Supplemental Figures:

Figure S1. Neurodegeneration and inclusion formation in α -synuclein transgenic flies, Related to Figure 1

(A) Western blot showing α -synuclein levels in 1-, 10- and 20-day-old flies. The blot was reprobed for GAPDH to illustrate equivalent protein loading. Control is *Syb-QF2/+*.

(B) Behavioral analysis of motor deficits using the climbing test indicating changes in motor ability when α -synuclein is expressed using the Q system. n=60 per genotype. Control is *Syb-QF2/+*.

(C) Lifespan analysis showing early death in α -synuclein transgenic flies (red) compared to control flies (green). n=300 per genotype. Kaplan-Meyer curve. p<0.01, log rank test. Control is *Syb-QF2/+*.

(D) Behavioral analysis of motor deficits using the climbing test indicating no changes in motor ability when GFP is expressed using the Q system. n=60 per genotype. Control is *Syb-QF2/+.*

(E) Hematoxylin and eosin staining showing no vacuolization in the medulla of 10-dayold GFP flies compared to α -synuclein transgenic flies. Scale bar, 20 μ m. Control is *Syb-QF2/+.*

(F) Immunofluorescence staining showing that α -synuclein aggregates are ubiquitin positive in 10-day-old α -synuclein transgenic flies (arrows). Scale bar, 5 µm. Control is *Syb-QF2/+.*

(G) Tyrosine hydroxylase (TH) immunostaining showing loss of TH-immunopositive dopaminergic neurons in the anterior medulla (arrows) in 10-day-old α -synuclein transgenic flies compared to control flies. Scale bar, 5 µm. Control is *Syb-QF2/+*.

(H) Quantification of TH-positive neurons in 10- and 20-day-old α -synuclein transgenic flies compared to control flies. n=6 per genotype. Control is *Syb-QF2/+*.

(I and J) Immunofluorescent staining showing α -synuclein aggregates in TH-positive neurons of the anterior medulla (I) and the central brain (J) in 10-day-old α -synuclein transgenic flies (arrows). Scale bar, 5 µm. Control is UAS-mCD8-GFP/+; TH-GAL4, Syb-QF2.

Asterisks indicate *p<0.01, ***p<0.0002 and ****p<0.0001, two-way ANOVA in (B), (D) and (H) with Student's Newman-Keuls test. Data is represented as mean \pm SEM.

Figure S2. Actin-rich rods are present at 1 day of age in α -synuclein transgenic flies, Related to Figure 2

(A and B) F-actin staining of whole mount brains of 1-day-old α -synuclein transgenic flies compared to control flies. Scale bar, 50 µm. Quantification (B) of fluorescence intensity shows a trend toward increased F-actin in α -synuclein transgenic flies. n=6 per genotype.

(C) Quantification of actin-rich inclusions in α -synuclein transgenic flies reveals the presence of actin-rich rods in 1-day-old α -synuclein transgenic flies. n=6 per genotype.

Asterisks indicate *p<0.01, unpaired t-test. Data is represented as mean \pm SEM. Flies are 1 day old. Control in (A)-(C) is *Syb-QF2/*+.

Figure S3. Actin modifiers do not induce toxicity or influence α -synuclein expression, Related to Figure 3.

(A) Behavioral analysis of motor deficits using the climbing test showing no enhancement of motor deficits when the *elav-GAL4* driver is used to express EGFP as a control in α -synuclein transgenic flies. n=60 per genotype.

(B and C) Genetic modification of locomotor ability (B) and vacuole formation (C) in α synuclein transgenic flies showing rescue by reducing actin in animals heterozygous for *Act5C*^{G0010} and enhancement with overexpression of actin (*UAS-Act5C*). n=60 per genotype. Flies are 10 days old in (C).

(D and I) Western blot showing normal α -synuclein protein levels following genetic actin manipulation in α -synuclein flies. The blots are reprobed for GAPDH to illustrate equivalent protein loading. Flies are 1 day old.

(E and J) Behavioral analyses using the climbing assay showing no significant locomotor deficits with genetic actin cytoskeleton manipulation in the absence of transgenic α -synuclein expression. n=60 per genotype.

(F and K) Real time quantitative PCR for *Act5C* (F) and *Fhos* (K) transcript levels shows a reduction in *Act5C* and *Fhos* expression in flies heterozygous for $Act5C^{G0010}$ or expressing an RNAi directed to *Fhos*. n=6 per genotype. Flies are 1 day old.

(G and H) Genetic rescue of locomotor dysfunction (G) and vacuole formation (H) in α synuclein transgenic flies expressing two transgenic RNAi lines directed to *Fhos*. n=60 per genotype. Flies are 10 days old in (H). (L) Quantification of the number of actin-rich rods in brain sections shows no significant changes with genetic manipulation of the actin cytoskeleton in the absence of transgenic α -synuclein expression. n=6 per genotype. Flies are 10 days old.

(M) Immunofluorescence showing expression of *Fhos* as monitored by the enhancer trap *Fhos*^{AA142} (arrows). The reporter is nuclear because a nuclear import signal is present on β-galactosidase. Morphology of positive cells is consistent with neurons. Scale bar, 5 μm. Flies are 1 day old.

(N) Quantitative analysis of the number of TH-immunopositive neurons in the anterior medulla showing rescue of positively stained neurons following genetic manipulation of the actin cytoskeleton. n=6 per genotype. Flies are 20 days old.

(O) Analysis of climbing reflecting enhanced locomotor deficits in α -synuclein transgenic flies expressing wild type human tau. n=60 per genotype.

(P) Quantification of cortical neurons in the anterior medulla showing decreased neuronal density in 10-day-old α-synuclein transgenic flies expressing wild type human tau. n=6 per genotype.

Asterisks indicate *p<0.01, **p<0.001, ***p<0.0002, and ****p<0.0001, two-way ANOVA in (A), (B), (E), (G), (J) and (O), one-way ANOVA in (C), (H), (K), (L), (N) and (P) with Student-Newman-Keuls test, and unpaired t-test in (F). Data is represented as mean \pm SEM. Control (ctrl) in (A)-(D), (H), (I), (N) and (P) is *elav-GAL4/+; Syb-QF2/+* and in (E), (F), (J)-(M) and (O) is *elav-GAL4/+*

Figure S4. Mitochondrial abnormalities in α -synuclein transgenic flies, Related to Figure 4.

(A) Measurements of mitochondrial elongation showing a trend toward mitochondrial enlargement in 1-day-old α -synuclein transgenic flies. n=6 per genotype. Control is *Syb-QF2/+*.

(B) Mitochondrial protein oxidation as monitored by the transition from green to red fluorescence in MitoTimer protein is consistent with early mitochondrial dysfunction in 1day-old α-synuclein transgenic flies. n=6 per genotype. Control is *elav-GAL4/+; UAS-MitoTimer/Syb-QF2*.

(C) Western blot probed for with an antibody to porin showing no changes in 1-, 10- and 20-day-old α -synuclein flies compared to controls. The blot is reprobed with an antibody recognizing GAPDH to illustrate equivalent protein loading. Control is *Syb-QF2/+*.

(D) Measurement of elongation in newly synthesized and oxidized mitochondria reveal mitochondrial enlargement in oxidized mitochondria in α-synuclein transgenic flies. n=6 per genotype. Control is *elav-GAL4/+; UAS-MitoTimer/Syb-QF2*.

(E) Measurements of mitochondrial elongation show no changes in mitochondrial morphology in 12-month-old human wild type α -synuclein transgenic mice compared to controls. n=4 per genotype.

Asterisks indicate *p<0.01, unpaired t-test. Data is represented as mean \pm SEM. Flies are 1 day old in (A and B) and 10 days old in (D).

Figure S5. Overexpression of Drp1 does not influence mitochondrial dynamics in the absence of transgenic α -synuclein expression, Related to Figure 5.

(A) Behavioral analysis of motor deficits using the climbing assay showing rescue in locomotor activity following overexpression of a previously characterized (DuBoff et al., 2012), moderately expressing Drp1 line. n=60 per genotype, two-way ANOVA with Student-Newman-Keuls test, *p<0.01 and ***p<0.0002. Control is *elav-GAL4/+; Syb-QF2/+*.

(B) Quantification of vacuoles showing reduced number of vacuoles in the medulla of 10-day-old α-synuclein transgenic flies following overexpression of Drp1 (*UAS-Drp1*). n=6 per genotype, one-way ANOVA with Student-Newman-Keuls test, ****p<0.0001. Flies are 10 days old. Control is *elav-GAL4/+; Syb-QF2/+*.

(C) Western blot showing no change in α-synuclein protein levels when Drp1 is overexpressed. The blot is reprobed for GAPDH to illustrate equivalent protein loading. Flies are 1 day old. Control is *elav-GAL4/+; Syb-QF2/+*.

(D) Behavioral analysis of motor deficits using the climbing assay showing no changes in locomotor activity following Drp1 overexpression. n=60 per genotype, two-way ANOVA with Student-Newman-Keuls test. Control is *elav-GAL4/+; Syb-QF2/+.*

(E) Real time quantitative PCR for *Drp1* transcript levels shows an increase in *Drp1* expression in flies overexpressing the *UAS-Drp1* construct. n=6 per genotype, unpaired t-test, **p<0.001. Flies are 1 day old. Control is *elav-GAL4/*+

(F) Drp1 localization to the mitochondria, as monitored by HA-tagged Drp1 (*HA-Drp1*), is not affected following Drp1 overexpression (arrows). Scale bar, 5 μm. Flies are 10 days old. Control is *elav-GAL4/+; Mito-GFP/+; HA-Drp1/Syb-QF2*.

(G) Western blot showing no changes in Drp1 expression, as monitored by immunoblotting with an antibody directed to HA to detect HA-tagged Drp1 when transgenic α -synuclein is expressed. Flies are 1 day old. Control is *elav-GAL4/+; HA-Drp1/Syb-QF2*.

(H) Quantitative analysis of the number of TH-immunopositive neurons in the anterior medulla showing rescue of positively stained neurons following overexpression of Drp1.

n=6 per genotype, one-way ANOVA with Student-Newman-Keuls test, *p<0.01. Flies are 20 days old. Control is *elav-GAL4/+; Syb-QF2/+.*

Data is represented as mean \pm SEM.

Figure S6. Drp1 translocation to the mitochondria outer membrane is dependent on actin dynamics, Related to Figure 6.

(A) Drp1 localization to the mitochondria, as monitored by HA-tagged Drp1 (*HA-Drp1*), shows no mislocalization in animals with one copy of $Act5C^{G0010}$ or following expression of an RNAi line directed to *Fhos* (arrows) in the absence of α -synuclein overexpression. Scale bar, 5 µm. Control is *elav-GAL4/+; Mito-GFP/+; HA-Drp1/Syb-QF2*.

(B) Quantification of mitochondrial morphology showing reduced enlargement in α -synuclein flies overexpressing Gelsolin. n=6 per genotype. Control is *elav-GAL4/+; Syb-QF2/+*.

(C and D) Drp1 localization to the mitochondria, as monitored by HA-tagged Drp1 (*HA-Drp1*) and quantification (D) shows rescued Drp1 colocalization following overexpression of Gelsolin (arrows). Scale bar, 5 µm. n=6 per genotype. Control is *elav-GAL4/+; HA-Drp1/Syb-QF2*.

Asterisks indicates *p<0.01, **p<0.002, one-way ANOVA with Student-Newman-Keuls test. Data is represented as mean \pm SEM. Flies are 10 days old.

Figure S7. Overexpression of α -spectrin does not induce neurotoxicity in the absence of transgenic α -synuclein expression, Related to Figure 7.

(A) Rescue of locomotor deficits by overexpression of α -spectrin (*UAS-\alpha-spectrin*) in α -synuclein transgenic flies. n=60 per genotype, two-way ANOVA with Student-Newman-Keuls test, ***p<0.0002. Control (ctrl) is *elav-GAL4/+; Syb-QF2/+*.

(B) Hematoxylin staining showing rescued neuronal density in 20-day-old α -synuclein flies following overexpression of α -spectrin. Scale bar, 20 µm. Control (ctrl) is *elav-GAL4/+; Syb-QF2/+*.

(C) Phalloidin stained whole brain mounts of α -synuclein transgenic flies overexpressing α -spectrin. Scale bar, 50 µm. Flies are 10 days old. Control is *elav-GAL4/+; Syb-QF2/+*.

(D) Presence of actin rods in the brains of α -synuclein transgenic flies overexpressing α -spectrin as determined by immunostained sections for actin. Scale bar, 3 µm. Flies are 10 days old. Control (ctrl) is *elav-GAL4/+; Syb-QF2/+*.

(E) 3D reconstruction of immunofluorescence-stained mitochondria showing changes in mitochondrial morphology in central brain neurons of α -synuclein transgenic flies overexpressing α -spectrin. Scale bar, 5 µm. Flies are 10 days old. Control is *elav-GAL4/+; Syb-QF2.*

(F) Drp1 localization to the mitochondria is not affected following α -spectrin overexpression (*UAS-\alpha-spectrin*) in the absence of α -synuclein expression (arrows). Scale bar, 5 µm. Flies are 10 days old. Control is *elav-GAL4/+; UAS-Drp1, Mito-GFP/+; HA-Drp1/Syb-QF2*.

(G) Western blot showing no changes in α -synuclein protein levels when α -spectrin is overexpressed in α -synuclein transgenic flies. The blot is reprobed for GAPDH to

illustrate equivalent protein loading. Flies are 1 day old. Control is *elav-GAL4/+;* Syb-QF2/+.

(H) Real time quantitative PCR for *a-spectrin* transcript levels shows an increase in *a-spectrin* expression in flies overexpressing *a-spectrin*. n=6 per genotype, unpaired t-test, ****p<0.0001. Flies are 1 day old. Control is *elav-GAL4/+*.

(I) Quantitative analysis of the number of TH-immunopositive neurons in the anterior medulla showing rescue of positively stained neurons following overexpression of α-spectrin. n=6 per genotype, one-way ANOVA with Student-Newman-Keuls test, ***p<0.0002. Flies are 20 days old. Control is *elav-GAL4/+; Syb-QF2/+*.

(J) 3D projection of immunofluorescence-stained *Drosophila* Kenyon cells showing colocalization of α -spectrin and α -synuclein signals in α -synuclein transgenics and in α -synuclein flies overexpressing α -spectrin. Scale bar, 5 µm. Flies are 10 days old.

(K) Quantitative western blot analysis of α -spectrin levels from biotinylated phalloidin precipitated from α -synuclein transgenic fly heads and controls shows a trend toward lower concentrations of α -spectrin in α -synuclein transgenics. α -spectrin levels were normalized to F-actin. n=10 per genotype. Flies are 10 days old. Control is *elav-GAL4/+; Syb-QF2/+.*

(L) Immunofluorescence staining showing the normal subplasmalemmal staining pattern in controls (*elav-GAL4/+*) and in flies expressing the nontoxic phosphorylation incompetent (S129A) α -synuclein (arrows), and disruption of the spectrin cytoskeleton in flies expressing the toxic phosphomimic (S129D) version of α -synuclein (arrows). Scale bar, 5 µm. Flies are 10 days old.

Data is represented as mean \pm SEM.

Figure S8: Mechanism of α -synuclein induced neurodegeneration, Related to Figure 7

(A) Schematic of proposed mechanism of α -synuclein induced mitochondrial abnormalities in α -synucleinopathy. α -synuclein binds to α -spectrin, disrupting normal actin cytoskeletal organization, including promoting excess F-actin stabilization at mitochondria. Loss of actin dynamics and increased levels of F-actin at mitochondria inhibits productive Drp1 localization to mitochondria and mitochondrial fission, leading to mitochondrial dysfunction. Increasing the levels of α -spectrin restores normal actin

cytoskeletal organization, Drp1 localization and mitochondrial fission by promoting sequestration of toxic α -synuclein species into large inclusions.