to likelihood
scores from a large sample of parameter values, which can in turn be used to directly estimate the confidence bounds. Ionides
et al. validated this approach with panel data (13), and here we apply it to the case of binary panel data.

Before carrying out the model fitting, we tested our approach by quantifying the effect of particle size on the likelihood
for a given set of parameters. As is often the case in simulation-based approaches, the Monte Carlo error in our simulations
is high enough that most particles have very low likelihoods. As a result, our likelihood estimates at first improve rapidly
with increases in the number of particles (Fig. S7). For particle numbers above about 5000, however, further increases in
particle numbers have at most weak effects. We therefore used 20,000 particles for the iterated filtering and 50,000 particles for
evaluations of the likelihood by particle filtering. We also accounted for Monte Carlo error in maximum likelihood estimation
by initiating a large number of independent MIF searches (n = 100) at random parameter values for any given model. Each of
the 100 searches began with 200 MIF iterations and was continued successively (100 iterations) until the maximum likelihood
for that particular search was stationary within one log likelihood unit. To identify the MLE for a given model, we required
that three searches independently arrive within two log likelihood units of the maximum likelihood value.

7. Model parameters

Model Parameter type Parameter name Fixed/estimated/nuisance parameter

All Models Baseline infection risk λ0j Estimated
All Models Infection duration Shape of gamma distribution (kj ) Fixed
All Models Infection duration Scale of gamma distribution (θj ) Fixed
All models Covariate effects (α) Age Estimated
All Models Covariate effects (α) Educational status Estimated
All Models Covariate effects (α) Age at sexual debut Estimated
All Models Covariate effects (α) Circumcision status Estimated
All Models Covariate effects (α) Number of recent female sexual partners Estimated
All Models Covariate effects (α) Number of recent male sexual partners Estimated
All Models Covariate effects (α) Steady sexual partner Estimated
All Models Covariate effects (α) Consistent condom use Estimated
All Models Covariate effects (α) Current smoking status Estimated
All Models Covariate effects (α) Mexican nationality (αMX ) Estimated
All Models Covariate effects (α) Brazilian nationality (αBZ ) Estimated
All Models Initial conditions Probability of initial infection (Pinitialj

) Estimated
All Models Initial conditions Duration of remaining infection if initially infected (Fremaining) Nuisance parameter for initial conditions
All Models Initial conditions Probability of previous infection if initially uninfected (ppast) Nuisance parameter for initial conditions
All Models Measurement model False positive rate (PF P ) Fixed
All Models Measurement model False negative rate (PF N ) Fixed
Homologous immunity model Immunity dynamics Magnitude of scaled risk (d) Estimated
Homologous immunity model Immunity dynamics Rate of waning of immunity (w) Estimated
Additional risk model Additional risk (d) dcelibate Estimated
Additional risk model Additional risk (d) d1partner Estimated
Additional risk model Additional risk (d) dmultiple Estimated

Table S6. Description of model parameters

Fixed parameters

The false positive and false negative rates of HPV detection were set equal to the high sensitivity (96%) and specificity (99%)
of the Roche Linear Array HPV genotyping test reported by the manufacturer (Roche Diagnostics), which has been confirmed
by other analyses (15). The duration of each simulated infection with each HPV type j was drawn from a Γ(kj , θj) distribution,
where kj and θj were fixed according to the empirical distribution of infection durations in the data for type j (Fig. S8, Table
S7). Following Giuliano et al. (1), we required two consecutive negative visits following a positive visit for any HPV type
to constitute an observed clearance. Of the consecutive negative tests, the first was assumed to be the first true negative
observation. Thus, we treated 1-0-1 transitions as false negatives, thereby adjusting data a priori based on the assumption that
infection in such cases was actually continuous. Our justification was two-fold: first, this approach allowed us to account for
false negatives in HPV sampling beyond the laboratory specifications of the HPV test that were included in the observation
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model. Second, the approach ensured that the high rates of reinfection estimated by the best-fit model were not the result of
failing to account for false clearances, ensuring in turn that our estimates of reinfection rates would be conservative.

Type kj θj

HPV62 1.20 0.81
HPV84 1.67 0.59
HPV89 1.37 0.70
HPV16 1.71 0.52
HPV51 1.33 0.75
HPV6 1.71 0.51

Table S7. Values of the parameters describing infection durations, as estimated from observed infection and clearance events in the data.

Nuisance parameters

Two nuisance parameters were used to generate the initial conditions for model simulations but were not estimated from
the data. For individuals that were initially infected during any simulation, the fraction of an infection duration that they
had experienced prior to time t = 0 was given by the nuisance parameter Fremaining, which was drawn from a uniform (0,1)
distribution for each model realization. For individuals that were initially uninfected during any simulation, the probability
that the individual had previously been infected at some point in time was given by ppast, which was drawn from a uniform
(0,1) distribution for each model realization.

Estimated parameters for the best-fit model

Parameter MLE Confidence interval Type
λ0j -4.6 [-5.2,-4] HPV62

-4.6 [-5.2,-4.3] HPV84
-4.3 [-4.7,-3.6] HPV89
-4.2 [-5.1,-3.5] HPV16
-4.3 [-5,-3.8] HPV51
-5.1 [-5.7,-4.5] HPV6

pinitial (logit scale) -2.6 [-2.8,-2.5] HPV62
-2.6 [-2.7,-2.5] HPV84
-2.8 [-3.1,-2.6] HPV89
-2.9 [-3.2,-2.8] HPV16
-2.9 [-3.1,-2.8] HPV51
-3.2 [-3.4,-2.8] HPV6

αage 0.0 [-0.3,0.3] HPV62
-0.2 [-0.5,0.0] HPV84
-0.3 [-0.4,-0.2] HPV89
0.0 [-0.2,0.2] HPV16
-0.3 [-0.4,0.0] HPV51
-0.2 [-0.5,0.0] HPV6

αAgeatsexualdebut 0.2 [-0.1,0.3] HPV62
-0.2 [-0.4,0.1] HPV84
-0.3 [-0.4,-0.1] HPV89
-0.1 [-0.3,0.1] HPV16
-0.3 [-0.5,-0.1] HPV51
-0.1 [-0.4,0.1] HPV6

αBZ 0.9 [0.1,1.2] HPV62
0.3 [-0.3,1.0] HPV84
0.3 [-0.3,0.7] HPV89
0.3 [-0.5,0.6] HPV16
-0.3 [-0.5,0.3] HPV51
-0.6 [-1.2,0.1] HPV6

αCircumcised -0.3 [-0.7,0.1] HPV62
0.6 [0.1,0.9] HPV84
0.0 [-0.3,0.2] HPV89
0.2 [-0.3,0.5] HPV16
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-0.3 [-0.5,-0.1] HPV51
-0.5 [-0.8,0.2] HPV6

αConsistent condom use -0.2 [-0.8,0.1] HPV62
-0.7 [-1.4,-0.3] HPV84
-0.1 [-0.8,0.1] HPV89
-0.3 [-0.8,0.1] HPV16
-0.2 [-0.5,0.1] HPV51
0.3 [-0.1,0.5] HPV6

αCurrent smoker 0.5 [0.2,0.8] HPV62
0.8 [0.5,1.2] HPV84
0.1 [-0.1,0.4] HPV89
-0.2 [-0.6,0.3] HPV16
0.4 [0.2,0.7] HPV51
0.6 [0.2,1.0] HPV6

α#Recent female sex partners 0.6 [0.5,0.8] HPV62
0.6 [0.5,0.9] HPV84
0.6 [0.5,0.8] HPV89
0.8 [0.6,0.9] HPV16
0.6 [0.4,0.8] HPV51
0.6 [0.5,1.8] HPV6

α#Recent male sex partners 0.0 [-0.5,0.2] HPV62
0.2 [0.0,0.4] HPV84
0.5 [0.3,0.7] HPV89
-0.8 [-1.9,-0.3] HPV16
0.1 [-0.1,0.3] HPV51
0.2 [-0.1,0.6] HPV6

αEducational level -0.2 [-0.4,0.0] HPV62
0.0 [-0.3,0.1] HPV84
0.1 [0.0,0.2] HPV89
0.0 [-0.2,0.1] HPV16
0.0 [-0.2,0.2] HPV51
0.0 [-0.2,0.1] HPV6

αMX -1.3 [-1.9,-0.6] HPV62
-0.1 [-0.8,0.4] HPV84
-0.5 [-1.0,0.0] HPV89
-1.1 [-1.4,-0.7] HPV16
-1.0 [-1.4,-0.7] HPV51
-0.4 [-0.8,0.3] HPV6

αSteady sex partner -0.7 [-1.0,-0.3] HPV62
-0.9 [-1.2,-0.3] HPV84
-0.5 [-0.7,-0.3] HPV89
-0.9 [-1.2,-0.5] HPV16
-0.2 [-0.5,0.2] HPV51
-0.4 [-1.0,0.0] HPV6

dcelibate 2.7 [2.2,3.3] HPV62
1.0 [0.1,1.6] HPV84
5.2 [4.3,6.2] HPV89
4.0 [3.5,4.9] HPV16
3.9 [2.4,4.2] HPV51
2.1 [1.3,2.9] HPV6

d1 partner 3.3 [2.9,3.7] HPV62
1.5 [-0.3,3] HPV84
4.2 [3.5,4.8] HPV89
3.8 [3.2,4.7] HPV16
3.6 [2.5,4.1] HPV51
2.8 [2.2,3.3] HPV6

d >1 partner 3.1 [2.7,3.6] HPV62
0.7 [0.3,3.4] HPV84
3.9 [3.1,4.5] HPV89
4.4 [3.8,5.2] HPV16
3 [2.7,3.9] HPV51
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2.3 [1.7,2.9] HPV6
w -0.3 [-0.5,-0.1] HPV62

-0.5 [-0.8,-0.3] HPV84
0 [-0.3,0.2] HPV89
0.3 [0.1,0.5] HPV16
-1.3 [-1.6,-0.8] HPV51
0 [-0.2,0.3] HPV6

Table S8. Values of the estimated parameters. Estimates are on a log scale unless otherwise indicated.

αBZ αrecent female sexual partners

αcircumcised αcurrent smoker αsteady sexual partner αconsistent condom use αMX

w αage αeducational αage at sexual debut αrecent male sexual partners

dcelibate d1 partner dmultiple partners logit pinitial λ0

−1 0 1 −0.5 0.0 0.5 1.0 1.5

−1 0 1 −1 0 1 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 −1 0 1

−2 −1 0 1 2 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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Fig. S10. HPV62: Likelihood profiles for each estimated parameter. The x axis gives the log of the profile parameter value unless the logit distribution is specified. The y axis
gives the likelihood relative to the maximum likelihood for the additional risk model for HPV62. The red dashed horizontal line indicates the cutoff of 1.92 log likelihood units
used to determine the confidence interval.
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αBZ αrecent female sexual partners

αcircumcised αcurrent smoker αsteady sexual partner αconsistent condom use αMX

w αage αeducational αage at sexual debut αrecent male sexual partners

dcelibate d1 partner dmultiple partners logit pinitial λ0

−1 0 1 −0.5 0.0 0.5 1.0 1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1 0 1 −1 0 1 −1.5 −1.0 −0.5 0.0 0.5 1.0 −1 0 1

−2 −1 0 1 2 −1 0 1 −1.0 −0.5 0.0 0.5 1.0 −1 0 1 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0 2.5 5.0 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 −3.00 −2.75 −2.50 −2.25 −7 −6 −5 −4
−60

−40

−20

0

−60

−40

−20

0

−60

−40

−20

0

−60

−40

−20

0

∆ 
lo

g 
lik

el
ih

oo
d

Fig. S11. HPV84: Likelihood profiles for each estimated parameter, as in Fig. S10.
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αBZ αrecent female sexual partners

αcircumcised αcurrent smoker αsteady sexual partner αconsistent condom use αMX

w αage αeducational αage at sexual debut αrecent male sexual partners

dcelibate d1 partner dmultiple partners logit pinitial λ0

−1 0 1 −0.5 0.0 0.5 1.0 1.5

−1 0 1 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1 0 1

−2 −1 0 1 2 −1.5 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 −1 0 1 −1 0 1
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Fig. S12. HPV16: Likelihood profiles for each estimated parameter, as in Fig. S10.
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αBZ αrecent female sexual partners

αcircumcised αcurrent smoker αsteady sexual partner αconsistent condom use αMX

w αage αeducational αage at sexual debut αrecent male sexual partners

dcelibate d1 partner dmultiple partners logit pinitial λ0

−1 0 1 0.0 0.5 1.0 1.5

−1 0 1 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1 0 1 −1 0 1 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2 −1 0 1 2 −1.0 −0.5 0.0 0.5 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1 0 1

0 2 4 6 0.0 2.5 5.0 0.0 2.5 5.0 −3.75 −3.50 −3.25 −3.00 −2.75 −2.50 −7 −6 −5 −4 −3
−60

−40

−20

0

−60

−40

−20

0

−60

−40

−20

0

−60

−40

−20

0

∆ 
lo

g 
lik

el
ih

oo
d

Fig. S13. HPV6: Likelihood profiles for each estimated parameter, as in Fig. S10.
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αBZ αrecent female sexual partners

αcircumcised αcurrent smoker αsteady sexual partner αconsistent condom use αMX

w αage αeducational αage at sexual debut αrecent male sexual partners

dcelibate d1 partner dmultiple partners logit pinitial λ0

−1 0 1 −0.5 0.0 0.5 1.0 1.5
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Fig. S14. HPV89: Likelihood profiles for each estimated parameter, as in Fig. S10.
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αBZ αrecent female sexual partners

αcircumcised αcurrent smoker αsteady sexual partner αconsistent condom use αMX

w αage αeducational αage at sexual debut αrecent male sexual partners

dcelibate d1 partner dmultiple partners logit pinitial λ0

−1 0 1 −0.5 0.0 0.5 1.0
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Fig. S15. HPV51: Likelihood profiles for each estimated parameter, as in Fig. S10.
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